文档库 最新最全的文档下载
当前位置:文档库 › 36MN预应力结构挤压机机架变形分析

36MN预应力结构挤压机机架变形分析

36MN预应力结构挤压机机架变形分析
36MN预应力结构挤压机机架变形分析

万方数据

万方数据

万方数据

万方数据

WS轧机结构分析及设计要点

WS轧机结构分析及设计要点 钢材在国家经济发展及居民生活中发挥着重要的作用,现今,我国的钢铁产量居世界第一,在钢材的生产过程中,WS轧机是应用于板材生产中的重要设备,其主要采用的是一个工作辊可移动和工作辊弯辊技术,从而大幅度地提高板材生产的精度。在WS轧机的设计过程中,做好对于WS轧机的结构和零件的设计能够使得WS轧机的设计更为合理,产量和板材的生产精度更为优秀。 标签:四辊冷轧机;工作弯辊;辊横移;结构设计 前言 在经济快速发展的今天,对于板材的产量与生产精度提出了更高的要求,因此,做好对于新型板材的研制以满足对于板材精度的需要是现今乃至今后一段时间内轧机研究的重点。冷轧板带是近些年来应用较多的一种板材,同时随着经济的快速发展,冷轧板材的需求将会越来越大,做好对于WS轧机的研发和结构设计对于确保冷轧板材的生产有着十分重要的意义。 1 WS冷轧机工作原理 1.1 冷轧机板形控制中所面临的困难 四辊冷轧机是现今广泛应用于板材生产的重要设备,相对于二辊轧机,其通过采用较小的工作辊径和较大的支撑辊径来降低辊工作时轧制力所带来的挠度,但是,在使用过程中发现,当冷轧机的支撑辊径超过一定的范围后将会使得冷轧机无法降低其挠度对轧机所带来的影响,其主要是由于造成轧机工作辊的挠度多是由于支撑辊和工作辊之间的不均匀接触所带来的,为降低和控制外力所带来的挠度,可以采用在工作辊中突出原始磨削的凸度或是在冷轧机的工作辊中添加液压反弯装置。在辊表面添加凸度,由于凸度是定值,从而使得在冷轧机轧制过程中无法灵活的应对轧制力的变化,再加上在工作中由于热膨胀/磨损等所带来的影响将会使得冷轧板形的控制较为困难,其缺乏足够的控制能力,因此在冷轧机结构中应用不多。而在冷轧机中使用反弯装置能够更好的对板形进行控制,但是其在工作的过程中由于受到辊径强度以及轴承寿命方面的考虑,限制了其工作时的工作压力。同时对于L/D比较大的工作辊液压反弯容易使得轧制的冷轧钢带出现复合波。从而影响冷轧钢的轧制效果。随着科技的进步,现今还发展了通过加热或是冷却来对工作辊热凸度进行控制的方法或是通过改变辊内高压油压力来改变辊凸度的方法,但都并未达到预期效果,因此,需要加强对于板形控制的方法来提高板形的精度。 1.2 WS轧机的工作原理(如图1所示) 一般的四辊轧机在工作时由于结构的限制使得其在工作时支撑辊与工作辊的两端存在着“有害区”,其中“有害区”主要是指在工作中由于弯曲应力和辊变形

曲柄滑块机构的设计页完整版

曲柄滑块机构的设计页 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字:50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A 所在的水平线,接着就是根据36度这个条件最终确定A的位置。 (1)确定滑块的极位及固定铰链A所在的直线 先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。 (2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢?---圆周角具有这种特征。

从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。 (3)测量曲柄和连杆的尺寸 量取A1C1,A1C2如下图。 则可以推知曲柄和连杆的长度 到此为止,连杆机构设计完毕。 (4)得到最大的压力角 从图中可以发现,当滑块在最左边时,有最大的压力角(滑块受到的推力与滑块速度方向的夹角),测量得到角度为53度。 至此,该曲柄滑块机构的设计和分析结束。

轧机单独驱动辊道的结构分析

轧机单独驱动辊道的结构分析 单独驱动辊道每一个辊子或每两个辊子由各自的电动机驱动,一般用来运输长轧件。由于每个辊子承受负荷较小,所以采用单独驱动辊道可使辊道结构简单。 根据电动机固定方式,单独驱动辊道可分为普通地脚固定式、法兰盘式以及空心轴端部悬挂式。 当辊道速度较高时,辊子可以不通过减速装置而由电动机直接驱动。此时,如果采用地脚固定式或法兰盘式电动机,一般通过万向联轴节、齿轮联轴节或弹性联轴节与辊子连接。如果采用空心轴电动机,则将电动机直接装在悬臂轴上,通过键和螺栓固定。这种电动机外壳上有凸耳,通过弹簧支撑在辊子轴承座的凸耳上,以防电动机外壳转动。由于空心轴电动机悬臂地套在辊子轴上,对辊子轴及其轴承装置受力不利。现场使用时,往往出现辊子轴变弯,一侧轴承座螺栓松动等问题。 采用法兰盘式电动机的单独驱动辊道当辊道速度较高时,由于低速电动机价格较贵,一般都选用速度较高的电动机,通过齿轮减速后传动辊子。近年来,摆线或渐开线行星减速机在单独驱动辊道中也得到了应用。 集体驱动辊道集体驱动辊道由4~10个辊子组成一组,并由一台电动机驱动。它主要用来运输短而重的轧件,或用在辊道工作条件较繁重的场合。由于轧件重量集中在几个辊子上,使每个辊子承受较大的负荷,采用集体驱动则可以减少辊道电动机功率。 为了便于安装配置在一根长轴上的圆锥齿轮,圆锥齿轮与长轴采用动配合,而且用斜键固用斜键固定长轴上圆锥齿轮的结构形式,拆装不太方便,圆锥齿轮啮合性能也不太好。目前,有的辊道采用了无键连接结构。无键连接就是具有一定过盈量的静配合连接,靠配合面间的摩擦力矩传递扭矩。采用无键连接,可以不削弱长轴的强度,提高了承受冲击载荷的能力,结构简单,制造加工方便。中国冶金行业网 运输辊道的主要作用是运送轧件或钢锭。受料辊道是用来接受运锭车送来的钢锭,并将其送往钢锭旋转台辊道上。根据需要钢锭在旋转台上旋转180°后,通过辊道和输入辊道送往初轧机进行轧制。由初轧机轧出的轧件,则通过轧机输出辊道送往剪切机。

轧钢机工作辊道的布置和结构

轧钢机工作辊道的布置和结构 (1)工作辊道的布置 工作辊道直接布置在轧钢机工作机座的前后。布置在初轧机前后的辊道都是工作辊道。这些辊道,除了在轧制前将输入辊道送来的钢锭送往初轧机,以及在轧制后将轧件送往输出辊道外,还直接参与轧制过程,即在轧制时这些辊道还要运转,故称为工作辊道。辊道和最靠近初轧机,在轧制的每一道次中,它们都要运转,称为主要工作辊道;辊道只有当轧件长度超过主要工作辊道的长度时,才开始运转,称为辅助工作辊道或延伸辊道。 (2)工作辊道的结构与传动 在工作辊道中,初轧机和板坯初轧机工作辊道的工作条件最为繁重。除了频繁起动、制动外,还要承受轧制时轧件抛钢和翻钢引起的冲击载荷。工作辊道一般采用圆锥齿轮集体驱动的结构型式。这种辊道在使用中,圆锥齿轮和轴承损坏较多。 板坯初轧机的工作辊道由五个靠近轧机的单独驱动辊子和三组集体驱动辊子组成。采用单独驱动,可消除齿轮传动系统,解决了传动齿轮冲击损坏问题。此外,在轧制短轧件时,只要开动这几个辊子的电动机,就能输送轧件。三组集体驱动辊子,可由轧件长度分别开动一组、二组或三组辊子的电动机,这可减少电能消耗。采用这种圆柱齿轮分组集体驱动与单独驱动相结合的结构型式,可以延长齿轮和轴承的使用寿命,维修也比较方便。为了减少辊子所承受的冲击载荷,在辊子轴承下面装置缓冲弹簧,而辊子用弧面齿形联轴节与传动装置联接,以适应缓冲弹簧变形时辊子中心高度的改变。中国冶金行业网 如果因辊道辊距或其他条件限制,则采用圆锥齿轮传动。此时,除了设法提高和改进辊子轴承和圆锥齿轮承载能力外,也应考虑传动系统的结构型式。例如,辊道辊子与圆锥齿轮采用以2~4个辊子为一组;传动长轴也由几根传动轴组成,每根传动轴传动2~4个辊子,各传动轴之间通过联轴节连接;辊道减速机采用单独减速机型式,它通过齿轮联轴节与圆锥齿轮箱相连接。这种分组组合式辊道,便于车间辊道的布置,也利于辊道的制造和维修。

铸轧机的结构设计

铸轧机的结构设计 一台机械能否正常运转不仅与其传动系统有着密切的关系, 而且还与结构设计的合理性有着更紧密的关系, 所以本章内容的设计及说明成为本次设计关键部分.铸轧机的主要结构部分包括:轧辊装置,上机架,下机架,侧封装置,和清辊装置. 由于双辊铸轧技术是一种用双辊的表面来冷却液态钢水并使之凝固以生产薄带钢的方法,其工艺特点是液体金属在结晶凝固的同时承受压力加工和塑性变形,在很短的时间内完成从液体金属到固态薄带的全过程. 所以铸轧辊的设计是轧机能够生产高质量棒线材的核心技术. 下面我将从辊芯, 辊套及其冷却方面开始设计。 2.1 铸轧辊套材料的选择及结构设计铸轧辊主要是由一个中心部位钻有进,出水孔,表面带有沟槽的辊芯和一个辊套组成的。它是铸轧机中最关键的部件,直接响影着产品的质量。所以辊芯,辊套从材料的选择,结构的设计,加工的顺序,装配的方法到使用过程每一步都显得十分重要。 2.1.1 铸轧辊辊套材料的选择 2.1.1.1 铸轧辊辊套的工作负荷 在铸轧过程中,熔铝进入连铸机轧制区并直接同辊套外表面接触,而这个辊套的内侧则受到冷却,就是为了吸收液铝中过多的热量,把它转变成固态铝。因此,这种铸轧辊的工作能力直接取决于辊套材料的热导性,而辊套被装到辊芯上,为了保障这种辊套在高温下都能牢固的固定在辊芯上,这种辊套材料应该有很低的热膨胀率,即必须在温度为600℃时显现出足够的强度和良好的塑性。由于在运行时受到复杂载荷的作用,在辊套的表面上会产生不同程度的网状热裂纹,裂纹的扩展速率主要是由力学性能和工艺特点决定的,特别是强度和可塑性的比率。 2.1.1.2 铸轧辊材料的选择 辊套材料应具备下述特性:导热性好,耐热变负载,有相当高的强度与刚度,不与铝熔体反应,所以确定辊套时要做综合考虑,根据多方面资料搜索,铸轧机辊套通常采用如下两种材料(见表一)这两种材料能使上述所要求的性能之间达到适当的匹配!保

闭式单动压力机结构介绍

闭式单动压力机结构介绍 机身结构:由一个底座,四个立柱组成。与上横梁通过四个穿过机身四角的拉紧螺栓预紧。底座是压力机整体的基础构件,也是主要受力构件,具有足够强度和刚性,其上面安装工作台或移动工作台及其定位装置、固定制子、导轨板。底座内部装有拉伸垫、拉伸垫顶冠,底座的四个角安装四个支腿,有螺栓加热于金固定,整个压力机通过支腿安装在基础上。对四个立柱的压力机,通常设置为: 左前立柱内装有组合阀控制板及空气管路,总气源的压缩空气经组合阀控制板分成若干支路到各执行部位。 左后立柱内装有间歇润滑控制板(有拉伸时),平衡器管路,横梁回油管,滑块回油装置。 右前立柱装有操纵按钮站,吨位显示器(用户特殊要求时) 右后立柱内装有平衡器管路,横梁回油管路等。 在左右立柱内侧各装有模区照明灯和一对模具安全栓。 移动工作台:由工作台板,小车体,滚轮,驱动系统组成。 为了使移动工作台牢固的与底座结合在一起,在底座前后侧安装多个液压夹紧器,通过管路与装在底座左侧或底座接油盘上的移动工作台液压夹紧控制站练成一个系统。当液压夹紧器夹紧时,夹紧油缸上腔进入由气动泵供给的高压油,加紧干便压紧移动工作台,在控制站进入夹紧管路上设有压力继电器,当夹紧力低于16Mpa时,工作台夹紧会不牢固(冲压时,可能会出现工作台移位而损坏模具与冲压零件),此时,滑块不能开动。 横梁主传动:压力机的主传动齿轮,轴,偏心体,连杆,导柱等封闭在横梁体内,在横梁顶面上安装主电机支架,横梁后面安装又飞轮支承,飞轮离合器,飞轮制

动器,横梁前面装有制动器,微调装置,凸轮开关。 主传动通常呈前后方向布置,一般分为三级减速。第一级为M型多楔带传动,第二级为高速级齿轮传动,第三级为低速级齿轮传动。冲动机构的动力是由装在可调支架上的主电机带动飞轮转动,然后通过离合器、两级齿轮传动,带动偏心连杆,实现滑块的上下往复运动。 离合器制动器采用气动联锁控制。飞轮制动安器安装在飞轮侧下方,用于主电机停止后将飞轮快速刹住。 可调速压力机目前应用的调速传动是,用交流变频调速或一直流调速电机改变飞轮的速度的办法来达到行程次数变化的目的。压力机的飞轮是用在压力机行程不工作期间储存能量,并在需要时释放能量,飞轮的能量与它的旋转速度的平方成正比。当飞轮速度降低时,他的能量输出会变化很大。客户工艺人员在选择设备使用规范时,应特别注意这种变化。 离合器制动器:常用的离合器制动器为气动(干式),或液压(湿式),结构又一下几种形式: 组合式摩擦离合器制动器,中小型压力机上广泛使用 悬臂式摩擦离合器制动器,为了减少摩擦离合器,制动器在接合及制动过程中的发热,降低摩擦表面的温度升高和提高摩擦片的寿命,主要措施是减少离合器、制动器的从动部分的主动惯量。悬臂式摩擦离合器制动器的制动器部分的冷却一般采用自然通风或采用单风扇冷却。湿式离合器和制动器,在干式摩擦离合器制动器中,转速过高往往会出现离合器过热和摩擦片,容易损坏的问题。湿式离合器和制动器弥补了这一不足,特点如下: 1、采用铜基粉末冶金摩擦片与淬火钢圆盘作为摩擦副并浸油润滑。

曲柄滑块机构设计

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为1.5,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A 在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字:50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A所在的水平线,接着就是根据36度这个条件最终确定A的位置。 (1)确定滑块的极位及固定铰链A所在的直线

先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。(2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢?---圆周角具有这种特征。 从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。 (3)测量曲柄和连杆的尺寸 量取A1C1,A1C2如下图。 则可以推知曲柄和连杆的长度 到此为止,连杆机构设计完毕。 (4)得到最大的压力角 从图中可以发现,当滑块在最左边时,有最大的压力角(滑块受到的推力与滑块速度方向的夹角),测量得到角度为53度。 至此,该曲柄滑块机构的设计和分析结束。

炉卷轧机的发展与典型结构

炉卷轧机的发展与典型结构 萧其林 摘要:按照传统型、改造型、现代型三个阶段叙述了炉卷轧机的发展,并对炉卷轧机的典型布局与结构进行分析。 关键词:炉卷轧机;发展;典型布局;结构 1 炉卷轧机的发展 炉卷轧机,又称斯特克尔轧机(Steckel轧机)。自美国于1932年研制出第一台试验性炉卷轧机并于1949年正式应用于工业生产以来,到现要已有近70年。近70年来炉卷轧机经历了传统型、改造型、现代型三个发展阶段。随着现代冶金技术的发展和现代传动、控制技术的应用,炉卷轧机已步入了蓬勃发展时期。本文依照传统型、改造型、现代型三个阶段对炉卷轧机的发展予以阐述。 1.1传统型炉卷轧机(1932~1960年) 炉卷轧机发明于20世纪30年代。该发明解决了成卷热轧薄板轧制过程中温度降低太快的问题,使得带卷在轧制过程中进行可逆式的往复轧制,直到轧制过程完成,这就是所谓的炉卷轧制方法。图1-1为其示意图。 图1-1 炉卷轧机示意图 1——带保温炉的卷取机;2——送料辊;3——四辊可逆轧机;4——升降导板 图1-2 炉卷轧机工艺设备布置图 1-再加热炉 2-除鳞机 3-立辊轧机 4-粗轧机 5-辊道 6-切头剪 7-左卷取炉 8-炉卷机 9-右卷取炉 10-冷却辊道 11-地下卷取机 1.1.1炉卷轧机生产工艺流程与设备布置 炉卷轧机的生产工艺流程和设备布置如图1-2。板坯在连续式加热炉中加热后,通过高压水除鳞,然后在带立辊的四辊粗轧机上分别轧制一定道次,将板坯轧成厚10~20mm的带坯,在飞剪上切除头尾,然后送入炉卷轧机进行可逆轧制。当第一道带坯头部出炉卷轧机后,右边的升降导板抬起,将带坯的头部引入右边卷取炉的卷鼓中进行卷取。卷取炉卷鼓与轧机之间带钢的张力不大,其总张力为30000N。当第一道轧件尾部一出轧辊,右边的夹送辊下降,整个机组反转,开始第二道轧制,此时左边的夹送辊和升降导板抬起,又将带钢导入左边的卷取炉进行卷取,如此反复轧制几道,即轧成所需要的带卷。由于每道轧制时轧件端部均需通过轧辊,因而每道次开始时都需以导入速度(0.5~2.5m/s)轧制,

压力机的分类及结构

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/884925492.html,)压力机的分类及结构 变宝网10月25日讯 压力机是一种统称,它包含了冲床、液压机,具有用途广泛、生产效率高的特点,它通过对金属坯件施加强大的压力使金属发生塑性变形和断裂来加工成零件。所以下面就带大家详细的了解一下压力机。 一、压力机的分类 气动压力机 气动压力机是由气液增压缸+工作台+控制逻辑阀组成的压力机!采用气动和液压进行出力!3KG——7KG的气源可达到1吨到100吨的高压出力! 螺旋压力机 螺旋压力机用螺杆、螺母作为传动机构,并靠螺旋传动将飞轮的正反向回转运动转变为滑块的上下往复运动的锻压机械。工作时,电动机使飞轮加速旋转以储蓄能量,同时通过螺杆、螺母推动滑块向下运动。当滑块接触工件时,飞轮被迫减速至完全停止,储存的旋转动能转变为冲击能,通过滑块打击工件,使之变形。打击结束后,电动机使飞轮反转,带动滑块上升,回到原始位置。螺旋压力机的规格用公称工作力来表示。 曲柄压力机 曲柄压力机是一种最常用的冷冲压设备,用作冷冲压模具的工作平台。其结构简单,使用方便。按床身结构形式的不同,曲柄压力机可分为开式曲柄压力

机或闭式曲柄压力机;按驱动连杆数的不同可分为单点压力机或多点压力机;按滑块数是一个还是两个可分为单动压力机或双动压力机。 多工位压力机 多工位压力机是先进的压力机设备,是多台压机的集成,一般由线头单元、送料机构、压力机和线尾部分组成。最快节拍可达40次/分以上、可满足高速自动化生产。线头单元可分为拆垛单元、磁性皮带及清洗、涂油设备等;送料机构一般由送料双臂组成;压机一般分为多滑块和单滑块,根据不同需求进行选择,线尾部分一般由输送皮带构成。 二、压力机的机械原理 压力机由电机经过传动机构带动工作机构,对工件施加工艺力。传动机构为皮带传动、齿轮传动的减速机构;工作机构分螺旋机构、曲柄连杆机构和液压缸。 压力机分螺旋压力机、曲柄压力机和液压机三大类。曲柄压力机又称为机械压力机。 螺旋压力机无固定下死点,对较大的模锻件,可以多次打击成形,可以进行单打、连打和寸动。打击力与工件的变形量有关,变形大时打击力小,变形小(如冷击)时打击力大。在这些方面,它与锻锤相似。但它的打击力通过机架封闭,故工作平稳,振动比锻锤小得多,不需要很大的基础。

炉卷轧机的发展与典型结构精编

炉卷轧机的发展与典型结 构精编 High quality manuscripts are welcome to download

炉卷轧机的发展与典型结构 萧其林 摘要:按照传统型、改造型、现代型三个阶段叙述了炉卷轧机的发展,并对炉卷轧机的典型布局与结构进行分析。 关键词:炉卷轧机;发展;典型布局;结构 1 炉卷轧机的发展 炉卷轧机,又称斯特克尔轧机(Steckel轧机)。自美国于1932年研制出第一台试验性炉卷轧机并于1949年正式应用于工业生产以来,到现要已有近70年。近70年来炉卷轧机经历了传统型、改造型、现代型三个发展阶段。随着现代冶金技术的发展和现代传动、控制技术的应用,炉卷轧机已步入了蓬勃发展时期。本文依照传统型、改造型、现代型三个阶段对炉卷轧机的发展予以阐述。 1.1传统型炉卷轧机(1932~1960年) 炉卷轧机发明于20世纪30年代。该发明解决了成卷热轧薄板轧制过程中温度降低太快的问题,使得带卷在轧制过程中进行可逆式的往复轧制,直到轧制过程完成,这就是所谓的炉卷轧制方法。图1-1为其示意图。 图1-1 炉卷轧机示意图 1——带保温炉的卷取机;2——送料辊;3——四辊可逆轧机;4——升降导板

图1-2 炉卷轧机工艺设备布置图 1-再加热炉 2-除鳞机 3-立辊轧机 4-粗轧机 5-辊道6-切头剪 7-左卷取炉 8-炉卷机 9-右卷取炉 10-冷却辊道 11- 地下卷取机 1.1.1炉卷轧机生产工艺流程与设备布置 炉卷轧机的生产工艺流程和设备布置如图1-2。板坯在连续式加热炉中加热后,通过高压水除鳞,然后在带立辊的四辊粗轧机上分别轧制一定道次,将板坯轧成厚10~20mm的带坯,在飞剪上切除头尾,然后送入炉卷轧机进行可逆轧制。当第一道带坯头部出炉卷轧机后,右边的升降导板抬起,将带坯的头部引入右边卷取炉的卷鼓中进行卷取。卷取炉卷鼓与轧机之间带钢的张力不大,其总张力为30000N。当第一道轧件尾部一出轧辊,右边的夹送辊下降,整个机组反转,开始第二道轧制,此时左边的夹送辊和升降导板抬起,又将带钢导入左边的卷取炉进行卷取,如此反复轧制几道,即轧成所需要的带卷。由于每道轧制时轧件端部均需通过轧辊,因而每道次开始时都需以导入速度(0.5~2.5m/s)轧制,使轧件端部平滑进入卷鼓的槽口。导入后,卷鼓和轧机同步升速到正常轧制速度。而在每道次终了时,则必须及时制动,以防轧件尾部进入保温炉内。这样频繁改变的操作制度必须依赖自动控制才能实现,同时也限制了轧

滑块结构设计大全

倒勾处理(滑块) 一?斜撑销块的动作原理及设计要点 是利用成型的开模动作用,使斜撑梢与滑块产生相对运动趋势,使滑块沿开模方向及水平方向的两种运动形式,使之脱离倒勾。如下图所示: 上图中: β=α+2°~3°(防止合模产生干涉以及开模减少磨擦) α≦25°(α为斜撑销倾斜角度) L=1.5D (L为配合长度) S=T+2~3mm(S为滑块需要水平运动距离;T为成品倒勾) S=(L1xsina-δ)/cosα(δ为斜撑梢与滑块间的间隙,一般为0.5MM; L1为斜撑梢在滑块内的垂直距离)

二?斜撑梢锁紧方式及使用场合 简图说明 适宜用在模板较薄且上固定 板与母模板不分开的情况下配 合面较长,稳定较好 适宜用在模板厚、模具空间大 的情况下且两板模、三板板均 可使用 配合面L≧1.5D(D为斜撑销直径) 稳定性较好 适宜用在模板较厚的情况下 且两板模、三板板均可使用, 配合面L≧1.5D(D为斜撑销直径) 稳定性不好,加工困难.

适宜用在模板较薄且上固定板 与母模板可分开的情况下 配合面较长,稳定较好 三?拔块动作原理及设计要点 是利用成型机的开模动作,使拔块与滑块产生相对运动趋势,拨动面B拨动滑块使滑块沿开模方向及水平方向的两种运动形式,使之脱离倒勾。 如下图所示: 上图中: β=α≦25°(α为拔块倾斜角度)

H1≧1.5W (H1为配合长度) S=T+2~3mm (S为滑块需要水平运动距离;T为成品倒勾) S=H*sinα-δ/cosα (δ为斜撑梢与滑块间的间隙,一般为0.5MM; H为拔块在滑块内的垂直距离) C为止动面,所以拨块形式一般不须装止动块。(不能有间隙) 四?滑块的锁紧及定位方式 由于制品在成型机注射时产生很大的压力,为防止滑块与活动芯在受到压力 而位移,从而会影响成品的尺寸及外观(如跑毛边),因此滑块应采用锁紧定位,通常称此机构为止动块或后跟块。 常见的锁紧方式如下图: 简图说明简图说明 滑块采用镶拼式锁紧方式,通常可用标准件.可查标准零件表,结构强度好.适用于锁紧力较大的场合.采用嵌入式锁紧方 式,适用于较宽的 滑块 滑块采用整体式锁紧方式,结构刚性好但加工困难脱模距小适用于小型模具.采用嵌入式锁紧方式适用于较宽的滑块.

实验:压力机的结构与操作

《材料成型设备与控制》实验报告 实验名称:压力机的结构与操作 实验目的:了解常见液压机主要性能,了解液压机其操作过程,掌握液压机组成及其工作原理,了解液压机主要使用场合。 实验内容:本次实验为展示性试验,主要介绍了以下几种液压机: 1.管材数控液压成型机(YQT160-50-30T):适用于管材液压成型,如 T型三通管液压胀形和变直径圆管吸能元件液压胀形与折叠。其特点 是制件精度高,性能好,耗材小;设备能耗低,环境友好。 该成型机的关键参数如下: 主缸合模力:1600kN;主缸行程:500mm 左右缸推力:500kN;左右缸行程:200mm 后缸推力:300kN;后缸行程:200mm 成型液压力:1——100Mpa,高压流量:33L/min,低压流量:68L/min 外形尺寸:2697x1629x2540mm;工作台有效尺寸:535x470mm; 大电机功率:5.5Kw; 小电机功率:4Kw;重量:4900Kg 2.框架式金属挤压液压机(YC61D-160):主要用于精密金属零件冷 挤压成形工艺,也可以进行冲裁,弯曲,拉深,翻边,校正,压装等 成形工艺。 该成型机的关键参数如下: 总力:1600kN;顶出力:250kN; 电机功率:22Kw;系统最大工作压力:25MPa 开口高度:750mm;顶出行程:200mm 滑块行程:400mm;工作速度:10——30mm/s 工作台尺寸:500x500 3.双动薄板拉深液压机(YC288-100/160):主要用于精密金属薄板零

件的冷冲压拉深成形工艺,也可进行冲裁,弯曲,翻边,校正,压装等成形工艺。 该成型机的关键参数如下: 总力:1600kN;拉伸力:1000kN;压边力630kN;液压垫力400 主电机功率:7.5kw;系统最大工作压力25MPa 拉深滑块行程:600;开口高度:800;工作速度:5——10mm/s 压边滑块行程:400;开口高度:500;工作速度:5——10mm/s 工作台尺寸:1200x850mm;液压垫孔尺寸:600x300 4.板材数控液压成型机(YHF28-63/40):板材数控液压成型机主要用于薄板充液拉深成形,特别适用于制造高精度复杂曲面结构件,如车灯反射镜,化工磁力泵隔离套等。 该成型机的关键参数如下: 总压力:630 kN;主缸最大行程:600mm 最大总压边力:400kN;压边缸行程400:mm 变压边力范围:10—300kN;工作台面尺寸:500x500mm;液压力:1—25Mpa

轧机的结构型式和性能

轧机的结构型式和性能 主要决定于轧辊的布置形式(图6)和主机座的布置形式。 1 二辊轧机:结构简单、用途广泛。它分为可逆式和不可逆式。前者有初轧机、轨梁轧机、中厚板轧机等。不可逆式有钢坯连轧机、叠轧薄板轧机、薄板或带钢冷轧机、平整机等。80年代初最大的二辊轧机的辊径为1500毫米,辊身长3500毫米,轧制速度3~7米/秒。 2 三辊轧机:轧件交替地从上下辊缝向左或向右轧制,一般用作型钢轧机和轨梁轧机。这种轧机已被高效二辊轧机所取代。 3 劳特式三辊轧机:上下辊传动,中间辊浮动,轧件从中辊的上面或下面交替通过。因中辊的直径小,可减少轧延力。常用于轧制轨梁、型钢、中厚板,也可用于小钢锭开坯。这种轧机渐为四辊轧机所取代。 4 四辊轧机:工作辊直径较小,传递轧制力矩,轧延压力由直径较大的支承辊承受。这种轧机的优点是相对刚度高、压下量大、轧延力小,可轧制较薄的板材。有可逆和连轧两种,广泛用作中厚板轧机、板带热轧或冷轧机以及平整机等。 5 五辊轧机:有两种:一种是C-B-S(接触-弯曲-拉直)轧机,它是一种带有使轧件弯曲的小直径(为工作辊的1/20)空转辊的四辊轧机,其压下量比通常的四辊轧机大许多倍。轧件围绕小空转辊发生塑性弯曲变形,可轧制难变形的金属和合金带材。另一种是泰勒轧机,中间小辊的位置可沿轧机入口或出口方向调节,以保持轧件正确的厚度,用来轧制厚度公差很小的不锈钢、碳钢和有色金属带材。 6 HC轧机:高性能的、可控制辊型凸度的轧机。相当于在四辊轧机的工作辊与支承辊之间增设一对可轴向移动的中间辊,并将两中间辊辊身的相应端部分别调整到与带钢两边缘对应的位置,以提高压力分布和工作辊弹性压扁的均匀性,保证带钢的尺寸精度并可减少其边缘的超薄量和开裂等缺陷。HC轧机宜用作冷轧宽带钢。 7 偏八辊轧机:它是四辊轧机的变型。工作辊直径为支承辊的1/6,且作相对的偏移,以防止工作辊的水平弯曲,轧制力比四辊轧机小一半。工作辊的稳定性好、水平刚度高,可用以轧制须用二十辊轧机轧制的部分产品。它的结构及其调整却比二十辊轧机简单得多。这种轧机可改装为二、四、八、十六辊几种型式,适宜多品种的需要,因而又称多用途轧机。它有可逆和连轧两种,用于冷轧难变形钢、硅钢和有色金属带材。 8 六辊轧机:由一对工作辊和两对支承辊组成,有较稳定的辊系。但它的刚性与四辊轧机相仿,且操作不便,因而应用不广,一般用于轧制高精度海底电缆的铜带。 9 多辊轧机:有十二辊、二十辊和三十六辊 3种型式。轧机中部一对直径最小

机械压力机介绍

1、机械压力机概述 1.1 机械压力机介绍 机械压力机是在锻压生产中得到广泛应用的锻压设备之一。它几乎可以进行所有的锻压工艺。例如:板料冲压、摸锻、冷热挤压、粉末冶金及冷热精压等。 锻压生产是一种无切屑和少切屑的先进加工工艺。它具有很多的优点,能达到产品质量好,材料消耗少和生产率高的要求。 曲柄压力机是采用机械传动的锻压机器。通过传动系统把电动机的运动和能量传给工作机构,从而使坯料获得确定的变形,制成所需的工件。 机械压力机作为机电液一体化技术密集型产品适用于薄板件的拉深、成型、弯曲、校正、冲裁等各种冷冲压工艺,可广泛用于汽车、拖拉机、电器及国防等工业部门,是加工汽车覆盖件的关健冲压设备。 我公司自1985年以来先后引进了日本小松公司的机械压力机,德国埃尔富特公司的多连杆压力机,德国舒勒公司的高速精密压力机等具有世界先进水平的压力机产品,经过近二十年的不断改进、创新,与上述世界著名压力机生产厂不断的技术引进和技术交流,结合用户的实际要求使我公司的产品无论是在产品结构、精度、技术水平均达到国内领先,世界先进水平。目前我公司可生产公称压力400吨到2000吨的机械压力机,传动型式可以是曲柄的也可以是多连杆的。我公司生产的压力机具有先进的电气控制系统,可靠的安全保护系统,精确的检测系统,滑块行程可无级调速。控制系统采用了可编程控制器(PC)控制,检测系统采用了电子凸轮和OK监视系统,使压力机循环角度与控制角度可随时显示或修正。两个可移动工作台和模具快速夹紧装置便于提高生产率。我公司研制的大型多连杆压力机不仅公称压力可以达到600吨、800吨、1000吨、1200吨1300吨、1500吨、1600吨和2000吨,(到目前为止我们设计最大吨位的压力机是2600T),而且杆数上也从六杆、八杆到十杆,在国内还没有几家厂家能自行开发研制,所以多连杆压力机的研制成功,填补了国内该项目的空白。 1.2 机械压力机各部分结构及功能 曲柄压力机的工作原理如下: 电动机通过三角皮带将运动传给大皮带轮,从而通过齿轮把运动传给偏心齿轮,连杆的上端套在偏心齿轮上,下端与滑块用铰链连接,因此,就将齿轮的旋转运动变成滑块的往复运动。上模装在滑块上,下模装在工作台上。当材料放在

轧钢机下压机构设计 正文

1 引言 轧机的压下装置是轧机的重要结构之一,用于调整辊缝,也称辊缝调整装置,其结构设计的好坏,直接关系着轧件的产量与质量。压下装置按传动方式可分为手动压下、电动压下和液压压下,手动压下装置一般多用于不经常进行调节、轧件精度要求不严格、以及轧制速度要求不高的中、小型型钢、线材和小型热轧板带轧机上。 电动压下装置适用于板坯轧机、中厚板轧机等要求辊缝调整范围大、压下速度快的情况,主要由压下螺丝、螺母及其传动机构组成。在中厚板轧机中,工作时要求轧辊快速、大行程、频繁的调整,这就要求压下装置采用惯性小的传动系统,以便频繁的启动、制动,且有较高的传动效率和工作可靠性。这种快速电动压下装置轧机不能带钢压下,压下电机的功率一般是按空载压下考虑选用,所以常常由于操作失误、压下量过大等原因产生卡钢、“坐辊”或压下螺丝超限提升而发生压下螺丝无法退回的事故,这时上辊不能动,轧机无法正常工作,压下电动机无法提起压下螺丝,为了克服这种卡钢事故,必须增设一套专用的回松机构。电动压下装置的主要缺点之一是运动部分的惯性大,因而在辊缝调节过程中反应慢、精度低,对现代化的高速度、高精度轧机已不适应,提高压下装置响应速度的主要途径是减少其惯性,而用液压控制可以收到这样的效果。 液压压下装置,就是取消了传统的电动压下机构,其辊缝的调节均由液压缸来完成。在这一装置中,除液压缸以及与之配套的伺服阀和液压系统外,还包括检测仪表及运算控制系统。全液压压下装置有以下优点: 1、惯性小、动作快,灵敏度高,因此可以得到高精度的板带材,其厚度偏差可以控制到小于成品厚度的1%,而且缩短了板带材的超差部分长度,提高了轧材的成品率,节约金属,提高了产品质量,并降低了成本; 2、结构紧凑,降低了机座的总高度,减少了厂房的投资,同时由于采用液压系统,使传动效率大大提高;

轧钢机拆装及结构分析

轧钢机拆装及结构分析实验指导书 实验名称:轧钢机拆装及结构分析 实验项目性质:综合型 所涉及课程:金属塑性成型原理、塑性成型概论、压力加工原理及金属材料锻压、冲、挤、拉、弯综合实践 计划学时:4学时 一、实验目的 了解轧钢机械的结构和工作原理。 二、实验内容 1 轧钢机械设备的概念和分类 1.1 轧钢机械设备的概念(轧钢生产中完成一系列工艺过程的设备) 1.1.1 主要设备 ①轧钢机 以实现金属(钢锭、钢坯)在旋转的轧辊间依靠轧制压力作用而发生塑性变形的机械设备。 ②主要设备的配置一标志着轧钢车间的主要特征。 1.1.2 辅助设备 轧钢车间除轧钢机以外的各种机械设备。占设备总量的比重大,机械化、自动化程度越来越高。 1.2 轧辊的结构和参数 1.2.1 分类 有槽轧辊/平轧辊/特殊轧辊。 1.2.2 轧辊的结构

图 1.1.1 轧辊的结构 1-辊身;2-辊颈;3-辊头 a-梅花形的辊头;b-扁头形的辊头;c-带双键形的辊头 ①辊身 工作部分,轧槽,平辊或微凸、微凹型。 ②辊头 传动连接或吊装部分,其形状由连接轴型式确定,梅花型、单键型、双键型、万向节型。 ③辊颈支持固定轧辊部分,即安装轴承及轴承座部分。形状由轴承型式确定,滑动轴承或圆柱滚动轴承为圆柱体,液体摩擦轴承或球面滚柱滚动轴承为圆锥形。辊颈、身交界处为应力集中处应用过度圆弧连接,属于强度薄弱环节。 1.2.3 轧辊的主要参数 1.2.3.1 型钢轧辊主要参数 ①辊身直径 ②辊身长度 ③辊颈尺寸 ④辊头尺寸

根据连接轴的型式确定。 1.4.2 型钢轧辊的强度效核 图.1.3 轧辊的受力及内力图1.4.5 轧辊几种典型的断裂形式(见表2.1.7) 表.1.7 几种典型的断裂形式 2.1 轧辊调整装置的作用和分类

轧机故障案例分析

一、线材机械设备的精密点检管理 摘要:应用精密点检技术对线材机械设备进行振动监测和诊断分析。以实例介绍利用时域、频域及趋势分析等方法,判断设备当前状态,早期发现故障隐患,查找故障根源,为确定维修时间、制定维修方案提供了可靠依据,取得较好效果 关键词:精密点检技术,状态监测,故障诊断,设备管理 某钢线材厂将精密点检技术应用于点检量化工作中,对设备实施定期振动监测,利用时域、频域及趋势分析等方法,判断设备当前状态,早期发现故障隐患,避免突发事故,确保设备正常安全运行;查找故障根源,为确定维修时间、制定维修方案提供了可靠依据。现通过典型案例说明精密点检技术的应用情况。 一、预精轧机故障诊断处理 预精轧机是线材厂的重点关键设备。2004年11月检修一线预精轧机时,更换了输人轴的三个齿轮(以国产替代进口)。运行不到半天,即出现吱吱的异响,但始终没能找到原因。为此,用巡检仪进行了振动测试。预精轧机的结构简图及测点布置见图1。 1.结构参数及频率 输入轴转速n=660--690r/min 齿轮齿数:Z1=77,Z2=76,Z3=44,Z4=39,Z5=Z6=Z7=Z8=31,Z9=Z10=36。 各轴旋转频率:f1=11-11.5Hz,f2=11.7Hz,f3=f4=10.3Hz。 齿轮的啮合频率:fm1 =847 -885.5Hz,fm2=456.3Hz,fm3=319.3Hz, 各轴承均为国外生产的滚动轴承,参数不详。 预精轧机的结构简图及测点布置

图1 预精轧机的结构简图及测点布置 2.诊断分析 (1)测试结果(见表1) 表中Hv, Vv, Av分别是水平、垂直和轴向的速度值,单位为mm/s; Ha, Va, Aa分别是水平、垂直和轴向的加速度值,单位为m/s2 。 (2)诊断分析 从表1可看出,15架振动烈度比14架小,水平和轴向加速度幅值比14架大,但加速度最大值在14架。由于此设备结构较特殊,故不适合采用绝对标准,而又无相对标准可参照。鉴于14架与15架结构基本相同,故可采用类比标准。相比之下,14架运行状况较差。 图2、表2和图3分别为14架垂直方向时域波形图、时域指标和幅值谱。

轧钢机控制系统

目录 1.前言 (3) 2.第一节 PLC的概述 (4) 1.1 PLC的产生及定义 (4) 1.1.1 PLC的产生 (4) 1.1.2 PLC的定义 (4) 1.2 PLC的主要特点及分类方法 (4) 1.2.1 PLC的主要特点 (4) 1.2.2 PLC的分类方法 (4) 3.第二节 PLC的基本结构及工作原理 (6) 2.1 PLC的基本结构 (6) 2.2 PLC的工作原理 (8) 4.第三节轧钢机控制系统的设计 (10) 3.1 硬件设计 (10) 3.1.1控制系统框架 (10) 3.1.2轧钢机电气控制模板 (10) 3.1.3 设计要求 (10) 3.1.4 控制原理 (11) 3.1.5 控制方案 (11) 3.2 软件设计 (11) 3.2.1主线路接线图 (11) 3.2.2 PLC的I/O端口接线 (12) 3.2.3 端口地址分配 (12) 3.2.4 程序流程图 (13) 3.2.5 梯形图 (14) 3.2.6 语句表 (17) 3.3 程序调试及结果分析 (17) 5.小结 (18) 6.参考文献 (19)

前言 随着PLC技术的迅速发展,可编程控制器的应用将更加广泛为了适应社会发展的需要,可编程控制器将应用于各个领域。轧钢在工业生产中,利用PLC编程技术对轧钢过程实现了自动化。可编程序控制器,英文全称Programmable Controller,简称PLC。它是以微处理器为核心的数字运算操作电子系统装置,转为在工业现场应用而设计,采用可编程序的存储器,用以在其内部存储执行逻辑运算、顺序控制、定时/计数和算术运算等操作指令,并通过数字式或模拟式的输入/输出接口,控制各种类型的机械或生产过程。PLC式微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中的机械触点接线复杂、可靠性低、功耗高、通用性和灵活性差等缺点,充分利用了微处理器的优点,有照顾到了现场电气操作维修人员的技能与习惯,特别是PLC的程序编制,不需要专门的计算机编程语言知识,而是采用了一套以继电器梯形图为基础的简单指令形式,使用户程序编制形象、直观、方便易学,调试和简易的用户程序编制工作,就灵活方便地将PLC应用于生产实践之中。同时利用了传感器的技术,将传感器、PLC以及自动控制技术相结合,使轧钢在工业生产中更加的方便了。 本设计是基于PLC的轧钢机控制系统,利用传感器S1来检测传送带上有无钢板,若S1有信号(即开关为ON),表示有钢板,电机M3正转(MZ灯亮)。S1的信号消失(为OFF),检测传送带上钢板到位的传感器S2有信号(为ON),表示钢板到位,电磁阀动作(YU1灯亮),电机M3反转(MF灯亮)。此时,Q0.1给一向下压下量,S2信号消失,S1有信号,电机M3正转……如此重复上述过程。

锻压机械的发展史及组成部分简介

锻压机械的发展史及组成部分简介 锻压机械是指在锻压加工中用于成形和分离的机械设备。锻压机械包括成形用的锻锤、机械压力机、液压机、螺旋压力机和平锻机,以及开卷机、矫正机、剪切机、锻造操作机等辅助机械。 锻压机械主要用于金属成形,所以又称为金属成形机床。锻压机械是通过对金属施加压力使之成形的,力大是其基本特点,故多为重型设备,设备上多设有安全防护装置,以保障设备和人身安全。 人们为了制造工具,最初是用人力、畜力转动轮子来举起重锤锻打工件的,这是最古老的锻压机械。14世纪出现了水力落锤。15~16世纪航海业蓬勃发展,为了锻造铁锚等,出现了水力驱动的杠杆锤。18世纪出现了蒸汽机和火车,因而需要更大的锻件。 1842年,英国工程师内史密斯创制第一台蒸汽锤,开始了蒸汽动力锻压机械的时代。1795年,英国的布拉默发明水压机,但直到19世纪中叶,由于大锻件的需要才应用于锻造。 随着电动机的发明,十九世纪末出现了以电为动力的机械压力机和空气锤,并获得迅速发展。第二次世界大战以来,七十五万千牛的模锻水压机、一千五百千焦的对击锤、六万千牛的板料冲压压力机、十六万千牛的热模锻压力机等重型锻压机械,和一些自动冷镦机相继问世,形成了门类齐全的锻压机械体系。 二十世纪60年代以后,锻压机械改变了从19世纪开始的,向重型和大型方向发展的趋势,转而向高速、高效、自动、精密、专用、多品种生产等方向发展。于是出现了每分种行程2000次的高速压力机、六万千牛的三坐标多工位压力机、两万五千千牛的精密冲裁压力机、能冷镦直径为48毫米钢材的多工位自动冷镦机和多种自动机,自动生产线等。各种机械控制的、数字控制的和计算机控制的自动锻压机械以及与之配套的操作机、机械手和工业机器人也相继研制成功。现代化的锻压机械可生产精确制品,有良好的劳动条件,环境污染很小。 锻压机械主要包括各种锻锤、各种压力机和其他辅助机械。 锻锤是由重锤落下或强迫高速运动产生的动能,对坯料做功,使之塑性变形的机械。锻锤是最常见、历史最悠久的锻压机械。它结构简单、工作灵活、使用面广、易于维修,适用于自由锻和模锻。但震动较大,较难实现自动化生产。 机械压力机是用曲柄连杆或肘杆机构、凸轮机构、螺杆机构传动,工作平稳、工作精度高、操作条件好、生产率高,易于实现机械化、自动化,适于在自动线上工作。机械压力机在数量上居各类锻压机械之首。 冷镦机等各种线材成形自动机、平锻机、螺旋压力机、径向锻造机、大多数弯曲机、矫正机和剪切机等,也具有与机械压力机相似的传动机构,可以说是机械压力机的派生系列。 液压机是以高压液体(油、乳化液等)传送工作压力的锻压机械。液压机的行程是可变的,能够在任意位置发出最大的工作力。液压机工作平稳,没有震动,容

相关文档