文档库 最新最全的文档下载
当前位置:文档库 › 如何运用“登门槛效应”转化问题生

如何运用“登门槛效应”转化问题生

如何运用“登门槛效应”转化问题生
如何运用“登门槛效应”转化问题生

如何运用“登门槛效应”转化问题生

[内容提要]“问题生”,指的是所有身上有不良习惯的学生,包括一部分成绩优秀但有不良习惯的“尖子生”。“问题生”需要在班主任的帮助下,通过一段时间的努力,化“问题”为常态。面对各类习惯有问题的学生,教师一下子不宜对他们提出过高的要求,而是先提出一个只要比过去有进步的小要求,当学生达到这个要求后再通过鼓励逐步向其提出更高的要求,学生往往更容易接受并力求达到。这称之为“登门槛效应”。

[关键词] 登门槛效应问题生习惯

说起“问题生”这个词,很容易让人联想起学生中那一小部分学习成绩较差、行为不良或暂时犯了错误的学生群体,有人干脆给这个群体贴了个标签,叫做“后进生”。但笔者所说的“问题生”,指的是所有身上有不良习惯的学生,包括一部分成绩优秀但有不良习惯的“尖子生”。

一、“问题生”与“登门槛效应”

抛开传统的“成绩定人品”的论调,所有的学生都是优秀的,只不过擅长的领域不同而已,学习成绩只是考核的一个方面,目前所表现出来的状态并不能断定这辈子都是这种“问题状态”。有问题就需要解决,问题大的学生不能自我解决,就需要班主任的帮助,经过一段时间的努力,化“问题”为常态。一个班级,所有学生都在常态中,那么这个班级必然是个优秀的班集体,这也是多少班主任为之奋斗的目标。

一个班级,总是存在各方面的问题,要想很好地化解问题,必须先

找到问题的症结所在,班主任才好对症下药。笔者认为,学生主要存在三个方面的问题,即行为习惯、学习习惯和生活习惯三方面的问题。要想很好的化解这些“习惯成自然”的问题,笔者认为可以利用“登门槛效应”。

登门槛效应,又称得寸进尺效应,是指一个人一旦接受了他人的一个微不足道的要求,为了避免认知上的不协调,或想给他人以前后一致的印象,就有可能接受更大的要求。这种现象,犹如登门坎时要一级台阶一级台阶地登,这样能更容易更顺利地登上高处。

一个人一天的行为中,大约只有5%是属于非习惯性的,而剩下的95%的行为都是习惯性的。根据行为心理学的研究结果:3周以上的重复会形成习惯,即同一个动作,重复3周就会变成习惯性动作,形成稳定的习惯。

一旦成为了稳定习惯,要去改变,就不是一朝一夕的事了。所以笔者任班主任,转化“问题生”,首先就是利用“登门槛效应”来化解问题。

心理学家认为,在一般情况下,人们都不愿接受较高较难的要求,因为它费时费力又难以成功;相反,人们却乐于接受较小的、较易完成的要求,在实现了较小的要求后,人们才慢慢地接受较大的要求,这就是“登门槛效应”对人的影响。

二、“登门槛效应”的运用

明代洪应明在《菜根谭》中说:“攻之恶勿太严,要思其堪受;教人之善勿太高,当使人可从。”意思就是说,批评别人的坏处不要过于严厉,一定要心里还想着这人还是有可爱之处的,过于严厉就会使对方反感以至抗拒;教育人从善不能要求太高,好让人容易听从,也不会让

自己太失望。

笔者接任的是六年级班主任,属于毕业班,许多行为习惯已经养成,就存在许多的问题,其中之一就是玩手机游戏,直接消耗学习时间。笔者决定新官第一把火,就先处理这个问题。

直接对学生提出最高要求,不准玩手机游戏,显然是不可行的。这么快速的处理方式,对已经对手机形成依赖的学生来说,就是没法做到。慑于班主任权威,可能初始阶段有效,但最终抵不住习惯的力量,还是会铤而走险,冒着被班主任发现的风险,继续充电。到时班主任一个处理不当心,就有可能造成无法挽回的僵局,直接影响班主任权威。

所以笔者采取的方法是先观察了几天,看到底是哪几个学生特别喜欢玩手机游戏。结果是30%左右的学生都有这种行为,最密集的是集中在几位同学身上。然后笔者心里就有底了。首先,班会课让同学讨论手机的辐射话题,然后辩论“小学生使用手机是否会影响学习”,不管结果哪方胜,都在学生心里打好了底,知道多用手机是有弊端的。接下来班主任提了个小小的要求,学生最好不要玩手游戏,并约定大家一起监督。学生认为这个会影响学习,可以接受,水到渠成。一段时间后,学校正好召开班主任会议,明令禁止学生玩手机游戏。接下来的事就顺理成章了,班会课宣布这个消息以后,并没有想象中的一石激起千层浪,只是部分学生偷偷的议论了几句,很快就平息了。玩手机游戏事件就这样成为了历史事件。

一下子向别人提出一个较大的要求,人们一般很难接受,而如果逐步提出要求,不断缩小差距,人们就比较容易接受。这主要是由于人们在不断满足小要求的过程中已经逐渐适应,意识不到逐渐提高的要求已经大大偏离了自己的初衷。这是因为,人们都希望在别人面前保持一个

比较一致的形象,不希望别人把自己看作“喜怒无常”的人,因而,学生在接受班主任的要求,不玩手机游戏,再拒绝班主任进一步的要求就变得更加困难了。因为不玩手机游戏的要求给学生造成损失并不大,只比前一个要求多了一点点,学生往往会有一种“反正用手机有辐射,玩手机游戏影响学习”的心理,于是,登门槛效应就发生作用了。

三、“登门槛效应”对我们的启示

“登门槛效应”对我们的启示很多,在“学困生”教育工作上也有应用和借鉴。面对学习习惯有问题的学生,教师一下子不宜对他们提出过高的要求,而是先提出一个只要比过去有进步的小要求,当学生达到这个要求后再通过鼓励逐步向其提出更高的要求,学生往往更容易接受并力求达到。"登门槛效应"蕴涵的是一种教育的理性、教育的智慧。“随风潜入夜,润物细无声”,不经意处见匠心。

又如,要求学生养成良好的生活习惯,我们可以首先要求学生从找准自己的不足做起,根据自身问题制订一个时间段(一周、半月或一个月)养成一个好习惯的目标。如养成“不随地扔垃圾”、“按时起床到校”等等。长此以往,良好的生活习惯便会功到自然成。

还有,对“问题生”的教育切忌急于求成,“恨铁不成钢”,问题生的形成是一个逐步积累的过程,往往是一种集体无意识,因此,问题生的转化工作也不是一朝一夕就能完成的,需要一个长期的过程,树立打“持久战”的思想观念,要富有爱心和欣赏心,对于他们已经做到的小小要求,要及时作出积极的、鼓励性评价,哪怕是一个赞许的点头,一个满意的微笑,都可能激励学生继续做好这件事。

转化问题生,关键就是要化解问题,用一个小小的行动来替代原来的习惯。每天登一个门槛,时间久了自然会由量变发生质变,从而实现

转化目标。正如心理学巨匠威廉詹姆士说:“播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。”

[注释]

1.登门槛效应:是美国社会心理学家弗里德曼与弗雷瑟于1966年做的“无压力的屈从:登门坎技术”的现场实验中提出的。

2.《菜根谭》作者洪应明,字自诚,号初怀道人。

3.《习惯的力量》作者:[美]杰克·霍吉/译者:吴溪,当代中国出版社。

4.《教育中的心理效应》刘儒德华东师范大学出版社

5.《改变一生的60个心理学效应》郑小兰编著中国青年出版社

生活中发现的有趣现象

生活中发现的有趣现象一生活中有许多有趣的现象,只要我们留心观察、善于思考,就会有所收获。 最近,我就有一个新发现。前些天,我在院子里玩。突然,一只大黄蜂从我身边飞过,我盯着它看。只见它飞到了我家院子的一角,不小心被一张蜘蛛网给粘住了。一只蜘蛛看见了,连忙爬过去,想吃黄蜂,没想到被大黄蜂的毒刺蜇了一下,缩着身子掉下了蜘蛛网。只见它缓慢地爬到墙角边的表苔上去打了几个滚。过了一会儿,它又爬到网上去和挣扎着的黄蜂搏斗,没想到又被黄蜂蜇了,它又爬到青苔上去打滚,摩擦。这样来来回回几次后,大黄蜂终于被蜘蛛给制服了,躺在蜘蛛网上一动不动,成了蜘蛛的一顿美餐。 我很纳闷: 为什么蜘蛛中了蜂毒却不死呢?它在青苔上打滚、摩擦是做什么呢?于是,我就去我的知识宝库《十万个为什么》中寻找答案,终于知道了原来蜘蛛在青苔上打滚、摩擦是为了防止蜂毒发作,因为青苔有医治蜂毒的作用。名医华佗就曾经把青苔作成药膏,挽救了无数中蜂毒的人。 生活中发现的有趣现象二 在生活中大家可能会遇到这样的问题——打乒乓球时会不小心把乒乓球给踩扁了,然后就会把坏的乒乓球给扔掉。其实千万不要扔了,球还可以变回原来的样子。 星期天早上,我和晋龙做了个实验,把乒乓球给弄扁了。然后晋龙准备了一盆热水,这盆热水在九十度左右,再把扁了的乒乓球放进去,看一看乒乓球会不会恢复原样?看到它渐渐的鼓了起来,又恢复了原来圆溜溜的乒乓球。我问爸爸为什么会这样,爸爸告诉我两个字“热涨”。因为球内的空气遇热就会膨胀,像是一个无形的大手把扁的地方“支撑”起来。晋龙问爸爸为什么不用冷水呢?爸爸让我们端来冷水试一下,同样还是用那个扁的乒乓球放进冷水里,看一看球有没有变。爸爸说: “这是热胀的兄弟‘冷缩 ',它的原理和热胀相反,空去遇到冷就会凝结,凝结后就会稍微变小,物体也会随着变小。”我和晋龙认真观察一下,乒乓球果然在冷水中变小了。爸爸还告诉我们这个热胀冷缩的有趣现象,不光是让乒乓球变鼓,变小而已,如果一热一冷,还会有更大的威力呢!

冉绍尔汤森效应实验

实验5-3 冉绍尔-汤森效应实验 作者:任学智 同组者:关希望 指导老师:周丽霞 一. 引言 1921年,德国物理学家冉绍尔(Carl Ramsauer )用磁偏转法分离出单一速度的电子,对极低能量0.75~1.1eV 的电子在各种气体中的平均自由程做了研究。结果发现,氩气(Ar )气中的平均自有程e λ远大于经典力学的理论计算值。以后,他又把电子能量扩展到100eV 左右,发现Ar 原子对电子的弹性散射截面Q (与e λ成反比)随电子能量的减小而增大,在10eV 左右达到极大值,而后又随着电子能量的减小而减小。 1922年,现代气体放电理论的奠基人、英国物理学家汤森(J.S.Townsend )和贝利(Bailey )也发现了类似的现象。进一步的研究表明,无论哪种气体原子的弹性散射截面(或电子平均自由程),在低能区都与碰撞电子的能量(或运动速度v )明显相关,而且类似的原子具有相似的行为,这就是著名的冉绍尔-汤森效应。 冉绍尔-汤森效应在当时是无法解释的。因为经典的气体分子运动论把电子看成质点,把气体原子看成刚性小球,它们之间碰撞的散射截面仅决定于原子的尺寸,电子的平均自由程也仅决定于气体原子大小及其密度 n ,都与电子的运动速度无关。不久,在德布罗意波粒二相性假设(1924年)和量子力学理论(1925~1928年)建立后,人们认识到,电子与原子的碰撞实际上是入射电子波在原子势场中的散射,是一种量子效应,以上实验事实才得到了圆满的理论解释。 冉绍尔-汤森效应是量子力学理论极好的实验例证,通过该实验,可以了解电子碰撞管的设计原则,掌握电子与原子的碰撞规则和测量原子散射截面的方法,测量低能电子与气体原子的散射几率以及有效弹性散射截面与电子速度的关系。 本实验的目的主要有:了解电子碰撞管的设计原则,掌握电子与原子的碰撞规则和测量的原子散射截面的方法;测量低能电子与气体原子的散射几率Ps 与电子速度的关系;测量气体原子的有效弹性散射截面Q 与电子速度的关系,测定散射截面最小时的电子能量;验证冉绍尔-汤森效应,并学习用量子力学理论加以解释。 二. 实验原理 1.理论原理 冉绍尔在研究极低能量电子(0.75eV —1.1eV )的平均自由程时,发现氩气中电子自由程比用气体分子运动论计算出来的数值大得多。后来,把电子的能量扩展到一个较宽的围进行观察,发现氩原子对电子的弹性散射总有效截面Q 随着电子能量的减小而增大,约在10eV 附近达到一个极大值,而后开始下降,当电子能量逐渐减小到1eV 左右时,有效散射截面Q 出现一个极小值。也就是说,对于能量为1eV 左右的电子,氩气竟好像是透明的。电子能量小于1eV 以后Q 再度增大。此后,冉绍尔又对各种气体进行了测量,发现无论哪种气体的总有效散射截面都和碰撞电子的速度有关。并且,结构上类似的气体原子或分子,它们的总有效散射截面对电子速度的关系曲线V F Q =(V 为加速电压值)具有相同的形状,称为冉绍尔曲线。图B8-1为氙(Xe ),氪(Ke ),氩(Ar )三种惰性气体的冉绍尔曲线。图中横坐标是与电子速度成正比的加速电压平方根值,纵坐标是散射截面Q 值,这里采用原子单位,其中a 0为原子的玻尔半径。图中右方的横线表示用气体分子运动论计算出的Q 值。显然,用两个钢球相碰撞的模型来描述电子与原子之间的相互作用是无法解释冉绍尔效应的,因为这种模型得出的散射截面与电子能量无关。要解释冉绍尔效应需要用到粒子的波动性质,即把电子与原子的碰撞看成是入射粒子在原子势场中的散射,其散射程度用总散射截面来表示。

生活中处处存在着有趣的物理现象

生活中处处存在着有趣的物理现象,如果我们能在平时的教学中,根据教学内容适当的插入这些身边的物理问题,不仅让学生感觉到物理并不遥远,就在他们身边,而且能大大提高学习物理的兴趣。这也正是新课改倡导的“从生活走向物理,从物理走向生活”。下面是我摘录的生活中的物理现象和老师们共享。 1、挂在壁墙上的石英钟,当电池的电能耗尽而停止走动时,其秒针往往停在刻度盘上“ 9 ”的位置。这是由于秒针 在“ 9 ”位置处受到重力矩的阻碍作用最大。 2、有时自来水管在邻近的水龙头放水时,偶尔发生阵阵的响声。这是由于水从水龙头冲出时引起水管共振的缘故。 3、对着电视画面拍照,应关闭照相机闪光灯和室内照明灯,这样照出的照片画面更清晰。因为闪光灯和照明灯在电视屏上的反射光会干扰电视画面的透射光。 4、走样的镜子,人距镜越远越走样。因为镜里的像是由镜后镀银面的反射形成的,镀银面不平或玻璃厚薄不均匀都会产生走样。走样的镜子,人距镜越远,由光放大原理,镀银面的反射光到达的位置偏离正常位置就越大,镜子就越走样。 5、天然气炉的喷气嘴侧面有几个与外界相通的小孔,但天然气不会从侧面小孔喷出,只从喷口喷出. 这是由于喷嘴处天然气的气流速度大,根据流体力学原理,流速大,压强小,气流表面压强小于侧面孔外的大气压强,所以天然气不会以喷管侧面小孔喷出。 6、从高处落下的薄纸片,即使无风,纸片下落的路线也曲折多变。这是由于纸片各部分凸凹不同,形状备异,因而在下落过程中,其表面各处的气流速度不同,根据流体力学原理,流速大,压强小,致使纸片上各处受空气作用力不均匀,且随纸片运动情况的变化而变化,所以纸片不断翻滚,曲折下落。 7、吊扇在正常转动时悬挂点受的拉力比未转动时要小,转速越大,拉力减小越多。这是因为吊扇转动时空气对吊扇叶片有向上的反作用力。转速越大,此反作用力越大。 8、将气球吹大后,用手捏住吹口,然后突然放手,气球内气流喷出,气球因反冲而运动。可以看见气球运动的路线曲折多变。这有两个原因:一是吹大的气球各处厚薄不均匀,张力不均匀,使气球放气时各处收缩不均匀而摆动,从而运动方向不断变化;二是气球在收缩过程中形状不断变化,因而在运动过程中气球表面处的气流速度也在不断变化,根据流体力学原理,流速大,压强小,所以气球表面处受空气的压力也在不断变化,气球因此而摆动,从而运动方向就不断变化。 9、摩托车做飞跃障碍物的表演时为了减少向前翻车的危险,应该后轮先着地 10、会打秋千的人,不用别人帮助推,就能越摆越高,而不会打秋千的人则始终也摆不起来,正确的打秋千动作:人从高处摆下来的时候身子是从直立到蹲下,而从最低点向上摆时,身子又从蹲下到直立起来。由于他从蹲下到站直时,重心升高,无形中就对自己做了功,增大了重心势能。因而,每摆一次秋千,都使打秋千的人自身能量增加一些。如此循环往复,总能量越积越多,秋千就摆地越来越高了。 11、一个重球的上下两端系同样的两根线,今用其中一根线将球吊起,而用手向下拉另一根线,如果向下猛一拽,则下面的线断而球不动。如果用力慢慢拉线,则上面的线断开,因为“猛拽”意味着力大而作用时间短。当向下猛拽球下面的线时,由于这个力直接作用在下面的线上,该力超过线的承受力,从而使球下面的线断掉。又由于力的作用时间极短,且球的质量又很大,所以在极短的时间内重球向下的位移就很小。这样,上面线的张紧程度尚未来得及发生明显变化,即张力没有来得及明显变大,下面的线就已经断了。如果慢慢拉下面的线,力缓慢增大,可认为每瞬时力均达到平衡。下面的线中的张力就等于拉力,而球上面的线中的张力等于拉力加重球的重力。显然,在慢慢施加拉力的过程中,球上面的线中的张力首先超过其耐力,因而上面的线先断。 12、汽车驾驶室外面的观后镜是一个凸镜而不是平面镜或凹镜,是利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。 13、洗衣机的甩干桶在正常高速旋转时,转动往往是很平稳的,但是当甩干桶转速逐渐减小,将要停下来的一段时间内,洗衣机往往会较为剧烈的晃动,最后才停下来,这是因为洗衣机甩干桶在旋转时就会给机体一个周期性的策动力,高速旋转时,这个策动力频率远高于洗衣机机体的固有频率,所以机体振动轻微;甩干桶转速逐渐减小时,对机体的策动力频率也逐渐减小,当接近停止时,策动力频率便接近和等于机体的固有频率,这时机体发生“共振”,所以晃动特别剧烈。 14、节日放焰火时,焰火弹在高空爆炸开来形成绚丽多彩的礼花,炸开后下落过程中礼花在空中是以爆炸点为中心半径不断增大的球形。爆炸瞬间,爆炸力远大于重力,可以看为一个动量守恒过程,礼花的各个碎片都具有相等的速率,又由于每个碎片受到的重力加速度是一样的,所以碎片能保持爆炸时的球形不变。

冉绍尔—汤森效应实验

中国石油大学近代物理实验实验报告成绩: 班级:应物11—4 姓名:辛拓同组者:武丁仓教师:亓鹏 冉绍尔—汤森效应实验 【实验目的】 1、了解电子碰撞管的设计原则,掌握电子与原子的的碰撞规则和测量的原子散射截面的方法。 2、测量低能电子与气体原子的散射几率Ps与电子速度的关系。 3、测量气体原子的有效弹性散射截面Q与电子速度的关系,测定散射截面最小时的电子能量。 4、验证冉绍尔—汤森效应,并学习用量子力学理论加以解释。 【实验原理】 1、理论原理 电子与原子的碰撞实际上市入射电子波在原子势场中的散射,是一种量子效应。冉绍尔在研究极低能量电子(0.75eV-1.1eV)的平均自由程时,发现氩气中电子自由程比用气体分子运动论计算出来的数值大得多。后来,把电子的能量扩展到一个较宽的范围内进行观察,发现氩原子对电子的弹性散射总有效截面Q随着电子能量的减小而增大,约在10eV附近达到一个极大值,而后开始下降,当电子能量逐渐减小到1eV左右时,有效散射截面Q出现一个极小值。也就说,对于能量为1eV左右的电子,氩气竟好像是透明的。电子能量小于1eV以后Q再度增大。此后,冉绍尔又对各种气体进行了测量,发现无论哪种气体的总有效散射截面都和碰撞电子的速度有关。并且,结构 V为加速电 压值)具有相同的形状,称为冉绍尔曲线。 2、测量原理 当灯丝加热后,就有电子自阴极逸出,设阴极电流为I k,电子在加速电压的作用下,有一部分电子在到达栅极之前,被屏板接收,形成电流I S1;有一部分穿越屏板上的矩形孔,形成电流I0,由于屏板上的矩形孔与板极P之间是一个等势空间,所以电子穿越矩形孔后就以恒速运动,受到气体原子散射的电子到达屏板,形成散射电流I S2;而未受到散射的电子则到达板极P,形成板流I P,因此有 I k = I0+ I S1 I S = I S1 + I S2 I0 = I P + I S2 电子在等势区内的散射概率为 Ps=1?Ip/Io 可见,只要测量出I P和I0即可以求得散射几率。

生活中有趣的现象小学科学作文400字

生活中有趣的现象小学科学作文400 字 生活中有趣的现象小学科学作文400字 星期六,在家里看电视,是我特别喜欢的科教节目。这个节目里介绍了一个有趣的地方,叫作死海。这片海很神奇,不会游泳的人掉到里面,不但不会被淹死,反而会浮在水面上很舒服的样子。 我有点不相信,因为我学游泳时,可是练了好长时间才能漂浮在水上的。我就去问教地理的妈妈,妈妈边思索边说:“是有这么一个海,具体的情况妈妈也不是很清楚,你可以‘百度’一下噢。” 妈妈刚说完,我就跑到电脑旁,打开电脑,在百度上搜“死海”。原来,它叫“死海”是因为海水含盐量大,鱼虾海草等生物,都无法生存。但也正因如此,人掉进海里,才会浮起来。 看完之后,我还是不太相信,就决定和妈妈一起动手做个试验来验证一下。在妈妈指导下,我找来了做实验用的鸡蛋、玻璃杯、水,还有盐。 我先把鸡蛋放进装着自来水的玻璃杯里,鸡蛋

慢慢的就沉到了杯底。我想死海盐分多,那我就给水里放些盐,于是我舀了一勺盐放在水里,搅匀了,可是鸡蛋还是躺在水底纹丝不动,直到放了十几勺盐搅匀后,鸡蛋才从水底慢慢的游上来,漂在了水面上。看到鸡蛋真的浮了起来,我觉得真是太有趣了,死海也太神奇了。 我希望自己长大了,能有机会到死海去畅游一番。 生活中有趣的现象小学科学作文400字 星期六,在家里看电视,是我特别喜欢的科教节目。这个节目里介绍了一个有趣的地方,叫作死海。这片海很神奇,不会游泳的人掉到里面,不但不会被淹死,反而会浮在水面上很舒服的样子。 我有点不相信,因为我学游泳时,可是练了好长时间才能漂浮在水上的。我就去问教地理的妈妈,妈妈边思索边说:“是有这么一个海,具体的情况妈妈也不是很清楚,你可以‘百度’一下噢。”

登门槛效应、门面效应、低球技术

登门槛效应、门面效应、低球技术 一、登门坎效应/登门槛效应/得寸进尺效应 登门坎效应是指一旦接受了他人的一个微不足道的要求,为了避免认知上的不协调,或想给他人以前后一致的印象,就有可能接受更大的要求。这种现象,犹如登门坎时要一级台阶一级台阶地登,这样能更容易更顺利地登上高处。当个体先接受了一个小的要求后,为保持形象的一致,他可能接受一项重大、更不合意的要求,这叫做登门坎效应,又称得寸进尺效应。 心理学家认为,在一般情况下,人们都不愿接受较高较难的要求,因为它费时费力又难以成功,相反,人们却乐于接受较小的、较易完成的要求,在实现了较小的要求后,人们才慢慢地接受较大的要求,这就是“登门坎效应”对人的影响。明代洪自成也曾谈到这个问题,他在《菜根谭》中说:“攻之恶勿太严,要思其堪受;教人之善勿太高,当使人可从。” 社会心理学家弗里德曼在20世纪60年代做了一个非常经典的实验。研究的第一步,是先到各家各户向家庭主妇们提出一个小的要求,请她们支持“安全委员会”的工作,在一份呼吁安全驾驶的请愿书上签名。研究的第二步,在两周以后,由原来的两个大学生实验者重新找到这些主妇,问能否在她们的前院立一块不太美观的大告示牌,上面写着“谨慎驾驶”。实验的结果表明,先前在请愿书上签过名的大部分人(55%以上)都会同意立告示牌,而没有签过名的主妇,只有不足17%的人接受了这一要求。这个实验验证了社会心理学“登门槛效应”的存在。 登门坎效应的实验 这个效应是美国社会心理学家弗里德曼与弗雷瑟于1966年做的“无压力的屈从——登门坎技术”的现场实验中提出的。 实验过程是这样的:实验者让助手到两个居民区劝人们在房前竖一块写有“小心驾驶”的大标语牌。在第一个居民区向人们直接提出这个要求,结果遭到很多居民的拒绝,接受的仅为被要求者的17%。在第二个居民区,先请求各居民在一份赞成安全行驶的请愿书上签字,这是很容易做到的小小要求,几乎所有的被要求者都照办了。几周后再向他们提出竖牌的要求,结果接受者竟占被要求者的55%。 研究者认为,人们拒绝难以做到的或违反意愿的请求是很自然的;但是他一旦对于某种小请求找不到拒绝的理由,就会增加同意这种要求的倾向;而当他卷入了这项活动的一小部分以后,便会产生自己是关心社会福利者的知觉、自我概念或态度。这时如果他拒绝后来的更大要求,就会出现认知上的不协调,于是恢复协调的内部压力就会支使他继续干下去或做出更多的帮助,并使态度拓改变成为持久的。 不言而喻,前一组的家庭主妇同意率之所以超过半数,是因为在这之前对她们提出了一个较小的要求;而后一组的家庭主妇同意率之所以不足 20%,是因为在这之前对她们没有提出一个较小的要求。换句话说,前一组的家庭主妇的同意率之所以高于后一组的家庭主妇,是因为人们的潜意识里总是希望自己给人留下首尾一致的印象。

冉绍尔-汤森效应实验

冉绍尔-汤森效应实验 【摘要】 加速电子与充氙闸流管中的氙原子碰撞,电子被散射,把闸流管先后浸入77K 液氮和在室温下测俩观众的栅极及板极电流。得出散射概率、散射截面与电子能量的关系,低能电子与气体原子的散射几率与电子速度的关系,验证冉绍尔-汤森效应。用量子力学解释这一效应 测量氙原子的电离电位。 【实验原理】 当灯丝加热后,就有电子自阴极逸出,设阴极电流为K I ,电子在加速电压的作用下,有一部分电子在到达栅极之前,被屏极接收,形成电流1S I ;有一部分穿越屏极上的矩形孔,形成电流0I ,由于屏极上的矩形孔与板极P 之间是一个等势空间,所以电子穿越矩形孔后就 以恒速运动,受到气体原子散射的电子则到达屏极,形成散射电流2S I ;而未受到散射 的电子则到达板极P ,形成板流P I ,因此有 10S K I I I += 2 1S S S I I I += 20S P I I I += 电子在等势区内的散射概率为: 01I I P P S - = (1) 可见,只要分别测量出P I 和0I 即可以求得散射几率。从上面论述可知,P I 可以直接测得,至于0I 则需要用间接的方法测定。由于阴极电流K I 分成两部分1S I 和0I ,它们不仅与K I 成比例,而且他们之间也有一定的比例关系,这一比值称为几何因子f ,即有

10 S I I f = (2) 几何因子f 是由电极间相对张角及空间电荷效应所决定,即f 与管子的几何结构及所用的加速电压、阴极电流有关。将式(2)带入(1)式得到 111S P S I I f P - = (3) 为了测量几何因子f ,我们把电子碰撞管的管端部分浸入温度为77K 的液氮中,这时,管内掉气体冻结,在这种低温状态下,气体原子的密度很小,对电子的散射可以忽略不计, 几何因子f 就等于这时的板流*P I 与屏流* S I 之比,即 * * =S P I I f (4) 如果这时阴极电流和加速电压保持与式(1)和(2)时的相同,那么上式中的f 值与式(3)中掉相等,因此有 * * -=P S S P S I I I I P 11 (5) 设L 为出射孔S 到板极P 之间的距离,则 )exp(1QL P S --= (6) 当f<<1时,由(5)、(6)两式得 ??? ? ??-=** P S S P I I I I L Q ln 1 测量不同的加速电压Ea 下的Ps 的值,即可由上式得到总有效散射截面Q 与a E 的关系曲线。 使用直流加速电压的测量线路图

10个有趣的生活中物理现象及解释

10个有趣的生活中物理现象及解释 看似平常的现象中,其实隐藏了很多物理知识,只要用心观察、细心体会,相信你的物理学习会变得五彩缤纷! 1、挂在壁墙上的石英钟,当电池的电能耗尽而停止走动时,其秒针往往停在刻度盘上“ 9 ”的位置。 这是由于秒针在“ 9 ”的位置处受到重力矩的阻碍作用最大。 2、有时,自来水管在邻近的水龙头放水时,偶尔发生阵阵的响声。 这是由于水从水龙头冲出时引起水管共振的缘故。 3、对着电视画面拍照,应关闭照相机闪光灯和室内照明灯,这样照出的照片画面更清晰。 因为闪光灯和照明灯在电视屏上的反射光会干扰电视画面的透射光。 4、冰冻的猪肉在水中比在同温度的空气中解冻得快。烧烫的铁钉放入水中比在同温度的空气中冷却得快。装有滚烫的开水的杯子浸入水中比在同温度的空气中冷却得快。

这些现象都表明:水的热传递性比空气好。 5、锅内盛有冷水时,锅底外表面附着的水滴在火焰上较长时间才能被烧干,且直到烧干也不沸腾。 这是由于水滴、锅和锅内的水三者保持热传导,温度大致相同,只要锅内的水未沸腾,水滴也不会沸腾,水滴在火焰上靠蒸发而渐渐地被烧干。 6、走样的镜子,人距镜越远越走样。 因为镜里的像是由镜后镀银面的反射形成的,镀银面不平或玻璃厚薄不均匀都会产生走样。走样的镜子,人距镜越远,由光放大原理,镀银面的反射光到达的位置偏离正常位置就越大,镜子就越走样。 7、天然气炉的喷气嘴侧面有几个与外界相通的小孔,但天然气不会从侧面小孔喷出,只从喷口喷出。 这是由于喷嘴处天然气的气流速度大,根据流体力学原理,流速大,压强小,气流表面压强小于侧面孔外的大气压强,所以天然气不会以喷管侧面小孔喷出。 8、将气球吹大后,用手捏住吹口,然后突然放手,气球内气流喷出,气球因反冲而运动。可以看见气球运动的路线曲折多变。 这有两个原因:一是吹大的气球各处厚薄不均匀,张力不均匀,使气球放气时各处收缩不均匀而摆动,从而运动方向不断变化;二是气球在收缩过程中形状不断变化,因而在运动过程中气球表面处的气流速度也在不断变化,根据流体力学原理,流速大,压强小,所以气球表面处受空气的压力也在不断变化,气球因此而摆动,从而运动方向就不断变化。 9、吊扇在正常转动时,悬挂点受的拉力比未转动时要小,转速越大,拉力减小越多。 这是因为吊扇转动时空气对吊扇叶片有向上的反作用力。转速越大,此反作用力越大。 10、从高处落下的薄纸片,即使无风,纸片下落的路线也曲折多变。 这是由于纸片各部分凸凹不同,形状各异,因而在下落过程中,其表面各处的气流速度不同,根据流体力学原理,流速大,压强小,致使纸片上各处受空气作用力不均匀,且随纸片运动情况的变化而变化,所以纸片不断翻滚,曲折下落。

冉绍尔-汤森德效应

冉绍尔——汤森德效应 摘要:冉绍尔——汤森德效应是在研究低能电子的平均自由程时发现的一种气体原子与电子弹性碰撞的散射截面Q与电子能量密切相关的现象。此现象与经典理论相矛盾,需要用量子理论解释。 关键词:散射截面碰撞概率加速电压补偿电压电离电位 一、引言 1921年德国物理学家冉绍尔在研究低能电子的平均自由程时发现:在惰性气体中,当电子的能量降到几个电子伏时,气体原子与电子弹性碰撞的散射截面Q(与平均自由程成反比)迅速减小;当电子能量约为1电子伏时,Q出现极小值,而且接近零。如果继续减少电子能量,则Q迅速增大,这说明弹性散射截面与电子能量密切相关。 1922年英国物理学家汤森德把电子能量进一步降低,用另外的方法研究平均自由程随电子速度变化的情况,也发现类似现象。随后,冉绍尔用实验证明了汤森德的结果。 冉绍尔——汤森德效应在当时无法解释,因为经典理论认为气体原子与电子弹性碰撞的散射截面仅决定于原子的尺寸,而与电子的运动速度无关,只有在波粒二象性和量子力学建立后,这种效应才得到圆满解释。因此冉绍尔——汤森德效应也验证了量子力学的正确性。 图1 惰性气体的冉绍尔曲线 如图1所示的是Xe、Kr、Ar三种惰性气体的冉绍尔曲线。因为电子的速度与加速电压V的平方根成正比,故横坐标采用平方根√V表示,纵坐标为散射截面Q,采用原子单位。由图1可以看出,结构相近的物质,其冉绍尔曲线的形状相似。 二、冉绍尔——汤森德效应的理论描述

在量子力学中,碰撞现象也称作散射现象。粒子的碰撞过程有弹性碰撞与非弹性碰撞两大类。在弹性碰撞过程中,粒子A 以波矢k 2|k|= mE (1) 沿Z 入射到靶粒子B (即散射中心)上,受B 粒子作用偏离原方向而散射,散射程度可用总散射截面Q 表示。 讨论粒子受辏力场弹性散射的情况。取散射中心为坐标原点;设入射粒子与散射中心之间的相互作用势能为U (r ),当r → ∞时,U (r )趋于零,则远离散射中心处的波函数Ψ由入射粒子的平面波Ψ1和散射粒子的球面散射波Ψ2组成 12() ikr ikz r e e f r ψψψθ→∞→+=+ (2) 这里考虑的是弹性散射,所以散射波的能量没有改变,即其波矢k 的数值不变。θ为散射角, 即粒子被散射后的运动方向与入射方向之间的夹角;f(θ)称散射振幅。 总散射截面 220|()|2|()|sin Q f d f d π θπθθθ =Ω=?? (3) 利用分波法求解满足式(3)边界条件的薛定谔方程 2 2 ()2U r E m ψψ??-?+= ??? (4) 可求得散射振幅为 1 ()(21)(cos )sin i e l l l f l P e k δ θθδ∞ == +∑ (5) 从而得到总散射截面 2 00 4(21)sin l l l l Q Q l k π δ ∞ ∞ ====+∑∑ (6) 中心力场中,波函数可表成不同角动量l 的入射波和出射波的相干叠加,l =0, 1, 2…的分波,分别称为s , q , d …分波。势场U (r )的作用仅使入射粒子散射后的每一个分波各自产生相移δl 。δl 可通过解径向方程 2222212(1)()()()0l l d d m l l r R r k U r R r r dr dr r +????+--=???????? (7) 求得,要满足 1()sin()2l l kr l R r kr kr πδ→∞→ -+ (8) 这样,计算散射截在Q 的问题就归结为计算各分波的相移δl ;式(6)中的Q l 为第l 个分波的散射截面。 在冉绍尔-汤森德效应实验里,U (r )为电子与原子之间的相互用势,可以把惰性气体的势场近似地看成一个三维方势阱 ,()0,U r a U r r a -≤?=?>? (9) U 0代表势阱深度,a 表征势阱宽度。对于低能散射,ka <<1,δl 随l 增大而迅速减少,仅需

生活中发现的有趣现象作文指导

生活中发现的有趣现象 鲤城实验小学洪秀丽 教学目标: 1、引导学生整理自己观察到的有趣现象,把它表达清楚具体、生动,用上积累的词,合理想象,写出自己的真情实感,写得有意思。 2、创设“有趣”现象,让学生认真观察,在观察中体验、感受、思考、想象 3、引导学生通过对所观察的事物的动作描写,事物大小、形状、颜色的变化的写出“有趣”的表达方法。懂得要观察生活,做生活中的有心人。 教学准备: 让学生去观察、发现生活中的有趣现象,查找相关资料,为自己的好奇心寻找答案。 教学过程; 一、话题交流激趣引入 1、话题交流(课前交流) 洪老师发现同学们今天精神饱满相信这堂作文课你们会有精彩的表现,细心的你有没有发现今天的课堂有什么不一样?你发现了什么?(教室摆设,老师穿着,同学装束等) 生:我发现听课老师真多! 师:这都是咱们的客人,向老师问声好吧 生:今天老师穿得特别漂亮! 师:谢谢你的夸奖! 生:我发现同学们穿着特别整齐 师:对,很精神 …… 师:大家真了不起,在教室里就有这么多发现。 2、激趣引入 师:同学们我们刚学完第九单元,主题是——观察与发现,课文《李时珍》告诉我们要处处留心生活,《装满昆虫的口袋》这篇文章引导我们要带着无限的好奇心、强烈的兴趣去观察,《大自然的语言》这首诗歌提醒我们要勤于思考才能有发现,下面老师想考考同学们,看谁最善于观察,善于发现。 (1)出示:切开的藕,学生观察 师:这是——莲藕,这天老师想炖排骨莲藕汤,切莲藕的时候却发现一个有趣的现象,我们一起仔细看,用心想,你发现了什么? 生:虽然藕切断了,但是丝却还连着 师:能用一个词说说吗 生:藕断丝连 师:这个成语讲述了生活中的一种有趣现象。 (2)出示:筷子和一杯水,筷子斜插入水中 师:炎热的夏天到了,喝杯冰凉的蜜水,多么凉爽(师搅拌) 学生观察 师:你有什么发现 生:筷子斜插入水中会像“折”断一样 师:多有趣啊,喝水都可以有发现 (设计意图:从孩子喜欢的实物中观察,孩子往往会瞪大一双好奇的眼睛,效果容易事半功倍,激发学生观察与发现的兴趣,引入主题。) 3、过渡 其实我们生活中有趣的现象数不胜数,只要我们留心生活,仔细观察,就会发现生活中许多有趣的现象,我们今天要来写一写自己——生活中发现的有趣现象,(板书课题)齐读 二、处处留心发现有趣 1、教室外是广阔的天地,课前,老师布置了小任务,在生活中发现有趣现象并认真观察,同学们, 你们有发现吗?谁来谈谈自己发现的有趣现象。(谁愿意把自己的发现写到黑板上)(先写后说)生:苹果切开后会变黑 师:苹果切开,原本果肉是黄色,放在那儿,竟会变色,这真有趣。 生:蜻蜓低飞,鱼跃水面要下雨 师:蜻蜓、鱼儿都能当天气预报专家呢,真有意思! 生:含羞草手一碰,叶子就合拢。 师:多有趣啊,真像个害羞的小姑娘 生:…… 师:在什么时候,还有什么发现(师说情境、时间引导说后出示课件) (玩泡泡时,)肥皂泡在阳光下是五彩的。

金融配置门槛效应影响机制

金融配置门槛效应影响机制 金融发展的二元结构特征以及城乡居民收入分配差距的不断扩大已成为我国经济金融发展的普遍共识,如何调整金融资源空间配置的非均衡、缩减居民收入分配差距将是今后一段时期我国经济金融工作的重心问题之一。改革以来,中国的基尼系数已由1990年的上升至20XX年的,区域金融发展的失衡和二元结构的特征,加剧了区域经济发展的不均衡和城乡经济发展的差距。十七届四中全会以来,政府部门关于缩小居民收入分配差距、调整收入分配格局的一系列指导性文件开始推动我国城乡居民收入分配结构的调整, 对不同经济区金融发展、金融结构的布局业已成为当前经济体制改革深化的重要方面。在此背景下, 探究金融发展水平与城乡居民收入分配差距间空间分布的影响机制对于缓解差距的进一步扩大无疑具有重要的现实意义。 一、文献综述 Gini开创了对收入分配结构的度量方法, Kuznets提出了着名的倒U型假说,嗣后的许多研究多围绕于Kuznets倒U型曲线的实证检验。早期关于金融发展与收入差距的研究更多地隐含在金融发展与经济增长关系的研究中,King和 Levine关于金融与经济增长的研究开辟了一个新的局面,多元回归和面板数据方法成为分析金融发展与居民收入分配差距的主要手段,许多文献将金融发展与居民收入分配差距的关系暗含于经济增长与收入分配差距的关联性之中。在理论研究方面,支持经济增长与收入分配差距负相关的代表性研究包括Alesina和Rodkik等人的研究 ,而认为经济增长和收入分配差距正相关的代表性研究包括Ga- lor and Tsidon 、Deininger and Squire 、Alesina and Perotti 等人的研究。但在实证研究中,绝大部分的实证研究支持了经济增长与收入分配差距的负相关性。 Greenwood and Jovanovic分析了金融发展水平与收入差距的关联性 ,在他们的论文中,实际上暗含了一个重要假设———即初始的收入分配外生于经济增长和金融发展水平,且对金融市场设施的使用需要支付一定的固定成本,每期对金融服务的购买需要支付一定比例的运营费用。由于固定成本的存在,在金融和经济发展的早期,金融市场不大,此时只有那些高收入、财富水平较高的人群才可以享受到金融服务,而穷人在金融服务的购买上存在着“门槛”效应;由于“门槛”的存在,穷、富两个群体的金融投资收益率存在差异,因此,金融发展会使得收入差距扩大;在金融发展的成熟

2.1-冉绍尔效应

实验冉绍尔—汤森德效应 一、引言 1921年德国物理学家冉绍尔(C. Ramsaüer)在研究低能电子的平均自由程时发现:在惰性气体中,当电子能量降到几个电子伏时,气体原子核电子弹性碰撞的散射截面Q(它与平均自由程λ成反比)迅速减小;当电子能量约为1电子伏时,Q出现极小值,而且接近零。如果继续减小电子能量,则Q迅速增大,这说明弹性散射截面与电子能量密切相关。 1922年英国物理学家汤森德(. Townsend)把电子能量进一步降低,用另外的方法研究λ随电子速度变化的情况,亦发现类似的现象。随后,冉绍尔用实验证实了汤森德的结果。后来,把气体原子的弹性散射截面在低能区与碰撞电子能量密切相关的现象称为冉绍尔—汤森德效应。

冉绍尔—汤森德效应在当时无法解释, 因为经典的气体分子运动把电子看作质点, 把气体原子看作刚性小球,它们之间碰撞的 散射截面仅决定于原子的尺寸,而与电子的 运动速度无关。只有德布罗意波粒二象性假 设和量子力学建立后,这种效应才得到圆满 的理论解释。因此,冉绍尔—汤森德效应称 为量子力学理论极好的实验佐证。 图1是Xe,Kr,Ar三种惰性气体的冉绍尔曲线。因为电子速度与加速电压V的平方根成正比,故横坐标用V表示,纵坐标为散射截面Q,采用原子单位。由此可见,结构相近的物质,其冉绍尔曲线的形状相似。 二、实验目的 1. 通过测量氙原子与低能电子的弹性散射几率,考察弹性散射截面与电子能量的关系,了解有关原子势场的信息。 2. 学习研究低能电子与气体弹性散射所采用的实验方法。 三、实验原理

1. 冉绍尔—汤森德效应的理论描述 在量子力学中,碰撞现象也称为散射现象。离子的碰撞过程有弹性碰撞和非弹性碰撞两大类。 在弹性碰撞过程中,粒子A 以波矢k ( mE 2= k )沿Z 方向入射到靶粒子B (即散射中心)上,受B 粒子作用偏离原方向而散射,散射程度可用总散射截面Q 表示。 讨论粒子受中心力场弹性散射的情况。取散射中心为坐标原点;设入射粒子与散射中心之间的相互作用势能为U (r )。当r →∞时,U (r )趋于零。则远离散射中心处的波函数Ψ由入射粒子的平面波Ψ1和散射粒子的球面散射波Ψ2组成 ()r e f e ΨΨΨikr ikz r θ+=+??→?∞→21 这里考虑的是弹性散射,所以散射波的能量没有改变,即其波矢k 的数值不变。θ称为散射角,即粒子被散射后的运动方向与入射方向之间的夹角;f (θ)称为散射振幅。 总散射截面 ()?Ω=d 2 θf Q 利用分波法求解满足前式边界条件的薛定谔方程

常识积累:心理学效应名词解释

常识积累:心理学效应名词解释 1.木桶效应:一只木桶,里面可以装多少水,取决于最短的那根木板。 2.登门槛效应:又称得寸进尺效应,是指一个人一旦接受了他人的一个微不足道的要求,为了避免认知上的不协调,或想给他人以前后一致的印象,就有可能接受更大的要求。这种现象,犹如登门槛时要一级台阶一级台阶地登,这样能更容易更顺利地登上高处。(好好想想这条~) 3.共生效应:自然界有这样一种现象:当一株植物单独生长时,显得矮小、单调,而与众多同类植物一起生长时,则根深叶茂,生机盎然。人们把植物界中这种相互影响、相互促进的现象,称之为“共生效应”。 4.首因效应:首因效应由美国心理学家洛钦斯首先提出的,也叫首次效应、优先效应或第一印象效应,指交往双方形成的第一次印象对今后交往关系的影响,也即是“先入为主”带来的效果。虽然这些第一印象并非总是正确的,但却是最鲜明、最牢固的,并且决定着以后双方交往的进程。如果一个人在初次见面时给人留下良好的印象,那么人们就愿意和他接近,彼此也能较快地取得相互了解,并会影响人们对他以后一系列行为和表现的解释。反之,对于一个初次见面就引起对方反感的人,即使由于各种原因难以避免与之接触,人们也会对之很冷淡,在极端的情况下,甚至会在心理上和实际行为中与之产生对抗状态。 5.近因效应:指的是某人或某事的近期表现在头脑中占据优势,从而改变了对该人或该事的一贯看法。近因效应与首因效应是相对应的两种效应。首因效应一般在较陌生的情况下产生影响,而近因效应一般在较熟悉的情况下产生影响。两者都是对人或事的片面了解而主观臆断,使得决策信息失真。 6.蝴蝶效应:是指在一个动力系统中,初始条件下微小的变化能带动整个系统的长期的巨大的连锁反应。这是一种混沌现象。 7.从众效应:也称乐队花车效应,是指当个体受到群体的影响(引导或施加的压力),会怀疑并改变自己的观点、判断和行为,朝着与群体大多数人一致的方向变化。也就是指:个体受到群体的影响而怀疑、改变自己的观点、判断和行为等,以和他人保持一致。也就是通常人们所说的“随大流”。 8.鲶鱼效应:挪威人爱吃沙丁鱼,在海上捕得沙丁鱼后,如果能让它活着抵港,卖价就会比死鱼高好几倍。但是,由于沙丁鱼懒惰,不爱运动,返航的路途很长,因此捕捞到的沙丁鱼往往一回到码头就死了。只有一位渔民的沙丁鱼总是活的,原因就是他的鱼槽里有一只鲶鱼。原来当鲶鱼装入鱼槽后,由于环境陌生,就会四处游动,而沙丁鱼发现这一异已分子后,也会紧张起来,加速游动,如此一来,沙丁鱼便活着回到港口。这就是所谓的“鲶鱼效应”。鲶鱼效应是采取一种手段或措施,刺激一些企业活跃起来投入到市场中积极参与竞争,从而激活市场中的同行业企业。其实质是一种负激励,是激活员工队伍之奥秘。 9.晕轮效应:人们对人的认知和判断往往只从局部出发,扩散而得出整体印象,也即常常以偏概全。一个人如果被标明是好的,他就会被一种积极肯定的光环笼罩,并被赋予一切都好的品质;如果一个人被标明是坏的,他就被一种消极否定的光环所笼罩,并被认为具有各种坏品质。 10.皮格马利翁效应:暗示在本质上,是人的情感和观念,会不同程度地受到别人下意识的影响。人们会不自觉地接受自己喜欢、钦佩、信任和崇拜的人的影响和暗示。 11.马太效应:是指好的愈好,坏的愈坏,多的愈多,少的愈少的一种现象。 12.刻板效应:又称定型效应,是指人们用刻印在自己头脑中的关于某人、某一类人的固定印象,以此固定印象作为判断和评价人依据的心理现象。 13.詹森效应:曾经有一名叫詹森的运动员,平时训练有素,实力雄厚,但在体育赛场上却连连失利,让自己和他人失望。不难看出这主要是压力过大,过度紧张所致。由此人们把这种平时表现良好,但由于缺乏应有的心理素质而导致正式比赛失败的现象称为詹森效应。 14.破窗效应:一幢有少许破窗的建筑为例,如果那些窗不被修理好,可能将会有破坏者破坏更多的窗户。最终他们甚至会闯入建筑内,如果发现无人居住,也许就在那里定居或者纵火。此理论认为环境中的不良现象如果被放任存在,会诱使人们仿效,甚至变本加厉。 15.投射效应:是指将自己的特点归因到其他人身上的倾向。在认知和对他人形成印象时,以为他人也具备与自己相似的特性的现象,把自己的感情、意志、特性投射到他人身上并强加于人,即推己及人的认知障碍。比如,一个心地善良的人会以为别人都是善良的;一个经常算计别人的人就会觉得别人也在算计他等等。 16.墨菲定律:一种心理学效应,是由爱德华·墨菲(Edward A. Murphy)提出的。主要内容:一、任何事都没有表面看起来那么简单;二、所有的事都会比你预计的时间长;三、会出错的事总会出错;四、如果你担心某种情况发生,那么它就更有可能发生。墨菲定律的原句是这样的:如果有两种或两种以上的方式去做某件事情,而其中一种选择方式将导致灾难,则必定有人会做出这种选择。

冉绍尔-汤姆森效应实验

中国石油大学 近代物理 实验报告 成绩: 冉绍尔-汤姆森效应实验 【实验目的】 1、 了解电子碰撞管的设计原则,掌握电子与原子的碰撞规则和测量的原子散射截面的方法。 2、 测量低能电子与气体原子的散射几率Ps 与电子速度的关系。 3、 测量气体原子的有效弹性散射截面Q 与电子速度的关系,测定散射截面最小时的电子能量。 4、 验证冉绍尔-汤森效应,并学习用量子力学理论加以解释。 【实验原理】 一、理论原理 冉绍尔对各种气体进行了测量,发现无论哪种气体的总有效散射截面都和碰撞电子的速度有关。它们的总有效散射截面对电子速度的关系曲线V F Q =(V 为加速电压值)具有相同的形状,称为冉绍尔曲线。要解释冉绍尔效应需要用到粒子的波动性质,即把电子与原子的碰撞看成是入射粒子在原子势场中的散射,其散射程度用总散射截面来表示。 二、测量原理 图B8-3 测量气体原子总散射截面的原理图 当灯丝加热后,就有电子自阴极逸出,设阴极电流I K ,加速电压的作用下,部分电子在到达栅极之前,被屏极接收,形成电流I S1;部分穿越屏极形成电流I 0,由于屏极与板极P 之间是一个等势空间,所以电子穿越矩形孔后就以恒速运动,受到气体原子散射的电子则到达屏极,形成散射电流I S2;而到达板极P 形成板流I P ,因此有10S K I I I +=; 21S S S I I I +=;20S P I I I +=。电子在等势区内的散射概率为0 1I I P P S - =。 另外??? ? ??++- =- =f I I I I I f P S P P S P S 111111 ,1 S I I f = 。

生活中有趣的电现象

生活中有趣的电现象集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

生活中有趣的电现象 生活中你一定遇到过这样的现象吧: 现象一:干燥的天气时,早上起来用梳子梳头发,头发会随着梳子飘起来。 现象二:晚上睡觉脱毛衣时,会听到“噼噼啪啪”的声音,有时还会伴有火花出现。 现象三:用塑料尺子或笔套,在头皮上反复摩擦几下后,靠近碎纸屑,纸屑被塑料尺“吸”住了。 现象四:把泡沫用手捏散后,手上沾上的小泡沫颗粒,怎么甩也甩不掉。 细心的你还有没有观察到这样的情景: 情景一:吊扇的下表面沾有很多灰尘。吊扇的下表面按道理讲不会有灰尘落上去,但为什么会那么脏呢? 情景二:穿上化纤的衣服,特别吸灰,特别容易变脏。 情景三:电视、电脑显示器,用久了面上都会有一层灰尘。关闭电视的瞬间,你如果把手背靠近电视屏幕,你会发现手背的汗毛都会一根根地竖起来。 其实,这些都属于电现象。用梳子梳头发,脱毛衣时,因为摩擦,物体就带上了电。像这样用摩擦的方法使物体带电的现象,我们叫摩擦起电。物体带上电荷后,如果这种电荷不流动,被称为“静电”。比如电视机的屏幕上带的就是静电。而带电体具有吸引轻上物体的性质。 电扇在转动过程中扇叶和空气摩擦带电,吸引空气中灰尘,所以即使吊扇的下表面依然会很脏。 我们也可能会发现,马路上送油的油罐车后面都有一根长长的“尾巴”拖在地上,这条尾巴其实是一根粗粗的铁链子。这是因为油在运输的过程中,不可避免地会和油罐壁摩擦从而带上电,这些电如果不及时导走,很容易将油罐中的油点燃而引发事故。当用一根铁链将油罐和大地连接起来后,摩擦产生的电荷立即被导向了大地,从而保障了油罐车的安全。所以在油罐车的使用中都有一条这样严格的规定:铁链不能随便缠绕在大梁车架上,必须放在地面上。 在一些电学实验室里都铺有地毯,在这些地毯内部都有很细的金属丝。这些金属丝能把地毯与人行走时由于摩擦产生的静电及时导走,以免静电影响实验结果,甚至破坏实验设备。 当然静电对我们的生活有用的方面也很多。例如: 静电集尘:是指用电气的方法去除气体中浮游的微小尘埃,集尘电极接地,放电电极上施加直流电压并形成电晕放电。含尘气体由集尘电极下方进入放电区,粉尘会带上负极性电荷。带负电的尘埃在电场作用下被集尘电极吸附,由此可去除气体中的粉尘静电喷漆:许多任务件需要喷漆,如图为静电喷漆示意图,图中工件带正电,喷杯带负电,油漆从高速旋转的喷杯中飞出,呈雾状并带负电,由于静电吸引作用,油漆雾粒便奔向工件,并附着在工件上,实际上,工件是挂在自动在线源源不断地送进喷漆房的,这样可以实现喷漆自动化。它不仅可以节约油漆,提高喷漆质量,还可改善劳动条件,保障工人健康。 此外,静电植绒、静电复印、静电制版、静电摄影等等,也都是静电在我们实际中的应用。 生活中的小问题其实都蕴藏着很多的物理知识,只要你善于观察,勤于思考,你会发现,生活中处处都有物理知识的体现。

相关文档