文档库 最新最全的文档下载
当前位置:文档库 › §4.6 不同力学量同时有确定值的条件 测不准关系

§4.6 不同力学量同时有确定值的条件 测不准关系

§4.6 不同力学量同时有确定值的条件 测不准关系
§4.6 不同力学量同时有确定值的条件 测不准关系

§4.6 不同力学量同时有确定值的条件测不准关系

重点:

算符的对易关系,测不准关系的物理意义

(一)不同力学量同?有确定的值的条件

和有一组共同的本征函数、而且组成完全系,则算符

定理:假若算符

和对易。

证明:因为

(n=, 2, …)

,的本征值;所以

依次是

(4.6-1)

由于组成完全系,则任一波函数可以按展开成

(4.6-2)

于是有

既然是任意的,所以

所以和是可对易的。

这个定理的逆定理也成立:如果和对易,则这两个算符有组成完全系的共同本征函数。

下面列举几个典型例子,说明上述定理的应用。

(1)坐标算符的三个分量之间是相互对易的,即

(4.6-3)

因而x,y,z可以同时有确定值,也就是说,它们有共同的本征函数。

(2)动量分量算符之间是相互对易的,即

(4.6-4)

证设任意波函数,有

对任意的上二式都成立,相减后得

同理可证明其它二式。

因此p

,p y,p z可同时有确定值,或者说,有共同的本征函数。

(3)动量分量算符和它对应的坐标算符不对易

(4.6-5)

因而动量分量和它对应的坐标不能同时有确定值。

(4)和,,都是可对易的

(4.6-6)

因而和,,中每一个对易,故分别和角动量每一个分量的算符有共同

的本征函数。例如氢原子中电子的角动量平方算符与对易,它们有共同的本征函数

和,必然得到相应的本征值。

,在这个态下同时测量

第五章 力学量的算符表示

137 第5章 力学量的算符表示 §5.1 算符及其运算规则 在第二章中,已经引入了算符的概念,动量算符和哈密顿量算符分别为 ?-= i ?p (5.1.1) )(2?22 r V m H +?-= (5.1.2) 在量子力学中,算符表示对它后面的波函数的一种运算或者操作,上述的动量算符与哈密顿算符皆表示对其后面的波函数的微商运算,本 章的后面将引入的宇称算符π ?则表示对其后面的波函数的一种操作,即把波函数中的坐标变量改变一个符号。由算符化规则可知,物理上可观测的力学量(例如,坐标、动量、角动量和能量等)与相应的算符相对应,并要求相应的算符为线性厄米特算符,力学量的取值情况由相应算符满足的本征方程的解来决定。 §5.1.1 算符及其运算规则 1、线性算符

138 满足下列运算规则 22112211??)(?ψψψψA c A c c c A +=+ (5.1.3) 的算符A ?,称之为线性算符,其中,21,c c 是两个任意复常数,21,ψψ是两个任意的波函数。在量子力学中,可观测量对应的算符都是线性算符,这是状态叠加原理所要求的。如无特殊声明,下面所涉及到的算符皆为线性算符。 2 、单位算符 若对任意的波函数ψ,算符I ?满足 ψψ=I ? (5.1.4) 则称I ?为单位算符。 3、 算符之和 若对任意的波函数ψ,下式 ψψψB A B A ??)??(+=+ (5.1.5) 总是成立,则称算符B A ??+为算符A ?与算符B ?之和。算符的加法运算满足交换律和结合律,即 A B B A ????+=+ (5.1.6) C B A C B A ?)??()??(?++=++ (5.1.7) 4、 算符之积 两个算符A ?和B ?之积记为)??(B A ,对任意的波函数ψ,算符)??(B A 的作用定义为下列运算 )?(?)??(ψψB A B A = (5.1.8)

力学基本物理量与测量

第二节 力学基本物理量及测量方法 物理学的发展离不开历史上很多伟大的物理实验,很多物理定律就是通过实验来验证或者是实验基础上的推理得到的,物理学的大厦中镶嵌着无数令人瞠目结舌的精妙实验。古人说九尺之台,起于垒土,我们对物理力学的学习,就从基本的力学物理量和简单的测量方法开始。 1.力学的基本物理量 在物理学中,我们用物理量来描述物体的固有的性质和运动的状态。物理量分为基本物理量和导出物理量。力学中通常选长度、质量、时间为基本物理量,这三个物理量可以导出所有力学的导出物理量,例如速度(如右图)。导出物理量是根据物理量的 定义由基本物理量组合而成的。 物理量要同时用数字和单位两部分来表示,否则不产生任何物理意义。 1.1.长度和长度单位 我们用长度这个物理量来表示物体的大小。在国际单位制中,长度的单位是米(m )。为了方便我们也经常使用千米(km )、分米(dm )、厘米(cm )、毫米(mm )、微米(m μ)和纳米(nm )等长度单位。 1m =10—3km =10dm =102cm =103mm =106m μ=109nm 。 例题:F 是电容的单位符号,A 是电流强度的单位符号,…… 20mF =__________F =__________F μ 100mA =__________A =__________A μ 500g =___________kg 除以上长度单位以外,在天文学中常用光年、天文单位来做长度单位。1光年是指光在真空中以 8103?米/秒的速度经过1年所走过的距离,约等于9460730472580800米。1天文单位(AU )是指地 球到太阳的平均距离,约为11 10496.1?米。 请思考:天文望远镜可以看到200亿光年以外的星星,那我们看到的光岂不是来自200亿年前?我们看到的星星的样子是200亿年前样子?我们仰望星空,看到的岂不是不同时间和空

大学物理实验预习报告(力学基本测量)

大学物理实验预习报告

实验原理及仪器介绍: 圆柱体密度计算公式如式(1)所示。 H D m V m 2 4πρ== (1) 液体密度计算公式如式(2)所示。 水 水 待测液体待测液体水 水 待测液体 待测液体 m m m m ρρρρ?= ?= (2) 实验仪器: 1.游标卡尺 如图1所示,游标卡尺有两个主要部分,一条主尺和一个套在主尺上并可以沿它滑动的副尺(游标)。游标卡尺的主尺为毫米分度尺,当下量爪的两个测量刀口相贴时,游标上的零刻度应和主尺上的零位对齐。 如果主尺的分度值为a ,游标的分度值为b ,设定游标上n 个分度值的总长与主尺上( n-1 )分度值的总长相等,则有 a n n b )1(-= (3) 图1 游标卡尺示意图

主尺与副尺每个分度值的差值即游标尺的分度值,也就是游标尺的精度(最小读数值): - =-a b a n a n a n =-)1( (4) 常用的三种游标尺有50,20,10=n ,即精度各为、、。 游标尺的读数方法是:先读出游标零线以左的那条线上毫米级以上的读数L 0,即为整数值;然后再仔细找到游标尺上与主尺刻线准确对齐的那一条刻线(该刻线的两边不对齐成对称状态),数出这条刻线是副尺上的第k 条,则待测物的长度(即为小数值)为 n a k L L ? +=0 (5) 图2是50=n 分度游标卡尺的刻度及读数举例。图上读数: 00.0215.00120.0515.60L L k mm =+?=+?= 图2 游标卡尺读数示意图 螺旋测微器 如图3所示,螺旋测微器是在一根测微螺杆上配一螺母套筒,上有分度的标尺。测微螺杆的后端连接一个有50个分度的微分套筒,螺距为50mm 。当微分套筒转过一个分度时,测微螺杆就会在螺母套筒内沿轴线方向改变。也就是说,螺旋测微器的精密度(分度值)是。由此可见,螺旋测微器是利用螺旋(测微螺杆的外螺纹和固定套筒的内螺纹精密配合)的旋转运动,将测微螺杆的角位移转变为直线位移的原理实现长度测量的量具。 图3 螺旋测微器示意图 在使用螺旋测微器时,应该检查零线的零位置,当螺杆的一端与测砧相接触时,往往会0

力学计量简介

力学计量简介 力学计量简介 力学计量主要包括质量、力值、扭矩、硬度、压力、真空、震动、冲击、转速、恒加速度、流量、流速、容量等计量测试。 力学计量的理论基础是牛顿力学。 质量是一个基本的物理量,单位是kg。质量是物体所具有的一种属性,它表征物体的惯性和它在引力场中相互作用的能力,质量是标量。质量计量的准确性不仅取决于砝码,还取决于天平。 力是物体之间的相互作用。力的计量单位是N。测力的方法可以分为两类,即通过对质量和加速度的测量来求得力值;另一种方法是物体在受力后产生的变形量或与内部应力相应的参数的测量而求得力值。 扭矩是力与力臂的乘积,计量单位N·m。如果准确地测出力的大小及该力到力的作用点的力臂长度,便可准确地测得力矩值。 硬度是指物体软硬的程度。硬度本身不是一个确定的物理量,而是一个于物体的弹性形变、塑性形变和破坏有关的量。硬度计量的方法很多,一般分为静载压入法和动载压入法。静载压入法有布氏法、洛氏法、表面洛氏法、维氏法和显微硬度法等。动载压入法有肖氏法等。 压力是指垂直作用于单位面积上的力,单位是Pa。压力计量可分为静态和动态压力计量。按压力计量范围大体有微压、低压、中压、高压和超高压等。测量的具体压力又分为绝对压力、大气压力和表压力等。真空是在给定的空间内,低于标准大气压的气体状态,使用真空度来描述,单位是Pa。真空计量标准可以分为绝对标准和相对标准。绝对标准是真空计量的基础,实际应用是真空标准多为性能稳定的相对标准。 振动是用位移、速度、加速度和频率等物理量来描述。校准方法一般有绝对法和比较法。对于加速度计常要校准其灵敏度和灵敏度随频率的变化。校准装置采用高、中、低频振动标准校准装置等。冲击是激起系统瞬间扰动的力、位置、速度和加速度的突然变化,该变化的时间要小于系统的基本周期。冲击加速度的单位是m/s^2。冲击的校准方法一般分为三种,绝对法、间接法和比较法。 转速或角速度是单位时间的角位移。标准转速装置是校准和检定转速表的主要装置,由复现转速的装置和转速测量装置组成。转速的计量单位是r/min。恒加速度计量是利用标准装置校准线、角加速度计的特性。线加速度计量是利用静态(低频)加速度标准器校准加速度计的静态数学模型和低频动态特性。角加速度计量是利用角加速度标准器校准角加速度的静态数学模型和低频动态特性。 流量是在单位时间内通过有效截面流体的体积或质量。流量计量对流体的体积流量(单位为m^3/h)、质量流量(单位为kg/h)进行计量。流体流量的测量方法有容积法和称量法。气体流量的测量方法主要有钟罩法、活塞法和音速喷管等。 流速是单位时间流体流动的距离,最常用的计量单位是m/s。流速的测量一般有三种基本方法,压差法、热线(膜)法和激光法。

力学量和算符

第三章力学量和算符 内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数。用波函数描述粒子的运动状态。本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。我们将证实算符的运动方程中含有对易子,出现。 §3.1 力学量算符的引入 §3.2 算符的运算规则 §3.3 厄米算符的本征值和本征函数 §3.4 连续谱本征函数 §3.5 量子力学中力学量的测量 §3.6 不确定关系 §3.7 守恒与对称 在量子力学中。微观粒子的运动状态用波函数描述。一旦给出了波函数,就确定了微观粒子的运动状态。在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。一般说来。当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。当给定描述这一运动状态的波函数后,力学量出现各种可能值的相应的概率就完全确定。利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。既然一切力学量的平均值原则上可由给出,而且这些平均值就是在所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。 力学量的平均值

对以波函数(,)r t ψ描述的状态,按照波函数的统计解释,2 (,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是: ()2 * (,)(,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞ ∞ -∞ -∞ = =?? 坐标r 的函数()f r 的平均值是: ()()() *(,)(,) 3.1.2f r r t f r r t dr ψψ∞ -∞ =? 现在讨论动量的平均值。显然,P 的平均值P 不能简单的写成 2(,)P r t Pdr ψ∞ -∞ = ?,因为2 (,)r t dr ψ只表示在 r r dr →+中的概率而不代表在 P P dP →+中找到粒子的概率。要计算P ,应该先找到在t 时刻,在P P dP →+中找 到粒子的概率2 (,)C P t dP ,这相当于对(,)r t ψ作傅里叶变化,而(,)C r t 有公式 给出。动量p 的平均值可表示为 但前述做法比较麻烦,下面我们将介绍一种直接从(,)r t ψ 计算动量平均值的方法。由(3.1.4)式得 利用公式 可以得到 记动量算符为 ?p i =-? 则 ()* ?(,)(,) 3.1.9p r t p r t dr ψ ψ∞ -∞ = ? 从而有 ()()()* ?(,)(,) 3.1.10f p r t f p r t dr ψψ∞ -∞ = ? 例如:动能的平均值是 角动量L 的平均值是

§3.8 力学量平均值随时间的变化 守恒定律.

§3.8 力学量平均值随时间的变化 守恒定律 在经典力学中,运动体系在每一时刻多个力学量都有确定的值,因为所研究 的是力学量的值随时间的变化(根据哈密顿理论:},{H F t F dt dF +??=,式中},{H F 为泊松括号,],[1},{H F i H F =,H 为哈密顿量,如果F 不显含时间,且},{H F =0,则F=C 是一个守恒量。找出一个守恒量,往往使研究物体的运动大大简化) 然而,在量子力学中,对任何体系,在每一时刻,不是所有力学量都具有确定的纸,一般说来,只有确定的平均值以及几率分布。因此,研究力学量的值随是的变化没有意义,仅讨论力学量的平均值及几率分布随时间的变化。 一、力学量平均值随时间的变化 在波函数),(t x ψ所描写的态中,力学量∧ F 的平均值为: ?=),(?*),(t x F t x d F ψτψ (1) 因为),(t x ψ是时间的函数,∧ F 也可能显含时间,所以F 通常是时间t 的函数。 dx t F dx F t dx t F dt F d ??+??+??=???ψψψψψψ?*?*?* (2) 由sch-eg :ψψ∧=??H i t 1 *)(1*ψψ∧-=??H i t 代入(2)式得 dx F H i dx H F i dx t F dt F d ψψψψψψ?*)(1?*1?*???∧∧-+??= (3) ∵ ∧H 是厄密算符。 ∴ dx F H dx F H ? ?∧ ∧=ψψψψ?*?*)( 代入(3)式得: dx F H H F i dx t F dt F d ψψψψ)??(*1?*∧∧-+??=??

#力学热学实验中的基本测量仪器

力学热学实验中的基本测量仪器 实验离不开测量,必然少不了使用测试类的仪器。按教学规律,知识的获取应该由浅入深,物理实验也应先简单后复杂。实验者最先于某一实验中遇到某种测量仪器,那他就应该认为这一实验就是对这一测量仪器的“专门训练”。但不可能把每一种测试仪器的知识在每一个相关实验里都编写出来,使实验者开始遇到时就能就近学习。因此我们只有把常用的部分测试仪器的知识从中抽出来归类单独编写在各大类实验的前面,而在具体实验中用到时用文字着重指出在何处查阅,以适应实验者随时的需要。当然还有些测量仪器虽然通用,但在本书只是个别实验用到,那么这类仪器就在相关实验里介绍。本节就力学和热学实验中通用的部分测量仪器的原理,使用方法、注意事项及仪器误差作简单介绍 一、常用长度测量仪器 长度是最基本的物理量,是组成空间的最基本要素之一。世界上任何物体都具有一定的几何尺寸,空间尺寸和物体几何量的测量对现代科学研究、工农业生产以及日常生活需求都有巨大的影响。 (一)米尺 米尺包括钢卷尺和钢直尺,米尺的最小刻度值为1mm,用米尺测量物体的长度时,可以估测到十分之一毫米,同时最后一位是估计的。测量过程中,一般不用米尺的端边作为测量的起点,以免因边缘磨损而引入误差,而可选择某一刻度线(例如10 cm刻线等)作为起点。由于米尺具有一定厚度,测量时就必须使米尺刻度面紧挨待测物体AB(如图2-1所示),否则会由于测量者视线方向的不同(即视差)而引入测量误差(图2-2 ) 附:钢直尺和钢卷尺的允许误差 钢直尺钢卷尺 尺寸范围 (mm) 允许误差 (mm) 准确度等级示值允许误差(mm) Ⅰ级±(0.1±0.1L) >1~300 ±0.10 Ⅱ级±(0.3±0.2L) >300~500 ±0.15 注:式中L是以米为单位的长度, 当长度不是米的整数倍数时, 取最接近的较大的整“米”数。 >500~1000 ±0.20 1000~1500 ±0.27 >1500~2000 ±0.35 (二)、游标卡尺 游标卡尺是比钢尺更精密的测量长度的工具,它的精度比钢尺高出一个数量级。游标卡尺的结构如图 4-3 所示。

完整力学计量基础教程

力学计量基础教程 概述 力学是研究物体在力的作用下运动状态发生变化和产生变形的规律的科学,而力学计量是在力学研究的基础上加上计量学研究,研究的是各种力学量的计量与测试的理论与方法,以确定量值为目的,最终用一个数和一个合适的计量单位来表示出被测的力学量值。其主要包括质量、容量、密度、流量、力值、硬度、转速、压力等计量项目。 质量是物体所含物质多少的量度,是物体的基本属性,在国际单位制中用符号kg(千克或公斤)表示。质量是力学计量中最基本的计量项目之一。标准砝码、测量仪器和测量方法称为质量计量的三大要素。测量方法有交换法、替代法、连续替代法和直接衡量法。 容量也称容积,它是指容器内可容纳物质(气体、液体、固体颗粒)体积的量,亦即容器内部所含有的空间体积。它不仅具有重要的科学意义,而且是一项基础性的法制计量工作习惯上常用单位升(L)。容量计量有衡量法、容量比较法、几何尺寸测量计算法。 密度是指物体单位体积所含物质的质量值,或者说是物体质量与体积之比,国际单位制中密度的单位为千克/米3,符号为kg/m3,测量密度的方法有两大类,一类是直接测量法,即通过测量物质的质量和体积,经计算确定物质的密度;另一类是间接测量法,即是利用各种物理效应,使另一个物理量随物质密度的变化而改变,通过测量该物理量的大小确定物质的密度。 力是物体与物体之间的相互作用,即一个物体对另一个物体的作用,其在国际单位制中单位为牛顿,符号N。力是矢量,力的大小(力值)、力的方向及作用点是力的三要素。力的效应分为“动力效应(可用牛顿第二定律表征的)”和“静力效应(内部应力)”,上述也是测量力的两种方法。 硬度是材料或工件软硬程度的定量表示,它表征了材料抵抗弹性变形和破坏的能力。按试验力加速度的大小,将试验分为静态硬度试验(布氏硬度、洛氏硬度、维氏和显微硬度试验)和动态硬度试验(肖氏、里氏硬度试验)。 第一章质量计量 质量是物体所含[物质]多少的量度,是物体的基本属性,在国际单位制中用符号[kg(千克或公斤) ]表示。质量也是是描述物体的惯性及该物体吸引其它物体的引力性质的物理量,是惯性质量与引力质量和统称. 所有物质都具有两种性质:惯性和引力。惯性是每个物体所具有的保持其原有运动状态的性质,

第三章 力学量和算符

第三章 力学量和算符 内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数 。用波函数描述粒子的运动状态。本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。我们将证实算符的运动方程中含有对易子,出现 。 § 3.1 力学量算符的引入 § 3.2 算符的运算规则 § 3.3 厄米算符的本征值和本征函数 § 3.4 连续谱本征函数 § 3.5 量子力学中力学量的测量 § 3.6 不确定关系 § 3.7 守恒与对称 在量子力学中。微观粒子的运动状态用波函数描述。一旦给出了波函数,就确定了微观粒子的运动状态。在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。一般说来。当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。当给定描述这一运动状态的波函数 后,力学量出现各种可能值的相应的概率就完全确定。利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。既然一切力学量的平均值原则上可由 给出,而且这些平均值就是在 所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。 力学量的平均值 对以波函数(,)r t ψ描述的状态,按照波函数的统计解释,2 (,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是: ()2 *(,) (,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞ ∞ -∞ -∞ = =?? 坐标r 的函数()f r 的平均值是: ()()()* (,)(,) 3.1.2f r r t f r r t dr ψψ∞ -∞ =? 现在讨论动量的平均值。显然,P 的平均值P 不能简单的写成 2(,)P r t Pdr ψ∞ -∞ = ?,因为2 (,)r t dr ψ只表示在 r r dr →+中的概率而不代表在 P P dP →+中找到粒子的概率。要计算P ,应该先找到在t 时刻,在P P dP →+中找 到粒子的概率2 (,)C P t dP ,这相当于对(,)r t ψ作傅里叶变化,而(,)C r t 有公式 给出。动量p 的平均值可表示为 但前述做法比较麻烦,下面我们将介绍一种直接从(,)r t ψ

实验一基本力学量的测量

实验一 基本力学量的测量 长度是最基本的物理量。在各种各样的长度测量仪器中,?它们的外观虽然不同,但其标度大都是以一定的长度来划分的。对许多物理量的测量都可以归为对长度的测量,因此,长度的测量是实验测量的基础。在进行长度的测量中,我们不仅要求能够正确使用测量仪器,还要能够根据对长度测量的不同精度要求,合理选择仪器,以及根据测量对象和测量条件采用适当的测量手段。 ?? 密度是表征物体特征的重要物理量,因而密度的测量对物体性质的研究起着重要的作用。对于规则的物体,用物理天平测出其质量,用测量长度的方法测出其体积,即可测量出物质的密度。 练习一 长 度 的 测 量 实验目的: 1.分别用游标卡尺及螺旋测微计测量长方体、球体等试样的尺寸,并求长方体、球体 的体积; 2.多次等精度测量误差的运算,求绝对误差和相对误差。 实验仪器 游标卡尺,螺旋测微器,待测物体 实验原理 一、 游标卡尺 游标卡尺主要由主尺和游标两部分组成。游标是在主尺上附加一个能滑动的有刻度的小尺。读数时,主尺上直接读出主尺最小刻度以上的整数部分;游标上读出主尺最小刻度以下的数值。 游标上n个分格的总长度与主尺上(n-1)个分格的总长度相等,以x,y分别表示游标与主尺上的每一格的长度,因此y n nx )1(-=。如图1-1所示是游标上n=10的情形。

?? ?? ??图1-1 游标卡尺原理示意图 主尺与游标上每个分格之差为:?? σ =y-x= n 1y σ称为游标的精度(亦叫测量的准确度),是游标卡尺的最小读数值,它可以准确地读到主 尺最小分格值的n 1 。 ? 常用游标的分格值有 1/10 、1/20 、1/50几种,相应的分度值为0?.1mm 、0.05mm 、 0.02mm 。 测量时,根据游标“0”线所对主尺的位置,可在主尺上读出物体长度以毫米为单位的整数部分,毫米以下的长度部分由游标读出,用游标卡尺测量长度L 的一般表达式为: σn Ka L += 式中K 是游标的“0”线所在处主尺上的整毫米数,a 主尺的最小分度值,n 是游标的第n 条线与主尺的某一条线对齐(或最靠近)。σ是游标卡尺的准确度,第二项n σ就是从游标上读出的毫米以下的长度部分。如图1-2中游标卡尺:分度值为0.05mm ,游标的第9格与主尺的某一条线对齐,所以读数为4mm+0.05mm*9=4.45mm 。 图1-2 游标卡尺的读数 二、螺旋测微计(千分尺) 螺旋测微计是比游标卡尺更精密的长度测量仪器。?它的量程是25mm ,分度值是0.01mm 。螺旋测微计结构的主要部分是微动螺旋杆,相邻螺纹距是0.?5mm 。因此,当螺旋杆旋转一周时,它沿轴线方向只前进0.5mm 。螺旋杆是和螺旋柄相连的,在柄上附有沿圆周的刻度(微分筒)共有50个等分格。当螺旋柄上的刻度转过一个分格时,螺旋杆沿轴

大学物理实验预习报告(力学基本测量)

大学物理实验预习报告 计科120 姓名柳天一实验班号 实验号 1 4 实验名称力学基本测量 实验地点教三203 实验目得: 1、学习米尺、游标卡尺、螺旋测微器、天平得测量原理与使用方法。 2、掌握用浮力称衡法测量物体得密度。 3、掌握一般仪器得读数规则,巩固有效数字与误差得基本概念。 实验原理及仪器介绍: 圆柱体密度计算公式如式(1)所示。 (1) 液体密度计算公式如式(2)所示。 (2) 实验仪器: 1、游标卡尺 如图1所示,游标卡尺有两个主要部分,一条主尺与一个套在主尺上并可以沿它滑动得副尺(游标)。游标卡尺得主尺为毫米分度尺,当下量爪得两个测量刀口相贴时,游标上得零刻度应与主尺上得零位对齐。 如果主尺得分度值为 a ,游标得分度值为b,设定游标上n个分度值得总长与主尺上( n-1 )分度值得总长相等,则有 (3) 图1 游标卡尺示意图

主尺与副尺每个分度值得差值即游标尺得分度值,也就就是游标尺得精度(最小读数值): (4) 常用得三种游标尺有,即精度各为0、1mm、0、05mm、0、02mm。 游标尺得读数方法就是:先读出游标零线以左得那条线上毫米级以上得读数L0,即为整数值;然后再仔细找到游标尺上与主尺刻线准确对齐得那一条刻线(该刻线得两边不对齐成对称状态),数出这条刻线就是副尺上得第条,则待测物得长度(即为小数值)为 (5) 图2就是分度游标卡尺得刻度及读数举例。图上读数: 图2 游标卡尺读数示意图 螺旋测微器 如图3所示,螺旋测微器就是在一根测微螺杆上配一螺母套筒,上有0、5mm分度得标尺。测微螺杆得后端连接一个有50个分度得微分套筒,螺距为50mm。当微分套筒转过一个分度时,测微螺杆就会在螺母套筒内沿轴线方向改变0、01mm。也就就是说,螺旋测微器得精密度(分度值)就是0、01mm。由此可见,螺旋测微器就是利用螺旋(测微螺杆得外螺纹与固定套筒得内螺纹精密配合)得旋转运动,将测微螺杆得角位移转变为直线位移得原理实现长度测量得量具。 图3 螺旋测微器示意图 在使用螺旋测微器时,应该检查零线得零位置,当螺杆得一端与测砧相接触时,往往会有系统误差(读数不就是零毫米),所以必须先记下螺旋测微器得初读数z0,根据不同情况z0有正负之分。测量时将物体放在测砧与螺杆端面之间,转动测力装置,至听到“咯咯”得响声为止,两端面已与待测物紧密接触。从毫米分度尺上读出大于0、5mm得部分,0、01mm 以上得部分从微分筒边缘刻度盘上对准基准线处读出,同时要估读出0、001mm级。则待测物得实际长度为。螺旋测微器读数例如图4所示。

基本物理量与物化参数的测定

6.基本物理量与物化参数的测定?????????????????????????????? 实验88 化学反应焓变的测定 实验概述 化学反应通常是在等压条件下进行的,此时化学反应的热效应叫做等压热效应Q p。在化学热力学中,则是用反应体系焓H的变化量△H来表示的,简称为焓变。为了有一个比较的统一标准,通常规定100kPa为标准态压力,记为p 。把体系中各固体、液体物质处于p 下的纯物质,气体则在p 下表现出理想气体性质的纯气体状态称为热力学标准态。在标准状态下化学反应的焓变称为化学反应的标准焓变,用△r H 表示,下标“r”表示一般的化学反应,上标“ ”表示标准状态。在实际工作中,许多重要的数据都是在298.15 K下测定的,通常用298.15 K下的化学反应的焓变,记为△r H (298.15K)。 本实验是测定固体物质锌粉和硫酸铜溶液中的铜离子发生置换反应的化学反应焓变: Zn(s) + CuSO4(aq)═ZnSO4(aq)+ Cu(s) △r H m (298.15K)=- 217 kJ?mol-1 这个热化学方程式是表示:在标准状态、298.15 K时,发生了一个单位的反应,即1 mol的Zn与1 mol的CuSO4发生置换反应生成1 mol的ZnSO4和1 mol的Cu,此时的化学反应的焓变△r H m (298.15K)称为298.15 K时的标准摩尔焓变。其单位为kJ?mol-1。 测定化学反应热效应的仪器称为量热计。对于一般溶液反应的摩尔焓变。可用图8.1.1所示的“保温杯式”量热计来测定。 图8.8.1 简易量热计示意图 在实验中,若忽略量热计的热容,则可根据已知溶液的比热容、溶液的密度、浓度、实验中所取溶液的体积和反应过程中(反应前和反应后)溶液的温度变化,求得上述化学反应的摩尔

力学量算符之间的对易关系 - 屏幕长和宽

力学量算符之间的对易关系 讨论微观态ψ中某一力学量F 时,总是以∧ F 的本征质谱作为力学量F 的可能值。若我们同时观测状态ψ中的一组不同力学量 ,, G F ,将会得到什么结果呢?这一讲我们主要讨论这个问题。主要内容有: 一个关系:力学量算符之间的对易关系 三个定理?? ? ??力学量守恒定理不确定关系逆定理)共同本征态定理(包括 1 算符之间的对易关系 1.1 算符的基本运算关系 (1)算符之和:算符∧ F 与∧ G 之和∧ ∧+G F 定义为 ψψψ∧ ∧∧∧+=+G F G F )( (1) ψ为任意函数。一般∧ ∧ ∧ ∧ +=+F G G F ,例如粒子的哈密顿算符)()(22 r U T r U p H +=+=∧∧∧ μ 是 动能算符∧ T 与势能算符)(r U 之和。 (2)算符之积:算符∧ F 与∧ G 之积定义为 )()(ψψ∧ ∧∧∧=G F G F (2) 显然,算符之积对函数的作用有先后作用次序问题,一般不能颠倒,即∧ ∧∧ ∧≠F G G F 常记为 ∧ ∧ ∧ ∧≠-0F G G F (3) n 个相同算符∧F 的积定义为算符∧ F 的n 次幂 例如 dx d F =∧ ,则 222dx d F =∧,n n n dx d F =∧ 。 为了运算上的方便,引入量子括号 ∧ ∧∧∧∧∧-=??????F G G F G F , (5) 若 0,≠?? ? ???∧∧G F (6) 称算符∧F 与∧G 是不对易的(不能交换位臵),即∧ ∧∧∧≠F G G F 。

若 0,=?? ? ???∧∧G F (7) 称算符∧F 与∧G 是对易的,即∧ ∧∧∧=F G G F 。 下面几个经常使用的对易关系,请自行证明。 ?????????+=+=+=+-=∧∧∧∧∧∧∧ ∧∧∧ ∧∧∧∧∧∧ ∧∧∧∧∧∧∧∧∧∧∧∧ ∧) 11(],[],[],[)10(],[],[],[)9(] ,[],[],[)8(],[],[G M F M G F M G F M G F M F G M G F M F G F M G F F G G F 1.2 坐标算符与动量算符的对易关系 坐标算符是乘数因子,相互对易 []0],[0],[0 ,===x z z y y x (12) 动量算符是微分算符,因为 x y y x ???= ???2 2 ,则 0,0,0 ,=?? ? ???=?? ? ???=?? ? ???∧∧∧∧∧∧x z z y y x p p p p p p (13) 坐标算符与动量算符:设ψ为任意函数 ?? ??? ?? --=??-=??-=∧∧ψ ψψψψψx x i i x x i x p x x i p x x x )( 比较后可得 ψψψ i x p p x x x =-∧ ∧,即 i p x x =??? ???∧, (14a ) 但是 0,0 ,=?? ? ???=?? ? ???∧∧z y p x p x (14b ) 同理可得坐标算符与动量算符的其它对易关系式,可概括为 ij j i i p x δ =?? ? ???∧ , (14c) 其中 ),,()3,2,1(z y x i x i ≡== ),,()3,2,1(∧ ∧∧∧≡=z y x j p p p j p ※坐标算符与动量算符的对易关系是最基本的对易关系,其它力学量的对易关系均可由 此导出。 1.3 角动量算符的对易关系

§4.5 力学量测量结果的几率 平均值

§4.5 力学量测量结果的几率平均值 重点: 在本征态和任意态中测量力学量的物理过程 (一)力学量测量结果的几率 的本征函数组成正交归一完全系,它所属的本征值 设算符 (4.5-2) 根据本征函数的守全性,可看作是各本征态的线性迭加: (4.5-3) 根据态迭加原理,也是体系的可能状态,但它显然不是的本征态,因为 我们得不到关系式即在态中,将得不到确定的数值,由于态可看成是 各个本征态 的迭加,因此在测量的某一瞬刻、体系实际上是处于各本征态的

某一个中,故可能测量到数值将是本征值谱 中的某一个,所以我们称各次测 量到的数值为可能值。 出现的相对次数即相对几率分别为这些几率正好 设测得 分别是的展开式(4.5-3)中各项系数模的平方,即 (4.5-4)设已归一化的,即 (4.5-5)的正交归一性,就得到 注意到 我们看到具有几率的意义,它表明态中测量力学量F得到结果是的本的几率,故c n常称为几率振幅。 征值 可以证明,当的本征值组成连续谱时,也类似的结果,即 (4.5-8) 而 (4.5-9)

是在 态中,测得体系的力学量F的数值为的几率,其中右由(4.4-17) 式即 (4.5-10) 算出。 归纳上面的讨论,我们引进量子力学中关于力学量与算符关系的一个基本假定: 量子力学中表示力学量的算符都是厄密算符,它的本征函数组成完全系, 的属于本征值的本征态中,测量力学量F所得的数值,就是的 如果体系处在 ;如果体系所处的状态不是的本征态,可以测到力学量F的各 本征值 的本征值谱之中,而且测得数值为的几率是。 种可能值,这些可能值都是在 这个假定的正确性,如同薛定谔方程一样,由理论与实验结果符合而得到验证。 (二)平均值 当体系所处状态不是的本征态时,测量力学量得到的可能值是以一定的几率出现,但是多次测量的平均值是确定的,按照由几率求平均值的法则,可以求得力学量F在态中的平均值是 (4.5-11) 这式子可改写为 (4.5-12) 的正交归一性(4.4-8)式来证明,即 这两个式子相等可以用(4.4-14)式及

量子力学第三章算符

第三章 算符和力学量算符 算符概述 设某种运算把函数u 变为函数v ,用算符表示为: ?Fu v = () ? F 称为算符。u 与v 中的变量可能相同,也可能不同。例如,11du v dx =,22xu v =3 v =, (,) x t ?∞ -∞ ,(,)x i p x h x e dx C p t -=,则d dx ,x dx ∞ -∞ ,x i p x h e -?都是算符。 1.算符的一般运算 (1)算符的相等:对于任意函数u ,若??Fu Gu =,则??G F =。 (2)算符的相加:对于任意函数u ,若???Fu Gu Mu +=,则???M F G =+。算符的相加满足交换律。 (3)算符的相乘:对于任意函数u ,若???FFu Mu =,则???M GF =。算符的相乘一般不满足交换律。如果????FG GF =,则称?F 与?G 对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u ,若?I u=u ,则称?I 为单位算符。?I 与1是等价的。 (2)线性算符 对于任意函数u 与v ,若**1212 ???()F C u C v C Fu C Fv +=+,则称?F 为反线性算符。 (3)逆算符 对于任意函数u ,若????FGu GFu u ==则称?F 与?G 互为逆算符。即1??G F -=,111??????,1F G FF F F ---===。 并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:?()()Fu x af x =,其中?F 为d dx 与函数构成的线性算符,a 为常数。

1.7-量子力学中的算符和力学量

算符即运算规则算符即运算规则。。它作用在一个函数ψ(x)(x)上即是对上即是对ψ(x)(x)进行某进行某 种运算种运算,,得到另一个函数?(x) §1.7 1.7 量子力学中的力学量和算符量子力学中的力学量和算符 例: )()(?x x F ?ψ=)()(?x xf x f x =)()(?x f x f I =dx d D = ?1、定义

2、乘法与对易 算符的乘法一般不服从交换律: )?(??ψψB A B A ≡A B B A ????≠例如:

则算符的对易式可记为则算符的对易式可记为::若对任意若对任意ΨΨ,都有: 则称 和 对易: 引入记号: ψψA B B A ????=A ?B ?]?,?[????B A A B B A ≡?0]?,?[=B A I x D ?]?,?[=h i p x x =]?,?[易证:

可定义算符的可定义算符的n n 次方为: A A A A n ???????=可定义算符的多项式和算符的函数可定义算符的多项式和算符的函数。。例如:

3、线性算符 设C 1, C 2为常数为常数,,若算符满足: 则称其为线性算符则称其为线性算符。。 量子力学态叠加原理要求力学量算符必须是线性算符 例如例如,,下列算符为线性算符下列算符为线性算符:: 2 2112211??)(?Ψ+Ψ=Ψ+ΨF C F C C C F x p H y x x ?,?,,2 ??? ??

算符的本征值方程:4、本征函数本征函数、、本征值 λ为算符 的本征值的本征值,,为算符 的本征值为λ的本征函数的本征函数。。 例如,e 2x 是微商算符的本征函数: )()(?x x F λψψ=)(x ψF ?F ?F ?

波函数和薛定谔方程-力学量算符

波函数和薛定谔方程-力学量算符1.一维运动的粒子处在 的状态,其中,求: (1)粒子动量的几率分布函数; (2)粒子动量的平均值。 [解]首先将归一化,求归一化系数A。 (1)动量的几率分布函数是 注意到中的时间只起参数作用,对几率分布无影响,因此可有 令 代入上式得

(2) 动量p的平均值的结果从物理上看是显然的,因为对本题说来,粒子动量是和是的几率是相同的。讨论: ①一维的傅里叶变换的系数是而不是。 ②傅里叶变换式中的t可看成参变量。因此,当原来坐标空间的波函数不含时间变量时, 即相当于的情况,变换式的形式保持不变。 ③不难证明,若是归一化的,则经傅里叶变换得到也是归一化的。 2.设在时,粒子的状态为 求粒子动量的平均值和粒子动能的平均值。 [解]方法一:根据态迭加原理和波函数的统计解释。任意状态总可以分解为单 色平面波的线性和,即,展开式的系数表示粒子的动量为p时的几率。知道了几率分布函数后,就可按照 求平均值。

在时,动量有一定值的函数,即单色德布罗意平面波为,与的展开式比较可知,处在状态的粒子动量可以取 ,而, 粒子动量的平均值为 A可由归一化条件确定 故 粒子动能的平均值为 。 方法二:直接积分法

根据函数的性质,只有当函数的宗量等于零时,函数方不为零,故的可能值有 而 则有及。 讨论:①由于单色德布罗意平面波当时不趋于零,因此的归一化积分是发散的,故采用动量几率分布的概念来求归一化系数。 ②本题的不是平方可积的函数,因此不能作傅氏积分展开,只能作傅氏级数展 开,即这时对应于波函数的是分立谱而不是连续谱,因此计算积分, 得到函数。 ③在连续谱函数还未熟练以前,建议教学时只引导学生按方法一做,在第三章函 数讲授后再用函数做一遍,对比一下,熟悉一下函数的运算。 3.一维谐振子处在 的状态,求: (1)势能的平均值; (2)动量的几率分布函数; (3)动能的平均值 [解]先检验是否归一化。 是归一化的。 (1)

第4章 4. 力学单位制—速度—人教版(2019)高中物理必修第一册作业检测

第四章 4 请同学们认真完成[练案18] 合格考训练 (25分钟·满分60分) ) 一、选择题(本题共6小题,每题7分,共42分) 1.(2020·广东省珠海市二中高一上学期期末)测量国际单位制规定的三个力学基本物理量分别可用的仪器是下列哪一组(B) A.米尺、弹簧秤、秒表B.米尺、天平、秒表 C.量筒、天平、秒表D.米尺、测力计、打点计时器 解析:长度、时间、质量是三个力学基本物理量,米尺是测量长度的仪器,天平是测量质量的仪器,秒表是测量时间的仪器,故B正确。 2.在国际单位制中属于选定的基本物理量和基本单位的是(B) A.力的单位牛顿B.热力学温度的单位开尔文 C.路程的单位米D.电压的单位伏特 解析:牛顿不是基本单位,故A错误;热力学温度是国际单位制中温度的基本单位,故B正确;路程不是基本物理量,长度才是基本物理量,单位是米,故C错误;电压不是基本物理量,伏特也不是基本单位,故D错误。 3.关于物理量和物理量的单位,下列说法中正确的是(C) A.在力学范围内,国际单位制规定长度、质量、力为三个基本物理量 B.后人为了纪念牛顿,把“牛顿”作为力学中的基本单位 C.1N=1kg·m·s-2 D.“秒”“克”“摄氏度”都属于国际单位制的单位 解析:在国际单位制中,长度、质量、时间三个物理量被选作力学的基本物理量,故A 错误;在国际单位制中,力的单位牛顿不是国际单位制中的一个基本单位,故B错误;根据牛顿第二定律F=ma可知,1N=1kg·m·s-2,故C正确;“摄氏度”不是国际单位制的单位,故D错误,故选C。 4.关于力的单位“牛顿”,下列说法正确的是(C) A.使质量是2 kg的物体产生2 m/s2的加速度的力,叫作1 N B.使质量是0.5 kg的物体产生1.5 m/s2的加速度的力,叫作1 N C.使质量是1 kg的物体产生1 m/s2的加速度的力,叫作1 N D.使质量是2 kg的物体产生1 m/s2的加速度的力,叫作1 N

大学物理实验--力学测量和热学测量

力学测量和热学测量 中国科学技术大学轩植华 主要内容 (1) 一、力学测量 (1) 二、热学测量 (5) 主要内容 物理学是研究物质运动、物质结构和性质的科学,是最重要和最基本的自然科学。研究的主要途径就是实验,实验的主要手段是测量。所谓测量,就是将待测物的某特性与被选作标准的某物的某个特性做比较。 伽利略开创了物理学,是力学测量的集大成者 1.用一个V型木槽和木球做斜面运动实验,用水桶漏水量计量时间,测量加速度并推算重力加速度。 2.用外推法和逻辑法得到惯性定律。 3.注意到单摆的等时性。 4.改进望远镜并观察月亮。 5.发明和改进秤(杠杆法)。 细观察,巧实验,勤思考,善推理,精演算 傅科在教堂中发现悬吊的灯摆动的面并非严格的平面,这个面缓慢但不断地旋转,灯绳长短不同,旋转周期不同;纬度不同,周期也不同,在北极旋转周期为24小时。望远镜是荷兰的一个眼镜店学徒先发现,伽利略解释并改进。 一、力学测量 确定物体的位置、长度、速度、加速度、运动轨迹等属于运动学测量; 而了解物体运动与质量和力关系,属于动力学范畴; 描述硬度、黏性、杨氏模量、表面张力系数等物质特性,属物性研究。 这些测量又与质量、时间等物理量密切相关。 用仪器测量力学量的量限向两端延伸:

质量跨15个量级; 力值跨16个量级; 压强跨14个量级。 测量方式由静态测量到动态测量,在变化过程中实时测量,广泛使用各种传感器。 在我们的实验课程中也学习传感器测量较小的物理量。 而对于天体位置、距离以及运动的测量,则根据它们的运动规律以及光谱进行间接测量。 对物质微观粒子力学性质的测量,要用到光学、电磁学、原子以及核物理等手段进行间接测量。 力学测量中涉及到杠杆原理(如天平实验) 阿基米德定律(流体静力秤——测量密度) 胡克定律(弹簧——测量液体表面张力) 光线反射和折射定律(光杠杆——测量杨氏模量) 干涉或衍射(牛顿环测量透镜曲率半径,测量细丝或狭缝宽度) 多普勒效应(测量速度和加速度) 压电效应(应用传感器制作电子秤)等。 要确定速度等力学量,还必须测量时间。 从古代的日晷、沙漏,到以摆动的等时性为基础的机械式钟表,到晶体震荡为基础的石英钟,一直到原子钟,时间测量的精度大大提高了。 在我们的物理实验课中,涉及速度、加速度的有气垫导轨、单摆或物理摆、多普勒效应等实验,测量声速的实验; 还有测量密度、杨氏模量、粘滞性、表面张力等涉及物质性质的实验; 应用传感器测量质量、微小形变等。 光速已经是长度单位米的定义 原始的米原器长度受温度影响,不易复制 1960年定义米的长度为氪-86的2p10和5ds 能级之间跃迁的辐射在真空中波长的1 650 763.73倍。 现在定义米的长度为光在真空中(1/299 792 458)秒时间间隔内所经路径的长度。 强度调制光的干涉法测量光速

相关文档
相关文档 最新文档