文档库 最新最全的文档下载
当前位置:文档库 › 山西太原市高中数学竞赛解题策略-几何分册第12章圆与圆相交1

山西太原市高中数学竞赛解题策略-几何分册第12章圆与圆相交1

山西太原市高中数学竞赛解题策略-几何分册第12章圆与圆相交1
山西太原市高中数学竞赛解题策略-几何分册第12章圆与圆相交1

第12章 圆与圆相交

在圆与圆相交的问题中,两圆相交是基础.在这一章中,我们重点讨论两圆相交的基本性质及应用1234;三圆两两相交问题仅讨论共公共弦的问题.

两圆相交为圆周角定理、圆内接四边形性质定理等提供了用武之地. 性质1 相交两圆的连心线垂直平分公共弦.

性质2 以相交两圆的一交点为顶点,过另一交点的割线段为对边的三角形称为相交两圆的内接三角形.相交两圆的内接三角形的三个内角均为定值. 推论1 在相交两圆中,内接三角形均相似.

事实上,如图12-1,1O ⊙与2O ⊙相交于P 、A ,AB 、CD 、EF 为过点Q 的割线段,则 PAB PCD PEF QGH △∽∽△∽.

(2)

A

R (1)

A R

图12-1

推论 2 如图12-1中字母所设,又设M 、N 分别为AB 、CD 的中点,则PAC PBD PMN △∽△∽.

证明 参见图12-1,由PAB PCD ∽△,有APC APB CPB CPD CPB BPD ∠=∠-∠=∠-∠=∠,

亦即P A M △∽△,从而P B P A P

M

P D P C P

N ==

,且M P N C P N C ∠=∠-∠=∠-∠=∠

.由此APC PBD PMN △∽△∽△. 推论3在相交两圆中,若过同一交点的两条割线段的长相等,则以这两条割线段为边的内接三角形全等,且公共弦平分这两条割线所构成的夹角,反之亦真.

事实上,如图12-1,1O ⊙与2O ⊙相交于P 、Q ,若过点Q 的两条割线满足AB CD =,则PAB PCD △≌△,于是PD PB =.联结BD ,则AQP BDP DBP DQP ∠=∠=∠=∠,知PQ 平分AQD ∠. 反之亦真.

推论4在相交两圆中,若公共弦与内接三角形的一条边垂直,则另两边必分别为两圆直径.反之亦真.

事实上,如图12-11O ⊙与2O ⊙相交于P ,Q ,过Q (或P )的割线段与PQ 垂直,则由直角所张的弦为直径知PE (或QG ),PF (或QH )分别为1O ⊙,2O ⊙的直径.反之亦真. 推论5 在相交两圆中,内接三角形的交点顶点(即两圆一相交点)、两非交点顶点以及非交点顶点处的两切线的交点,此四点共圆,或者说,两非交点顶点处的两切线的交点在相交两圆的内接三角形外接圆上, 事实上,如图12-1(1),1O ⊙与2O ⊙相交于P 、Q ,过点Q 的割线段CD 在端点处的切线于点R ,由弦切角定理,有QCR QPC ∠=∠,QDR QPD ∠=∠.于是,

PCR PDR PCD QCR QDR CDP PCD ∠+∠=∠+∠+∠+∠=△的内角和180=?. 故P 、C 、R 、D 四点共圆.或者说点R 在PCD △的外接圆上. 对于图12-1(2),也可类似地证明(略).

1沈文选.相交两圆的性质及应用[J].数学通讯,2010(7):56-58. 2

沈文选.再谈相交两圆的性质及应用[J].数学通讯,2010(11):56-58. 3

沈文选.三谈相交两圆的性质及应用[J].数学通讯,2011(2):61- 64. 4

沈文选.两圆相交的几个结论[J].中学教学参考,2011(5):49-52.

性质3 两相交圆的公共弦所在直线平分外公切线线段.

事实上,如图12-2,1O ⊙与2O ⊙相交于P 、Q ,设外公切线段为ST ,直线PQ 交ST 于M ,则由22SM MP MQ MT =?=,知M 为ST 的中点.

S

图12-2

性质4 以相交两圆的两个交点分别为视点,对同一外公切线线段的张角之和为180?. 事实上,如图12-2,1O ⊙与2O ⊙相交于P ,Q ,ST 为两圆外公切线段,连接SP 、SQ 、TP 、TQ ,则由弦切角定理,SQP TSP ∠=∠,TQP STP ∠=∠.从而SPT SQT SPT TSP STP SOT ∠+∠=∠+∠+∠=△的内角和180=?.

性质5两圆1O ⊙与2O ⊙相交于P 、Q 两点,过点Q 的割线段AB 、CD 分别交1O ⊙于点A ,C ,交2O ⊙于点B ,D ,直线AC 与直线BD 交于点S ,则(1)ASB ∠为定值;(2)P ,C ,S ,D 及A ,S ,B .P v 分别四点共圆;(3)APC BPD △∽△. 证明 如图12-3,联结PQ .

A

图12-3

从而ASB BSC ∠=∠

360SBQ SCQ BQC =?-∠-∠-∠ 360QPD APQ QD =?-∠-∠-∠

360()QPD PQD AQP AQD =?-∠-∠+∠-∠ 180180QPD PQD AQP AQD =?-∠-∠+?-∠-∠ PAQ PDQ αβ=∠+∠=+(定值).

(2)180180180180DPC PCD PDC PAQ PDQ αβBSC ∠=?-∠-∠=?-∠-∠=?--=?-∠, 同理,知P ,C ,S ,D 四点共圆.

(3)由180CPD αβAPB ∠=?--=∠,有APC BPD ∠=∠及PAC PQD PBD ∠=∠=∠即证. 当过Q 的两条割线段AB ,CD 重合时,则有结论:

推论6 两圆1O ⊙与2O ⊙相交于P ,Q 两点,过点Q 的割线段AB 分别交1O ⊙,于A ,交2O ⊙于B ,两圆在A ,B 处的切线交于点S .则(1)ASB ∠为定值;(2)A ,S ,B ,P 四点共圆,

考虑过Q 的两条割线AB ,CD 端点处的割线时,则有结论:

图12-4

推论7 设1O ⊙与2O ⊙相交于P ,Q 两点,过点Q 的两条割线段AB ,

CD 分别交1O ⊙于点A 、C ,交2O ⊙于点B 、D ,两圆在A ,B 处的切线交于点E ,两圆在C ,D 处的切线交于点F ,PE PF =的充要条件是AB CD =.

证明 如图12-5,联结有关线段如图.设直线AC 与直线DB 交于点R .

图12-5

由性质5及推论6,知P ,C ,R ,D 及P ,C ,F ,D 分别四点共圆,于是,有P ,C ,R ,F ,

D 五点共圆,

由PCF PAC ∠=∠,ARP CRP CFP ∠=∠=∠,知P C F P A R △∽△,有P F P C

P R P A

=. ①

由PCD PAB △∽△,有PC CD PD

PA AB PB

==

. ② 同理,P ,A ,E ,R ,B 五点共圆.

由PRD PEB ∠=∠,PBE PDB PDR ∠=∠=∠,知PRD PEB △∽△,有PD PR

PB PE

=

. ③ 由①,②,③得PF PC CD PD PR

PR PA AB PB PE

====

. 故PE PF PE PR AB CD =?=?=.

性质6 两相交圆为等圆的充要条件是内接三角形为等腰三角形,且以割线段为底边.

证明 如图12-6,设1O ⊙与2O ⊙相交于P ,Q ,QB 为过点Q 的割线段,令PAQ α∠=,PBQ β∠=.

由正弦定理,有1O ⊙与2O ⊙为等圆(,(0,90))sin sin PQ PQ

αβa βPAB αβ

?

=?=∈??△为等腰三角形.

性质7两相交圆为等圆的充要条件是下述条件之一成立: (1)公共弦对两圆的张角相等;

(2)过同一交点的两条割线交两圆所得两弦相等,

A

图12-6

证明 如图12-7,1O ⊙与2O ⊙相交于P ,Q .

图12-7

(1)设点E 在1O ⊙上,点F 在2O ⊙上,令PEQ α∠=,PFQ β∠=,则由正弦定理,有1

O ⊙与2O ⊙为等圆(,(0,90))sin sin PQ PQ

αβαβαβ

?

=?=∈??. (2)设AB ,CD 是过点Q 的两条割线段,联结AC ,BD ,则由正弦定理知,1O ⊙与1

O ⊙为等圆sin sin AC BD

AC BD AQC BQD

?

=?=∠∠. 性质8过相交两圆的两交点分别作割线,交两圆于四点,同一圆上的两点的弦互相平行. 事实上,如图12-8,1O ⊙与2O ⊙交于P ,Q ,割线AB ,CD 分别过P ,Q ,则AC BD ∥.

(3)

(2)

(1)

A

图12-8

性质9 设1O ⊙与2O ⊙相交于P ,Q ,AB 与CD 是过点Q 的两条割线段,直线PQ 与AQD △、

CQB △的外接圆分别交于点S ,T 则P 为ST 的中点.

证明12-9,联结SD 、BT 、PA 、PC 、PB 、PD 、BD ,则由BTQ BCQ ∠=∠,

BDQ BPQ ∠=∠,知BTP BCD △∽△,即有TP BP

CD BD

=

. ①

图12-9

同理,由DPS DBA △∽△,有PS DP

BA BD =

①÷②得

TP BP CD

PS DP BA

=?

又PBA PDC ∠=∠,PAB PCD ∠=∠,或由推论1,知PAB PCD △∽△,有

BP BA

DP CD

=

. ④

将④式代入③式,得TP PS =.故P 为ST 的中点.

性质10 设1O ⊙与2O ⊙相交于P 、Q ,AB 与CD 是过点Q 的两条割线段,若A 、C 、B 、D 四点共圆O ⊙,则OP PQ ⊥.

证明 如图12-10,首先可证B ,O ,P ,C 四点共圆.连接有关线段如图,则对于图12-10(1),由2BPC BPQ CPQ BDC BAC BDC BOC ∠=∠+∠=∠+∠=∠=∠, 对于图12-10(2),由1801802180BPC BPQ CPQ BDC CAQ BDC BOC ∠=∠-∠=?-∠-∠=?-∠=?-∠, 从而B ,O ,P ,C 四点共圆.

(1)

(2)

图12-10

然后再证OP PQ ⊥.由B ,O ,P ,C 四点共圆,有OPB OCB ∠=∠. 对于图12-10(1),

1

902

OPQ BPQ OPB BDC OCB BOC OCB ∠=∠+∠=∠+∠=∠+∠=?

对于图12-10(2),

118018018090902OPQ BPQ OPB BDC OCB BOC OCB ??

∠=∠-∠=?-∠-∠=?-∠+∠=?-?=?

???

性质11 1O ⊙与2O ⊙相交于P ,Q ,AB 是过点Q 的一条割线段,M 为AB 的中点,N 为12

O O 的中点,则NM NQ =.

证明 如图12-11,设点1M ,K ,2M 分别为点1O ,N ,2O 在AB 上的射影,由垂径定理,知1M ,2M 分别是AQ ,BQ 的中点.由梯形中位线定理,知K 为12M M 的中点.

图12-11

不妨设AQ QB >则

121122244M M AQ AQ AQ QB AQ QB

KQ M Q M K +-=-=

-=-=

, 244

AQ QB AQ QB AQ QB

MK MB KQ QB QB ++-=--=--=

. 于是,MK KQ =,即K 为MQ 的中点.注意到NK MQ ⊥,故NM NQ =. 性质12 设1O ⊙与2O ⊙相交于P ,Q ,AB 是过点Q 的割线段,K 为PQ 上异于端点的一点,直线AK 交2O ⊙于C ,D ,直线BK 交1O ⊙于E ,F ,则E ,C ,F ,D 四点共圆于O ⊙,且OQ AB ⊥.

证明 如图12-12,由相交弦定理,有CK KD PK KQ EK KF ?=?=?.

图12-12

再由相交弦定理之逆定理,知E ,C ,F ,D 四点共圆.

设O ⊙的半径为r ,注意到个线定理,则知B 关于O ⊙的幂22BO r BE BF BA BQ =-=?=?,

A 关于O ⊙的幂22AO r AC AD A

B AQ =-=?=?.

于是,2222()()()AO BO AB AQ BA BQ AB AQ BQ AQ BQ AQ BQ AQ BQ -=?-?=-=+-=-. 故由定差幂线定理,知OQ AB ⊥.

性质13 两圆1O ⊙于2O ⊙相交于P 、Q 两点,K 为PQ 上异于端点的一点,直线1O K 交2O ⊙于A ,C ,直线2O K 交1O ⊙于B ,D .若A ,B ,C ,D 四点共圆于O ⊙,则圆心O 在直线PQ 上.

证明 如图12-13,由于PQ ,QC ,BD 分别是1O ⊙与2O ⊙,2O ⊙与O ⊙,1O ⊙与O ⊙的根轴,则知K 为其根心.

图12-13

于是,1OO BD ⊥,2OO AC ⊥,12O O PQ ⊥,即知K 为12OO O △的垂心,因此12OK O O ⊥. 又12PQ O O ⊥,且K 在PQ 上,故点O 在直线PQ 上.

注:此性质即表明:圆心不共线的三圆两两相交,若其中两圆的圆心在其中两条根轴上,则第三圆的圆心也在第三条根轴上.

性质14 两圆1O ⊙与2O ⊙相交于P ,Q ,1O ⊙在P 点处的切线PB 交2O ⊙于B ,2O ⊙在P 点处的切线交1O ⊙于A ,M 为AB 的中点,则APQ BPM ∠=∠.

证明 如图12-14,延长PM 至P ',使M P PM '=,则四边形PAP B '为平行四边形

D

图12-14

由弦切角与所夹弧上圆角的关系.知APQ PBQ ∠=∠,PAQ BPQ ∠=∠,于是P A Q B P Q △∽△,即知

AQP PQB ∠=. 联结AQ 并延长交2O ⊙于C ,联结BQ 并延长交1O ⊙于D ,则由推论3,知AC DB =,PB PC =,PA PD =.

此时,180PBC PCB BPA PBP '∠=∠=∠=?-∠,即知P ',B ,C 三点共线. 同理,P ',A ,D 三点共线.

注意懂啊PDP B '为等腰梯形,则DPP DBP QPC ''∠=∠=∠. 又推论2中的结论,知DPA BPC ∠=∠.

故APQ DPP DPA QPP QPC BPC QPP BPM '''∠=∠-∠=∠=∠-∠-∠=∠.

性质15 两圆1O ⊙与2O ⊙相交于P ,Q 两点,12PO O △的外接圆分别交1O ⊙于R ,交2O ⊙于S ,则点Q 为PRS △的内心或旁心.

证明 如图12-15(1),由1121

2

PRQ PO Q PO O ∠=∠=∠及122PO O PRO ∠=∠,有P R Q P R O ∠=∠,

即知R ,Q ,2O 三点共线.

(1)

(2)

图12-15

对于图12-15(2),112

1

1801802

P R Q P O Q P O O

∠=?-∠=?-∠及122180PO O PRO =?-∠,有

2PRQ PRO ∠=∠,即知R ,Q ,2O 三点共线.

注意懂啊22PO O S =,则在PRS ⊙中,有22PO O S =,即点Q 在PRS ∠的内角(或外角)平分线上.

同理,点Q 在么PSR ∠的内角(或外角)平分线上,

高中数学竞赛解题策略几何分册勃罗卡定理

第32章勃罗卡定理 勃罗卡()Brocard 定理凸四边形ABCD 内接于O e ,延长AB 、DC 交于点E .延长BC 、AD 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥. 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 分别注意到点E 、G 对O e 的幂,O e 的半径为R ,则22EG EN EC ED OE R ?=?=-. 22EG GN BG GD R OG ?=?=-. 以上两式相减得() 22222EG OE R R OG =---, 即22222OE EG R OG -=-. 同理,22222OF FG R OG -=-. 又由上述两式,有2222OE EG OF FG -=-. 于是,由定差幂线定理,知OG EF ⊥. 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O e 的弦的中点,亦即知O ,N ,F 三点共线,从而EN OF ⊥. 同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 于是,知G 为OEF △的垂心,故OG EF ⊥. 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD . 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 即有BME BCE DCF DMF ∠=∠=∠=∠, 从而9090BMO DMO DMF DCF ∠-∠=?-∠=?-∠ 11180909022BOD BOD BOD ??=?-∠-?=?-∠=∠ ??? , 即知点M 在OBD △的外接圆上. 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD e 与OAC e 的公共弦. 由于三圆O e ,OBD e ,OAC e 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 该定理有如下推论 推论1凸四边形ABCD 内接于O e ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,从而OM 与OM '重合,即M 与M '重合. 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,M 为完全四边形ABECFD 的密克尔点的充要条件是GM EF ⊥于M . 推论3凸四边形ABCD 内接于圆O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 与BD 交于点G ,则G 为OEF △的垂心. 事实上,由定理的证法2即得,或者由极点公式:22222EG OE OG R =+-,22222FG OF OG R =+-,22222EF OE OF R =+-两两相减,再由定差幂线定理即证. 下面给出定理及推论的应用实例. 例1(2001年北方数学邀请赛题)设圆内接四边形的两组对边的延长线分别交于点P ,Q ,两对角线交于点R ,则圆心O 恰为PQR △的垂心.

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

最新高中数学竞赛解题策略-几何分册第32章勃罗卡定理

第32章勃罗卡定理 1 勃罗卡()Brocard 定理凸四边形ABCD 内接于O ,延长AB 、DC 交于点E .延长BC 、AD 2 交于点F .AC 与BD 交于点G .联结EF ,则OG EF ⊥. 3 证法1如图321-,在射线EG 上取一点N ,使得N ,D ,C ,G 四点共圆(即取完全四 4 边形ECDGAB 的密克尔点N ),从而B 、G 、N 、A 及E 、D 、N 、B 分别四点共圆. 5 图321 F O L G N E D C B A 6 分别注意到点E 、G 对O 的幂,O 的半径为R ,则22EG EN EC ED OE R ?=?=-. 7 22EG GN BG GD R OG ?=?=-. 8 以上两式相减得()22222EG OE R R OG =---, 9 即22222OE EG R OG -=-. 10 同理,22222OF FG R OG -=-. 11 又由上述两式,有2222OE EG OF FG -=-. 12 于是,由定差幂线定理,知OG EF ⊥. 13 证法2如图321-,注意到完全四边形的性质.在完全四边形ECDGAB 中,其密克尔点N 14 在直线EG 上,且ON EG ⊥,由此知N 为过点G 的O 的弦的中点,亦即知O ,N ,F 三点15 共线,从而EN OF ⊥. 16

同理,在完全四边形FDAGBC 中,其密克尔点L 在直线FG 上,且OL FG ⊥,亦有FL OE ⊥. 17 于是,知G 为OEF △的垂心,故OG EF ⊥. 18 证法3如图321-.注意到完全四边形的性质,在完全四边形ABECFD 中,其密克尔点M 19 在直线EF 上,且OM EF ⊥.联结BM 、CM 、DM 、OB 、OD . 20 此时,由密克尔点的性质,知E 、M 、C 、B 四点共圆,M 、F 、D 、C 四点共圆, 21 即有BME BCE DCF DMF ∠=∠=∠=∠, 22 从而9090BMO DMO DMF DCF ∠-∠=?-∠=?-∠ 23 90(180)90BCD BCD =?-?-∠=∠-? 24 11180909022BOD BOD BOD ?? =?-∠-?=?-∠=∠ ??? , 25 即知点M 在OBD △的外接圆上. 26 同理,知点M 也在OAC △的外接圆上,亦即知OM 为OBD 与OAC 的公共弦. 27 由于三圆O ,OBD ,OAC 两两相交,由根心定理,知其三条公共弦BD ,AC ,OM 28 共点于G .即知O ,G ,M 共线,故OG EF ⊥. 29 该定理有如下推论 30 推论1凸四边形ABCD 内接于O ,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 31 与BD 交于点G ,直线OG 与直线EF 交于点M ,则M 为完全四边形ABECFD 的密克尔点. 32 事实上,若设M '为完全四边形ABECFD 的密克尔点,则M '在EF 上,且OM EF '⊥. 33 由勃罗卡定理,知OG EF ⊥,即OM EF ⊥.而过同一点只能作一条直线与已知直线垂直,34 从而OM 与OM '重合,即M 与M '重合. 35 推论2凸四边形ABCD 内接于圆,延长AB 、DC 交于点E ,延长BC 、AD 交于点F ,AC 36

数学竞赛平面几何重要知识点绝对精华

数学竞赛平面几何重要知识点 梅涅劳斯定理: 设D 、E 、F 分别是ABC ?三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=??EA CE FC BF DB AD 。 斯德瓦特定理:设P 是ABC ?的边BC 边上的任一点,则 BC PC BP AP BC AB PC AC BP ??+?=?+?222 西摩松定理: 设P 是ABC ?外接圆上任一点,过P 向ABC ?的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

6、共角定理:设ABC ?和C B A '''?中有一个角相等或互补(不妨设A=A ')则 C A B A AC AB S S C B A ABC ' '?''?='''?? 与圆有关的重要定理 4.四点共圆的主要判定定理 (1)若∠1=∠2,则A 、B 、C 、D 四点共圆; (2)若∠EAB=∠BCD ,则A 、B 、C 、D 四点共圆; (3)若PA ?PC=PB ?PD ,则A 、B 、C 、D 四点共圆; 三角形的五心 三角形的三条中线共点,三条角平分线共点,三条高线共点,三条中垂线共点。三角形的垂心、重心、外心共线(欧拉线),并且重心把连结垂心和外心的线段分成2∶1的两段。三角形的外心和内心的距离)2(r R R d -=。此公式称为欧拉式,由此还得到r R 2≥。当且仅当△ABC 为正三角形时,d=0,此时R=2r.其中R 和r 分别是三角形外接圆半径和内切圆半径。 与△的一边及另两边的延长线均相切的圆称为△的旁切圆,旁切圆的圆心称为旁心。

重要例题 例1.设M 是任意ABC ?的边BC 上的中点,在AB 、AC 上分别取点E 、F,连EF 与AM 交于N ,求证:)(21AF AC AE AB AN AM +=(1978年辽宁省中学数学竞赛) 例 2. 已知点O 在ABC ?内部,022=++OC OB OA .OCB ABC ??与的面积之比为_________________. 例3. 如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 是该三角形的自相似点,求该三角形三个内角的度数.

历年全国高中数学联赛二试几何题汇总汇总

历年全国高中数学联赛二试几何题汇总 2007 联赛二试 类似九点圆 如图,在锐角?ABC 中,AB

高中数学立体几何解题技巧

高中数学立体几何解题技巧 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2、判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另一

个平面; (3)证明两平面同垂直于一条直线。 3、两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”。 (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 (3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。 (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (5)夹在两个平行平面间的平行线段相等。 (6)经过平面外一点只有一个平面和已知平面平行。 以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。 解答题分步骤解决可多得分 01、合理安排,保持清醒。 数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。 02、通览全卷,摸透题情。 刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

山西省太原市高中数学竞赛解题策略-几何分册第25章九点圆定理汇总

第25章 九点圆定理 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆. 如图25-1,设ABC △三条高AD ,BE ,CF 的垂足分别为D 、E 、F ,三边BC 、CA 、AB 的中点分别为L 、M 、N ,又AH 、BH 、CH 的中点分别为P 、Q 、R ,则D 、E 、F 、L 、M 、N 、P 、O 、R 九点共圆. H O Q L R N M P F E D C B A 图25-1 证法1联结PQ ,QL ,LM ,MP ,则1 2 L M B A Q P ∥∥,即知L M P Q 为平行四边形,又LQ CH AB LM ⊥∥∥,知LMPQ 为矩形.从而L 、M 、P 、Q 四点共圆,且圆心V 为PL 与QM 的交点.同理,MNQR 为矩形,从而L 、M 、N 、P 、Q 、R 六点共圆,且PL ,QM ,NR 均为这个圆的直径. 由90PDL QEM RFN ∠∠=∠=?=,知D ,E ,F 三点也在这个圆上,故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法2如图25-1,由1 1801802NQD BQD BHD ∠=?-∠=?-∠,以及注意到DE 是N 与R 的公共弦, 知 NR DE ⊥,有1 2 N R D D R E C ∠= ∠=∠,亦即180NRD EHD ∠=?-∠,从而知 ()360180NQD NRD BHD EHD ∠+∠=?-∠+∠=?. 因此,N 、Q 、D 、R 四点共圆. 同理,Q 、L 、D 、R 四点共圆.即知N 、Q 、L 、D 、R 五点共圆. 同理,L 、D 、R 、M 、E 以及R 、M 、E 、P 、F ;E 、P 、F 、N 、Q ;F 、N 、Q 、L 、D 分别五点共圆. 故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法3如图25-1.联结PL 、PN 、PQ 、PF 、LQ 、LF 、QN 、FL ,则90PDL ∠=?.注意到PN BH ∥,NL AC ∥,BE AC ⊥,则PN NL ⊥,即90PNL ∠=?. 又PQ AB ∥,QL CH ∥,而CH AB ⊥,则QL PQ ⊥,即90PQL ∠=?. 注意到PF PH =,则PFH PHF CHD ∠∠∠==. 由LF LC =,有CFL HCD ∠∠=. 因90CHD HCD ∠+∠?=,则90PFL PFH CFL ∠∠+∠?==. 同理,PM L ∠、PEL ∠、PRL ∠皆等于90?.即D 、N 、Q 、F 、M 、E 、R 各点皆在以PL 为直径的圆周上. 故D 、E 、F 、L 、M 、N 、P 、Q 、R 九点共圆. 证法4如图25-1,注意到LQHR 为平行四边形,QP BA ∥,RP CA ∥,则么180180QLR QHR A QPR ∠=∠?-∠?∠==-,即知L 、Q 、P 、R 四点共圆. 又180180QDR QDH RDH QHD RHD QHR A QPR ∠∠+∠∠+∠∠?∠?-∠====-=(注意QP BA ∥,

高中数学立体几何知识点与解题方法技巧

立体几何知识点 & 例题讲解 高考时如果图形比较规则且坐标也比较好计算时就用坐标法(向量法)解决,但平时传统方法和向量法都要熟练。并且要多用传统方法,这样才能把自己的空间想象能力培养上去。 一、知识点 <一>常用结论 1.证明直线与直线的平行的思考途径:(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线 平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行. 2.证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面 面平行. 3.证明平面与平面平行的思考途径:(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面 垂直. 4.证明直线与直线的垂直的思考途径:(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的 射影垂直;(4)转化为线与形成射影的斜线垂直. 5.证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直. 6.证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角;(2)转化为线面垂直. 7.夹角公式 :设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉 . 8.异面直线所成角:cos |cos ,|a b θ== 21 |||||| a b a b x ?= ?+ (其中θ(090θ<≤)为异面直线a b , 所成角,,a b 分别表示异面直线a b ,的方向向量) 9.直线AB 与平面所成角:sin |||| AB m arc AB m β?=(m 为平面α的法向量). 10、空间四点A 、B 、C 、P 共面z y x ++=?,且 x + y + z = 1 11.二面角l αβ--的平面角 cos ||||m n arc m n θ?=或cos |||| m n arc m n π?-(m ,n 为平面α,β的法向量). 12.三余弦定理:设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所 成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=. 13.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB AB AB = ?=14.异面直线间的距离: || || CD n d n ?= (12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离). 15.点B 到平面α的距离:|| || AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 16.三个向量和的平方公式:2 2 2 2()222a b c a b c a b b c c a ++=+++?+?+? 222 2||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++?+?+? 17. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有 2222123l l l l =++222123cos cos cos 1θθθ?++=222123sin sin sin 2θθθ?++=. (立体几何中长方体对角线长的公式是其特例).

【数学竞赛各阶段书籍推荐】

金牌学生推荐(可参照选择) 一、第零阶段:知识拓展 《数学选修4-1:几何证明选讲》 《数学选修4-5:不等式选讲》 《数学选修4-6:初等数论初步》 二、全国高中数学联赛各省赛区预赛(即省选初赛) 1、《五年高考三年模拟》B版或《3年高考2年模拟》第二轮复习专用 2、《高中数学联赛备考手册》华东师范大学出版社(推荐指数五颗星) 3、《奥赛经典:超级训练系列》高中数学沈文选主编湖南师范大学出版社(推荐指数五颗星) 4、单樽《解题研究》(推荐指数五颗星) 5、单樽《平面几何中的小花》(个别地区竞赛会考到平几) 6、《平面几何》浙江大学出版社 7、奥林匹克小丛书第二版《不等式的解题方法与技巧》苏勇熊斌著 三、第二阶段:全国高中数学联赛 一试 0、《奥林匹克数学中的真题分析》沈文选湖南师范大学出版社(推荐指数五颗星) 1、《高中数学联赛考前辅导》熊斌冯志刚华东师范大学出版社 2、《数学竞赛培优教程(一试)》浙江大学出版社 3、命题人讲座《数列与数学归纳法》单樽 4、《数列与数学归纳法》(小丛书第二版,冯志刚) 5、《数列与归纳法》浙江大学出版社韦吉珠 6、《解析几何的技巧》单樽(建议买华东师大出版的版本) 7、《概率与期望》单樽 8、《同中学生谈排列组合》苏淳 9、《函数与函数方程》奥林匹克小丛书第二版 10、《三角函数》奥林匹克小丛书第二版 11、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 12、《圆锥曲线的几何性质》 13、《解析几何》浙江大学出版社 二试 平几 1、高中数学竞赛解题策略(几何分册)沈文选(推荐指数五颗星)

2、《奥林匹克数学中的几何问题》沈文选(推荐指数五颗星) 3、奥林匹克小丛书第二版《平面几何》 4、浙大小红皮《平面几何》 5、沈文选《三角形的五心》 6、田廷彦《三角与几何》 7、田廷彦《面积与面积方法》 不等式 8、《初等不等式的证明方法》韩神 9、命题人讲座《代数不等式》计神 10、《重要不等式》中科大出版社 11、奥林匹克小丛书《柯西不等式与平均值不等式》 数论 (9,10,11选一本即可,某位大神说二试改为四道题以来没出过难题) 12、奥林匹克小丛书初中版《整除,同余与不定方程》 13、奥林匹克小丛书《数论》 14、命题人讲座《初等数论》冯志刚 组合 15、奥林匹克小丛书第二版《组合数学》 16、奥林匹克小丛书第二版《组合几何》 17、命题人讲座刘培杰《组合问题》 18、《构造法解题》余红兵 19、《从特殊性看问题》中科大出版社 20、《抽屉原则》常庚哲 四、中国数学奥林匹克(Chinese Mathematical Olympiad)及以上 命题人讲座《圆》田廷彦 《近代欧式几何学》 《近代的三角形的几何学》 《不等式的秘密》范建熊、隋振林 《奥赛经典:奥林匹克数学中的数论问题》沈文选 《奥赛经典:数学奥林匹克高级教程》叶军 《初等数论难题集》 命题人讲座《图论》 奥林匹克小丛书第二版《图论》 《走向IMO》

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

山西太原市高中数学竞赛解题策略-几何分册第1章直角三角形

第一编 点击基本图形 第1章 直角三角形 直角三角形是含有内角为90?的特殊三角形,它是一类基本图形. 直角三角形的有趣性质在处理平面几何问题中常发挥重要作用. 性质1 一个三角形为直角三角形的充要条件是两条边长的平方和等于第三条边长的平方(勾股定理及其逆定理). 性质2 一个三角形为直角三角形的充要条件是一边上的中线长等于该边长的一半. 推论1 直角三角形的外心为斜边的中点. 性质3 ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射影为D 时,下列五个等式之一成立. (1)2AC AD AB =?. (2)2BC BD AB =?. (3)2CD AD DB =?. (4)22 BC AB CD AD =. (5)22AC AB CD DB = . 事实上,由2AC AD AB =?,有 AB AC AC AD = .注意到A ∠公用,知ACB △∽ADC △.而90ADC ∠=?,故90ACB ∠=?.即可得(1)的充分性. 我们又由 22222BC AB BC CD AB AD CD AD CD AD --=?= 22 DB DB CD AD ?=,即2CD AD DB =?. 即可证得(4)的充分性. 其余的证明略. 推论2 非等腰ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射 影为D 时,22AC AD BC DB = . 事实上,由性质3中的(1)、(2)相除或(4)、(5)相除即证.下面,另证充分性.由 222 222 AD AC AD CD DB BC CD DB +== +, 有 2()()0CD AD DB AD DB -?-=. 而AD DB ≠,即有2CD AD DB =?.由此即可证. 性质4 ABC △为直角三角形,且C 为直角顶点的充要条件是当C 在边AB 上的射影为点D ,过CD 中点P 的直线AP (或BP )交BC (或AC )于E ,E 在AB 上的射影为F 时,2EF CE EB =?(或2EF = CE EA ?) . 证明 必要性.如图11-,过D 作DG AE ∥交BC 于G ,则

高中复习数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。 如图所示,若AM平分∠BAC,则AB AC =BM MC 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则BD DC =AB AC 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足BD DC =AB AC ,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则BD DC =AB AC =BE EC 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半(2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

高中立体几何中二面角经典求法

高中立体几何中二面角求法 摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。 (一)、二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角。 α β (二)、二面角的通常求法 1、由定义作出二面角的平面角; * 2、利用三垂线定理(逆定理)作出二面角的平面角; 3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。 4、空间坐标法求二面角的大小 5、平移或延长(展)线(面)法 6、射影公式S 射影=S 斜面cos θ 7、化归为分别垂直于二面角的两个面的两条直线所成的角 1、利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 解: 设平面∩PAB α=OA,平面PAB ∩β=OB 。 ∵PA ⊥α, аα ∴PA ⊥а 同理PB ⊥а ∴а⊥平面PAB 又∵OA 平面PAB ∴а⊥OA 同理а⊥OB. ∴∠AOB 是二面角α-а-β的平面角. 在四边形PAOB 中, ∠AOB=120°,. O A B ) A B l P . B A

∠PAO=∠POB=90°, 所以∠APB=60° 2、 ( 3、 三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 解:在长方体ABCD —A 1B 1C 1D 1中 由三垂线定理可得: CD CE=1, DE= 5 3、找(作)公垂面法 由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。 例5、如图,已知PA 与正方形ABCD 所在平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小。 \ 解: ∵PA ⊥平面ABCD ,∴PA ⊥CD .P 又CD ⊥AD ,故CD ⊥平面PAD . A D 而CD 平面PCD , B C 所以 平面PCD ⊥平面PAD . A B C D A 1 B 1 C 1 ( E O CO DE O C C ,连结,作过点⊥11DE CO ⊥的平面角 为二面角C DE C OC C --∠∴11的正方形 是边长为又2ABCD CO DE CE CD S CDE Rt CDE ?=?=??2 1 21中,在1 1=CC 又5 52tan 1= ∠∴OC C 5 52tan arg 1=∠∴OC C 5 5 2= ∴CO

小学数学竞赛几何题集锦

小学数学竞赛几何图形集锦 第一部分基础题 1、(06年清华附中考题) 如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE=13 AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积. 2、(06年西城实验考题) 四个完全一样的直角三角形和一个小正方形拼成一个大正方(如图)如果小正方形面积是1平方米,大正方形面积是5平方米,那麽直角三角形中,最短的直角边长度是______米. 3、(05年101中学考题) 一块三角形草坪前,工人王师傅正在用剪草机剪草坪.一看到小灵通,王师傅热情地招呼,说:“小灵通,听说你很会动脑筋,我也想问问你,这块草坪我把它分成东、西、南、北四部分(如图).修剪西部、东部、南部各需10分钟,16分钟,20分钟.请你想一想修 4、(05年三帆中学考题) 右图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE 的面积是平方厘米. 5、 (06年北大附中考题)

三角形ABC 中,C 是直角,已知AC =2,CD =2,CB=3,AM=BM ,那么三角形AMN (阴影部分)的面积为多少? 6、(★★)如右图所示,已知三角形ABC 面积为1,延长AB 至D ,使BD=AB ;延长BC 至E ,使CE=2BC ;延长CA 至F ,使AF=3AC , 求三角形DEF 的面积。 7、(★★)右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少? 8、正方形ABFD 的面积为100平方厘米,直角三角形ABC 的面 积,比直角三角形(CDE 的面积大30平方厘米,求DE 的长是多少? 9、(★★★)如下图,已知D 是BC 的中点,E 是CD 的中点,F 是AC 的中点,且ADG ?的 面积比EFG ?的面积大6平方厘米。?的面积是多少平方厘米 ABC ? A B C D E F G 10、(★★)长方形ABCD 的面积为36平方厘米,E 、F 、G 分别为边AB 、BC 、CD 的中点,H 为AD 边上的任一点。求图中阴影部分的面积是多少?

全国高中数学联赛平面几何题

全国高中数学联赛平面几何题 1.(2000) 如图,在锐角三角形ABC 的BC 边上有两点E 、F ,满足∠BAE =∠CAF ,作FM ⊥AB ,FN ⊥AC (M 、N 是垂足),延长AE 交三角形ABC 的外接圆于D .证明:四边形AMDN 与三角形ABC 的面积相等. 2. (2001) 如图,△ABC 中,O 为外心,三条高AD 、BE 、CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N . 求证:(1) OB ⊥DF ,OC ⊥DE ; (2) OH ⊥MN . 3.(2002) 4.(2003) 过圆外一点P 作圆的两条切线和一条割线,切点为A ,B 所作割线交圆于C ,D 两点,C 在P ,D 之间,在弦CD 上取一点Q ,使∠DAQ =∠PBC .求证:∠DBQ =∠PAC . A B C D E F M N

5.(2004)在锐角三角形ABC 中,AB 上的高CE 与AC 上的高BD 相交于点H ,以DE 为直径的圆分别交AB 、AC 于F 、G 两点,FG 与AH 相交于点K 。已知BC=25,BD=20,BE=7,求AK 的长。 6.(2005) 7.(2006)以B 0和B 1为焦点的椭圆与△AB 0B 1的边AB i 交于点 C i (i =0,1). 在AB 0的延长线上任取点P 0,以B 0为圆心,B 0P 0 为半径作圆弧P 0Q 0⌒ 交C 1B 0的延长线于Q 0;以C 1为圆心,C 1Q 0 为半径作圆弧Q 0P 1⌒ 交B 1A 的延长线于点P 1;以B 1为圆心,B 1P 1 为半径作圆弧P 1Q 1⌒ 交B 1C 0的延长线于Q 1;以C 0为圆心,C 0Q 1 为半径作圆弧Q 1P 0'⌒ ,交AB 0的延长线于P 0'. 试证: ⑴ 点P 0'与点P 0重合,且圆弧P 0Q 0⌒与P 0Q 1⌒ 相切于点P 0; ⑵ 四点P 0,Q 0,Q 1,P 1共圆. P B 1 B 0 C 1P 1 P 0 Q 1Q 0 A C 0

相关文档
相关文档 最新文档