文档库 最新最全的文档下载
当前位置:文档库 › 分断能力

分断能力

分断能力
分断能力

分断能力

F=36KA

N=50KA

H=70KA

S=100KA

L=150KA

施耐德分销商提供以上断路器分段能力说明

断路器的额定开断电流、额定断路关合电流

额定短路开断电流是表征断路器开断能力的参数。在额定电压下,断路器能保证可靠开断的最大电流,称为额定开断电流,其单位用断路器触头分离瞬间短路电流周期分量有效值的千安数表示。当断路器在低于其额定电压的电网中工作时,其开断电流可以增大。但受灭弧室机械强度的限制,开断电流有一最大值,称为极限开断电流。

额定短路开断电流是指在GB规定的使用和性能条件下,断路器所能开断的最大短路电流。额定短路开断电流由两个值表征:

——交流分量有效值;

——直流分量百分数。

如果直流分量不超过20%,额定短路开断电流仅由交流分量的有效值表征。

额定短路关合电流:是表征断路器关合电流能力的参数。因为断路器在接通电路时,电路中可能预伏有短路故障,此时断路器将关合很大的短路电流。这样,一方面由于短路电流的电动力减弱了合闸的操作力,另一方面由于触头尚未接触前发生击穿而产生电弧,可能使触头熔焊,从而使断路器造成损伤。断路器能够可靠关合的电流最大峰值,称为额定关合电流。额定关合电流和动稳定电流在数值上是相等的,两者都等于额定开断电流的2.55倍。

具有极间同期性的断路器的额定断路关合电流是与额定电压和额定频率相对应的额定参数。

对于额定频率为50Hz且时间常数表幺值为45ms,额定短路关合电流等于额定短路开断电流交流分量有效值得2.5倍。

对于所有特殊工况的时间常数,额定短路关合电流等于额定短路开断时间交流分量有效值的2.7倍,与断路器的额定频率无关。

电器开关的分断能力

一般分为极限分断能力Icu和运行分断能力Ics(很多微断不分),假如Icu=60KA,那么当线路中发生60KA的故障电流,断路器可以安全切断电路,而不发生触头熔接、爆炸等异常状况。注意做过极限分断的断路器不允许再用(往往失效了),必须更换。而如果Ics=60KA,分断该电流后,断路器允许合闸再使用,但应急后也须更换。现在很多好的断路器可以做到Icu=Ics。当然,对于Icu与Ics,国家有严格的定义与相关的试验,以上只是简单说说。一些大的系统的短路电流往往会很大,现在很多断路器的Icu都可达100KA 以上。断路器的极限短路分断能力、运行短路分断能力和短时耐受电流额定极限短路分断能力(Icu),是指在一定的试验参数(电压、短路电流、功率因数)条件下,经一定的

试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。它的试验程序为0—t(线上)CO(“O”为分断,t为间歇时间,一般为3min,“CO”表示接通后立即分断)。试检后要验证脱扣特性和工频耐压。额定运行短路分断能力(Ics),是指在一定的试验参数(电压、短路电流和功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,还要继续承载其额定电流的分断能力,它的试验程序为O—t (线上)CO—t(线上)CO。短时耐受电流(Icw),是指在一定的电压、短路电流、功率因数下,忍受0.05、0.1、0.25、0.5或1s而断路器不允许脱扣的能力,Icw 是在短延时脱扣时,对断路器的电动稳定性和热稳定性的考核指标,它是针对B类断路器的,通常Icw的最小值是:当In≤2500A时,它为12In或5kA,而In>2500A时,它为30kA(DW45_2000的Icw 为400V、50kA,DW45_3200的Icw为400V、65kA)。运行短路分断能力的试验条件极为苛刻(一次分断、二次通断),由于试后它还要继续承载额定电流(其次数为寿命数的5%),因此它不单要验证脱扣特性、工频耐压,还要验证温升。IEC947_2(以及1997新版IEC60947_2)和我国国家标准GB140482规定,Ics可以是极限短路分断能力Icu数值的25%、50%、75%和100%(B类断路器为50%、75%和100%,B类无25%是鉴于它多数是用于主干线保护之故)。上文提到的选择断路器的一个重要原则是断路器的短路分断能力≥线路的预期短路电流,这个断路器的短路分断能力通常是指它的极限短路分断能力。无论A类或B 类断路器,它们的运行短路分断能力绝大多数是小于它的极限短路分断能力Icu的。A类:DZ20系列Ics=50%~77%Icu,CM1系列Ics=58%~72%Icu,TM30系列Ics=50%~75%Icu,(个别产品Ics=Icu)。B类:DW15系列Ics=60%左右的Icu,(个别的如630AIcs=Icu,但短路分断能力仅400V时30kA),DW45系列Ics=62.5%~80%Icu。不管是A类或B类断路器,只要它的Ics符合IEC947_2(或GB14048.2)标准规定的Icu 百分比值都是合格产品。应提到的是,所有断路器的短路分断能力(无论是Icu还是Ics)都是周期分量有效值。在短路试验中的“C0”的C(close接通)的电流是峰值电流Ich。在试验站进行短路分断试验时,电压、短路电流(有效值)和功率因数(cos)已调整好,它的接通电流也就被确定了。接通电流试验(“C”试验),是以峰值电流来考核触头和其他导电体承受的电动斥力和热稳定性的能力,有什么样的有效值电流(分断电流),在其相应的功率因数下,便有什么样的峰值电流,使用者毋须去考虑峰值电流这个参数。

断路器的分断能力

断路器的分断能力 断路器的分段能力对于断路器来说极其重要,那么什么是分段能力?又如何来选择断路器的分段能力?中国电器交易网将为你一一揭晓。 分断能力是指断路器开关的一种特殊功能。断路器的分断能力是指该断路器安全切断故障电流的能力(往往也是价格的决定因素),与其额定电流无必然联系。一般分为极限分断能力Icu和运行分断能力Ics(很多微断不分),假如Icu=60KA,那么当线路中发生60KA 的故障电流,断路器可以安全切断电路,而不发生触头熔接、爆炸等异常状况。注意做过极限分断的断路器不允许再用(往往失效了),必须更换。而如果Ics=60KA,分断该电流后,断路器允许合闸再使用,但应急后也须更换。现在很多好的断路器可以做到Icu=Ics。当然,对于Icu与Ics,国家有严格的定义与相关的试验,当然以上只是中国电器交易网对于分段能力的简单介绍。 下面进入正题如何选择断路器的分断能力,中国电器交易网经过详细的调查选择断路器的分断能力有两种方法: 一.按线路预期短路电流的计算来选择断路器的分断能力 精确的线路预期短路电流的计算是一项极其繁琐的工作,因此便有一些误差不很大而工程上可以被接受的简捷计算方法: 1.对于10/0.4KV电压等级的变压器,可以考虑高压侧的短路容量为无穷大(10KV侧的短路容量一般为200~400MVA甚至更大,因此按无穷大来考虑,其误差不足10%)。 2.GB50054-95《低压配电设计规范》的2.1.2条规定:“当短路点附近所接电动机的额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响”,若短路电流为30KA,取其1%,应是300A,电动机的总功率约在150KW,且是同时启动使用时此时计入的反馈电流应是6.5∑In。 3.变压器的阻抗电压UK表示变压器副边短接(路),当副边达到其额定电流时,原边电压为其额定电压的百分值。因此当原边电压为额定电压时,副边电流就是它的预期短路电流。 4.变压器的副边额定电流=Se/1.732U式中Se为变压器的容量(KVA),Ue 为副边额定电压(空载电压),在10/0.4KV时Ue=0.4KV因此简单计算变压器的副边额定电流应是:1.44~.50Se。 5.按(3)对Uk的定义,副边的短路电流(三相短路)为I(3)对Uk的定义,副边的短路电流(三相短路)为I(3)=Ie/Uk,此值为交流有效值。 6.在相同的变压器容量下,若是两相之间短路,则I(2)=1.732I(3)/2=0.866I(3)以上计算均是变压器出线端短路时的电流值,这是最严重的短路事故。如果短路点离变压器有一定的距离,考虑到线路阻抗,短路电流将减小。例如SL7系列变压器(配导线为三芯铝线电缆),容量为200KVA,变压器出线端短路时,三相短路电流I(3)为7210A。短路点离变压器的距离为100m时,短路电流I(3)降为4740A;当变压器容量为100KVA时其出线端的短路电流为3616A。离变压器的距离为100m处短路时,短路电流为2440A。远离100m时短路电流分别为0m的65.74%和6 7.47%。所以,用户在设计时,应计算安装处(线路)的额定电流和该处可能出现的最大短路电流。并按以下原则选择断路器:因此,在选择断路器上,不必把余量放得过大,以免造成浪费。 二、断路器的极限短路分断能力和运行短路分断能力 在IEC947-2和GB4048.2中对断路器极限短路分断能力和运行短路分断能

低压断路器的选择(分断能力)

低压断路器的选择:95%的人都不曾了解的东东! 如何正确选择低压断路器?以下五大步骤必不可少: (1)由线路的计算电流来决定断路器的额定电流;(大概有99%的设计者做到了这一条)。 (2)断路器的短路整定电流应躲过线路的正常工作启动电流。(大概有30%的设计者注意到了这一条)。 (3)按线路的最大短路电流来校验低压断路器的分断能力;(大概有10%的设计者注意到了这一条)。 (4)按照线路的最小短路电流来校验断路器动作的灵敏性,即线路最小短路电流应不小于断路器短路整定电流的1.3倍;(大概有5%的设计者注意到了这一条)。 (5)按照线路上的短路冲击电流(即短路全电流最大瞬时值)来校验断路器的额定短路接通能力(最大电流预期峰值),即后者应大于前者。(大概有1%的设计者注意到了这一条)。 “第3~5条只是厂家的事”这也是大部分设计人人的误区。就最常见的DZ20而言,断路器的分断能力一般可分高、中、低(H、M、L)三档,如果设计人选择了错误的档次,就可能造成分断能力不足,而这显然不是厂家的事情,而是必须由设计人运算后才可作出正确选择的。我们不宜把设计责任推到厂家或盘厂身上,呵呵。 开关厂家可以提供额定短路运行(或极限)分断能力值,也许还可以提供额定短路接通能力值,但是它一般不会给你提供具体系统及线路的短路电流值呀——该你算的,还得算,不可偷懒,也无法偷懒啊。 比如1600KV A变压器的低压母线上,短路全电流峰值可达100KA!这不是一般开关所能胜任的,也不是什么开关厂家可以替你分忧解难的。呵呵,万一出了事,设计还是唯一责任。——因为厂家已经提供了几十KA到上百KA的接通能力,可是你当时只是选择了较低接通能力的开关。出事了怎么还可以牵扯到开关厂家呢? 《工业与民用设计手册里》,第二版1995年才出来,第一版是1983年的事了,那时候我还不知道自己将来会搞电气,呵呵![/quote] 呵呵,我好像没说第几版吧;不过,第一版我手头曾经也有(名字似乎是《工厂配电设计手册》),要比第二版薄不少。 这本书确实有一些细节问题尚待研究。

断路器分断能力的选择和使用

断路器分断能力的选择和使用 最近几年与断路器的使用者相互磋商、探讨,并在专业刊物上阅读了一些断路器选用的文章,感到收益很大,但又觉得断路器的设计、制造者与用户之间由于沟通和宣传不够,致使用户在选择低压断路器上还存在一部分偏失。据此,笔者拟再次论述断路器的选择和应用,以期抛砖引玉、去伪存真。 一、线路预期短路电流的计算来选择断路器的分断能力。 精确的线路预期短路电流的计算是一项极其繁琐的工作。因此便有一些误差不很大而工程上可以被接受的简捷计算方法: (1)、对于电压等级的变压器,可以考虑高压侧的短路容量为无穷大(10KV侧的短路容量一般为200~400MVA甚至更大,因此按无穷大来考虑,其误差不足10%)。 (2)、GB50054-95《低压配电设计规范》的 2.1.2条规定: “当短路点附近所接电动机的额定电流之和超过短路电流的1%时,应计入电动机反馈电流的影响”,若短路电流为30KA,取其1%,应是300A,电动机的总功率约在150KW,且是同时启动使用时此时计入的反馈电流应是 6.5∑In。 (3)、变压器的阻抗电压UK表示变压器副边短接(路),当副边达到其额定电流时,原边电压为其额定电压的百分值。因此当原边电压为额定电压时,副边电流就是它的预期短路电流。 (4)、变压器的副边额定电流Ite=Ste/( 1.732*Ue)式中Ste为变压器的容量(KVA),Ue为副边额定电压(空载电压),在时Ue= 0.4KV因此简单计算变压器的副边额定电流应是变压器容量×(

1.44~ 1.50)。 (5)、按 (3)对Uk的定义,副边的短路电流(三相短路)为I (3)对Uk的定义,副边的短路电流(三相短路)为I (3)=Ite/Uk,此值为交流有效值。 (6)、在相同的变压器容量下,若两相间短路,则I (2)= 1.732I (3)/2= 0.866I (3)(7)、以上计算均是变压器出线端短路时的电流值,这是最严重的短路事故。如果短路点离变压器有一定的距离,则需考虑线路阻抗,因此短路电流将减小。 例如SL7系列变压器(配导线为三芯铝线电缆),容量为200KVA,变压器出线端短路时,三相短路电流I (3)为7210A。短路点离变压器的距离为100m时,短路电流I (3)降为4740A;当变压器容量为100KVA时其出线端的短路电流为3616A。离变压器的距离为100m处短路时,短路电流为2440A。远离100m时短路电流分别为0m的 65.74%和 67.47%。所以,用户在设计时,应计算安装处(线路)的额定电流和该处可能出现的最大短路电流。并按以下原则选择断路器:

断路器分断能力相关知识

断路器分断能力相关知识 定义 Icu----极限短路分断能力 Ics----运行短路分断能力 Icw----额定短时耐受电流(Rated short-time withstand current) 极限短路分断能力Icu: 是指在一定的试验参数(电压、短路电流、功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。 试验程序为0—t(线上)CO(“O”为分断,t为间歇时间,一般为3min,“CO”表示接通后立即分断)。试检后要验证脱扣特性和工频耐压。经此通断后,不再继续承载其额定电流的分断能力。 其具体试验是:把线路的电流调整到预期的短路电流值(例如380V,50KA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50KA短路电流,断路器立即开断(OPEN简称O)并熄灭电弧,断路器应完好,且能再合闸。T为间歇时间(休息时间),一般为3min,此时线路处于热备状态,断路器再进行一次接通(CLOSE简称C)和紧接着的开断(O)(接通试验是考核断路器在峰值电流下的电动和热稳定性和动、静触头因弹跳的磨损)。此程序即为CO。断路器能完全分断,熄灭电弧,并无超出规定的损伤,就认定它的极限分断能力试验成功; 注意做过极限分断的断路器不允许再用(往往失效了),必须更换。 运行短路分断能力Ics: 是指在一定的试验参数(电压、短路电流和功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,还要继续承载其额定电流的分断能力(其次数为寿命数的5%),因此它不单要验证脱扣特性、工频耐压,还要验证温升。 试验程序为O—t(线上)CO—t(线上)CO。 C—close O—open 断路器的运行短路分断能力(Ics)的试验程序比Icu的试验程序多了一次CO。经过试验,断路器能完全分断、熄灭电弧,并无超出规定的损伤,就认定它的额定进行短路分断能力试验通过。 IEC947_2(以及1997新版IEC60947_2)和我国国家标准GB140482规定,Ics可以是极限短路分断能力Icu数值的25%、50%、75%和100%(B类断路器为50%、75%和100%,B类无25%是鉴于它多数是用于主干线保护之故)。A类断路器即塑壳式,B类断路器,即万能式或称框架式。

断路器的分断能力

摘要:选择不同类型短路分断能力的断路器来适应不同的线路预期短路电流(当I在相同的情况时)的需要断路器的选用原则是:断路器的短路分断能力≥线路的预期短路电流。 关键词:断路器要点配电线路 1、不同的负载应选用不同类型的断路器 最常见的负载有配电线路、电动机和家用与类似家用(照明、家用电器等)三大类。以此相对应的便有配电保护型、电动机保护型和家用及类似家用保护型的断路器。这三类断路器的保护性质和保护特性是不相同的。对配电型断路器而言,它有A类和B类之分:A类为非选择型,B类为选择型。所谓选择型是指断路器 具有过载长延时、短路短延时和短路瞬时的三段保护特性。万能式(又称框架式)断路器中的DW15系列、DW17(ME)系列、AH系列和DW40、DW45系列中大部分是B型,而DZ5、DZ15、DZ20、TO、TG、CM1、TM30及HSM1等系列和万能式DW15、DW17的某些规格因仅有过载长延时、短路瞬时的二段保护,它们是属于非选择型的A类断路器。选择性保护。 当F点短路时,只有靠近F点的QF2断路器动作,而上方位的QF1断路器不动作,这就是选择性保护(由于QF1不动作,就使未发生故障的QF3、QF4支路保持供电)。 如果QF2和QF1都是A类断路器,则F点发生短路,短路电流值达一定值时,QF1、QF2同时动作,QF1断路器回路及其下的支路全部停电,就不是选择性保护了。 能够实现选择性保护的原因是,QF1为B类断路器,它具有短路短延时性能,当F点短路时,短路电流流过QF2支路,也流过QF1回路,QF2的瞬时动作脱扣器动作(通常它的全分断时间不大于0.02s),因QF1的短延时,QF1在0.02s内不会动作(它的短延时≥0.1s或0.2、0.3、0.4s)。在QF2动作切断故障线路时,整个系统就恢复了正常。 可见,如果要达到选择性保护的要求,上一级的断路器应选用具有三段保护的B型断路器。对于直接保护电动机的电动机保护型断路器,它只要有过载长延时和短路瞬时的二段保护性能就够了,也就是说它可选择A类断路器(包括塑壳式和万能式),DZ5、DZ15、TO、TG、GM1、TM30、HSM1及DW15等系列除有配电保护的性能外,它们的630A及以下规格均有保护电动机的功能。 家用和类似场所的保护(过去又称它为导线保护或照明保护),也是一种小型的A类断路器,其典型产品有C45N、PX200C、HSM8等等。 配电(线路)、电动机和家用等的过电流保护断路器,因保护对象(如变压器、电线电缆、电动机和家用电器等)的承受过载电流的能力(包括电动机的起动电流和起动时间等)有差异,因此,选用的断路器的保护特性也是不同的。 (1)表1为配电保护型断路器的反时限断开特性注:可返回特性:考虑到配电线路内有电动机群,由于电动机仅是其负载的一部分,且一群电动机不会同时起动,故确定为3In(In为断路器的额定电流,In≥IL,IL 为线路额定电流),对断路器进行试验,当试验电流为3In时保持5s(In≤40A时),8s(40A<In<250A时),12s(In>250A时),然后将电流返回至In,断路器应不动作,这就是返回特性。(2)表2为电动机保护型断路器的反时限断开特性注:按电动机负载性质可以选2、4、8、12min之内动作,一般的选2~4min。7.2In 也是一种可返回特性,它必须躲过电动机的起动电流(5~7倍In),Tp为延时时间,按电动机的负载性质可选动作时间Tp为2s<Tp≤10s、4s<Tp≤10s、6s<Tp≤20s和9s<Tp≤30s,一般选用2s<Tp≤10s或4s <Tp≤10s。 (3)配电保护型的瞬动整定电流为10In(误差为±20%),In为400A及以上规格,可以在5In和10In中任选一种(由用户提出,制造厂整定);电动机保护型的瞬动整定电流为12In,一般设计时In可以等于电动机的额定电流。 (4)表3为家用和类似场所用断路器的过载脱扣特性注:B、C、D型是瞬时脱扣器的型式:B型脱扣电流>3~5In,C型脱扣电流>5~10In,D型脱扣电流>10~50In。用户可根据保护对象的需要,任选它们中的一种。

关于低压断路器分断能力几个概念

关于低压断路器分断能力的几个概念 极限短路分断能力(Icu),是指在一定的试验参数(电压、短路电流、功率因数) 条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。它的试验程序为0—t(线上)C0 (“0”为分断,t 为间歇时间,一般为3min,“C0”表示接通后立即分断)。试检后要验证脱扣特性和工频耐压。 运行短路分断能力(Ics),是指在一定的试验参数(电压、短路电流和功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,还要继续承载其额定电流的分断能力,它的试验程序为0—t(线上)C0—t (线上) C0。 短时耐受电流(Icw),是指在一定的电压、短路电流、功率因数下,忍受0.05、0.1、0.25、0.5或1s而断路器不允许脱扣的能力,Icw 是在短延时脱扣时,对断路器的电动稳定性和热稳定性的考核指标 选择断路器的一个重要原则是断路器的短路分断能力≥线路的预期短路电流,这个断路器的短路分断能力通常是指它的极限短路分断能力。 低压断路器的电流参数 摘要:本文分析低压断路器的各个电流参数的概念,提出选择低压断路器时就标定的电流参数和标定方法。 断路器是配电系统中主要的保护电器之一,也是功能最完善的保护电器,其主要作用是作为短路、过载、接地故障、失压以及欠电压保护。根据不同需要,断路器可配备不同的继电器或脱扣器。脱扣器是断路器总体的一个组成部分,而继电器,则通过与断路器操作机构相连的欠电压脱扣器、分励脱器来控制断路器。低压断路器一般由脱扣器来完成其保护功能。 标明低压断路器电流特性的参数很多,容易混淆不清。在设计文件中,常常在标明断路器的电流值时,不说明电流值的意义,给定货造成混乱。要完整准确的选择断路器,清楚地标定断路器的各个电流参数是必要的。 1 断路器的额定电流参数 国标《低压开关设备和控制设备低压断路器》GBl4048.2—94(等效采用IEC94 7—2)对断路器的额定电流使用两个概念,断路器的额定电流1n和断路器壳架等级额定电流1nm,并给出如下定义: ——断路器的额定电流1n,是指脱扣器能长期通过的电流,也就是脱扣器额定电流。对带可调式脱扣器的断路器则为脱扣器可长期通过的最大电流。

断路器的额定分断能力分为额定极限短路分断能力和额定运行短路分断能力两种

断路器的额定分断能力分为额定极限短路分断能力和额定运行短路分断能力两种。国标《低压开关设备和控制设备低压断路器》(GB14048.2—94)对断路器额定极限短路分断能力和额定运行短路分断能力作了如下的解释: (1)断路器的额定极限短路分断能力(Icu):按规定的实验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力; (2)断路器的额定运行短路分断能力(Ics):按规定的实验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力; (3)额定极限短路分断能力(Icn)的试验程序为O—t—CO。 其具体试验是:把线路的电流调整到预期的短路电流值(例如380V ,50kA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50kA 短路电流,断路器立即开断(open简称O),断路器应完好,且能再合闸。t为间歇时间,一般为3min,此时线路仍处于热备状态,断路器再进行一次接通(close 简称C)和紧接着的开断(O),(接通试验是考核断路器在峰值电流下的电动和热稳定性)。此程序即为CO。断路器能完全分断,则其极限短路分断能力合格。 (4)断路器的额定运行短路分断能力(Icn)的试验程序为O—t—CO—t—CO。它比Icn的试验程序多了一次CO,经过试验,断路器能完全分断、熄灭电弧,就认定它的额定运行短路分断能力合格。因此,可以看出,额定极限短路分断能力Icn指的是低压断路器在分断了断路器出线端最大三相短路电流后还可再正常运行并再分断这一短路电流一次,至于以后是否能正常接通及分断,断路器不予以保证;而额定运行短路分断能力Ics指的是断路器在其出线端最大三相短路电流发生时可多次正常分断。 IEC947—2《低压开关设备和控制设备低压断路器》标准规定:A类断路器(指仅有过载长延时、短路瞬动的断路器)的Ics可以是Ics的25%、50%、75%和100%。B类断路器(有过载长延时、短路短延时、短路瞬动的三段保护的断路器)的Ics可以是Ics的50%、75%和100%。因此可以看出,额定运行短路分断能力是一种比额定极限短路分断电流小的分断电流值,Ics是Icu的一个百分数。 一般来说,具有过载长延时、短路短延时和短路瞬动三段保护功能的断路器,能实现选择性保护,大多数主干线(包括变压器的出线端)都采用它作主保护

额定极限短路分断能力和额定运行短路分断能力的区别

额定极限短路分断能力和额定运行短路分断能力的区别 断路器的额定分断能力分为额定极限短路分断能力和额定运行短路分断能力两种。国标《低压开关设备和控制设备 低压断路器》(GB14048.2—94)对断路器额定极限短路分断能力和额定运行短路分断能力作了如下的解释: (1)断路器的额定极限短路分断能力(Icn):按规定的实验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力; (2)断路器的额定运行短路分断能力(Icn):按规定的实验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力; (3)额定极限短路分断能力(Icn)的试验程序为O—t—CO。 其具体试验是:把线路的电流调整到预期的短路电流值(例如380V ,50kA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50kA短路电流,断路器立即开断(open简称O),断路器应完好,且能再合闸。t为间歇时间,一般为3min,此时线路仍处于热备状态,断路器再进行一次接通(close简称C)和紧接着的开断(O),(接通试验是考核断路器在峰值电流下的电动和热稳定性)。此程序即为CO。断路器能完全分断,则其极限短路分断能力合格。 (4)断路器的额定运行短路分断能力(Icn)的试验程序为O—t—CO—t—CO。它比Icn的试验程序多了一次CO,经过试验,断路器能完全分断、熄灭电弧,就认定它的额定运行短路分断能力合格。 因此,可以看出,额定极限短路分断能力Icn指的是低压断路器在分断了断路器出线端最大三相短路电流后还可再正常运行并再分断这一短路电流一次,至于以后是否能正常接通及分断,断路器不予以保证;而额定运行短路分断能力Ics指的是断路器在其出线端最大三相短路电流发生时可多次正常分断。 IEC947—2《低压开关设备和控制设备 低压断路器》标准规定:A类断路器(指仅有过载长延时、短路瞬动的断路器)的Ics可以是Icu的25%、50%、75%和100%。B类断路器(有过载长延时、短路短延时、短路瞬动的三段保护的断路器)的Icu可以是Ics的50%、75%和100%。因此可以看出,额定运行短路分断能力是一种比额定极限短路分断电流小的分断电流值,Ics是Icu的一个百分数。 一般来说,具有过载长延时、短路短延时和短路瞬动三段保护功能的断路器,能实现选择性保护,大多数主干线(包括变压器的出线端)都采用它作主保护开关。不具备短路短延时功能的断路器(仅有过载长延时和短路瞬动二段保护),不能作选择性保护,它们只能使用于支路。IEC92《船舶电气》指出:具有三段保护的断路器,偏重于它的运行短路分断能力值,而使用于分支线路的断路器,应确保它有足够的极限短路分断能力值。 无论是哪种断路器,虽然都具备Icu和Ics这两个重要的技术指标。但是,作为支线上使用的断路器,可以仅满足额定极限短路分断能力即可。现在出现的较普遍的偏颇是宁取大,不取正合适,认为取大保险。但取得过大,会造成不必要的浪费(同类型断路器,其H型—高分断型,比S型—普通型的价格要贵1.3倍~1.8倍)。因此支线上的断路器没有必要一味追求它的运行短路分断能力指标。而对于干线上使用的断路器,不仅要满足额定极限短路分断能力的要求,同时也应该满足额定运行短路分断能力的要求,如果仅以额定极限短路分断能力Icu来衡量其分断能力合格与否,将会给用户带来不安全的隐患。

额定极限短路分断能力Icu和额定运行短路分断能力Ics。

断路器的额定极限和额定运行短路分 断能力分析 用户在设计、选择低压断路器的短路分断能力时,应遵循的基本原则是:断路器的额定短路分断能力3线路可能出现(预期)的短路电流。 国际电工委员会IEC947 - 2和我国等效采用IEC的GB14048.2《低压开关设备和控制设备低压断路器》标准规定的 短路分断能力有两种;额定极限短路分断能力Icu和额定运行短路 分断能力Ics。 1. Icu和Ics的定义 分别定义如下:Icu为按规定的试验程序所规定条件,不包括断路器继续承载其额定电流能力的分断能力;Ics为按规定的试验 程序所规定的条件,包括断路器继续承载其额定电流能力的分断能 力。 Icu的试验程序为o t co;Ics的试验程序为o t co t co。Ics比Icu 的试验程序多了一次co。经过程序试验,能完全分断,熄灭电弧, 并无超出规定的损伤,被认为Icu试验通过,而Ics的合格标准, 除与Icu相同外,还要增加温升和5%寿命次数的接通、断开额定 电压、额定电流的试验,Ics试验条件更苛严。 2. Icu和Ics的关系 Icu和Ics都是断路器的一项重要技术性能指标。从实际情况出发,根据线路保护的需要和断路器的不同结构,IEC947 - 2和 GB14048.2确定的Ics有4个或3个值,分别是25%、50%、75% 和100%Icu(对A类断路器,即塑料外壳式),或50%、75%和 100%Icu(对B类断路器,即万能式或称框架式)。断路器制造厂 确定其产品的Ics值,凡符合上面标准规定的Icu百分值都是有效 的、合格的产品。 万能式断路器的绝大部分(不是所有规格)都是有过载长延时、短路短延时和短路瞬动的三段保护功能,能实现选择性保护。因此 大多数主干线(包括变压器的出线端)都采用它作主(保护)开关, 而塑壳式断路器一般不具备短路短延时功能(仅有过载长延时和短 路瞬动的二段保护),不能作选择性保护,它们只能使用于支路。 由于使用(适用)的情况不同,IEC92《船舶电气》标准建议:具有三段保护的万能式断路器,偏重于它的Ics,而大量使用于分 支线路的塑壳式断路器,应确保它有足够的Icu。笔者对此的理解 是:主干线切除故障电流后更换新断路器要慎重,主干线停电时间 较久要影响一大片用户的供电,所以发生短路故障时要求有2个 co,并且还要求继续承载一段时间的额定电流;而使用于支路的仅 有二段保护的断路器,在经过极限短路电流的分断和再次的接通分 断后,已完成其使命,它不再承载额定电流,可以更换新的(更换 时停电的区域仅限于支路,因此影响较小),而它的Ics就可小于极

断路器分断能力

分断能力 严格地说是短路电流的接通与分断能力的试验。断路器的额定短路分断能力是断路器主要技术指标和其代表的技术水平(含量)。 断路器的额定短路分断能力分极限短路分断能力(Icu)和运行短路分断能力(Ics)。 1、额定极限短路分断能力Icu:是指规定的条件下(电压、电流、功率因数等)的短路分断能力。试验程序为:O(分断)—t(冷却停顿时间不短于3分钟)——CO(接通分断)。按规定程序动作之后,不考虑断路器继续承载它的额定电流。分断试验结束后,还应验证2倍绝缘电压条件下的工频耐压和过载脱扣性能。 2、额定运行短路分断能力Ics:是指规定的条件下按O—t—CO—t—CO程序试验,试验后须考虑断路器继续承载它的额定电流。分断试验结束后,除验证上述的工频耐压和过载脱扣性能外还应验证触头温升。 3、短时耐受电流Icw:按规定的试验程序所规定的条件,要求断路器能够无损地承载的短时耐受电流值。在一定的电压、短路电流、功率因数下,忍受0.05、0.1、0.25、0.5、1或3s而断路器无任何损伤的能力,它是对断路器的电动稳定性和热稳定性的考核指标。 由于Ics试验要比Icu严酷,为此标准规定Ics的值可以为Icu的25%、50%、75%、100%(但B类断路器具有“三段”保护功能的无25%规格)。目前塑壳式或万能式断路器大致采用75%Icu,少数技术含量高的产品Ics=Icu,(如本厂生产的CW2系列以及CM2、CM2Z

和CM1L中部分规格)。 根据断路器的额定短路分断能力应大于或等于线路的预期短路电流原则,在选择产品时应该根据Icu还是Ics目前有分岐,有的认为选Ics保险系数大,应以Ics为准。但为了保证线路在发生短路时既能可靠分断又比较经济合理应选择以Icu为准。 通常说的短路分断能力是指短路电流的对称分量有效值,而短路接通能力是指短路电流峰值。峰值电流等于电流的有效值乘以峰值系数2Kch,其中Kch为冲击系数。另外峰值电流与相应的功率因数cos?有关。根据国标GB/T14048.1提供的试验电流与cos?、时间常数和峰值系数η(2Kch)的关系见下表。 试验电流与cos?、时间常数,峰值系数的关系 试验电流I功率因数时间常数T峰值系数η(kA)cos?(ms)2Kch I≤1.50.955 1.41 1.5

断路器开断能力计算

渠县新临江煤矿 (水井湾矿井) 三相短路电流与断路器开断能力计算

三相短路电流与断路器开断能力计算 1、10KV 一回、二回电源进线三相短路电流与高压开关柜断路器开断能力校验 矿井10kV 变电所两回电源分别取自大竹县木头变电站的不同母线段,由于缺乏变电站的相关短路资料,设计按变电站馈出柜中断路器额定开断电流(25kA )和线路阻抗较小的电源线路(LGJ-3×70/2km )进行短路电流计算: 1)地面变电所10kV 侧系统短路电流计算 选取基准容量,一般取S d =100MVA,由U d =U c ,得 U c1=10.5kV,U c2=0.4kV,得 kV MVA U I c d 5.1031003S 1 d 1?= = =5.50kA 2)计算各元件的电抗标幺值 (1)电力系统的电抗标幺值:kA kV MVA S X oc s 255.103100S d *??== =0.22 (2)10kV 架空线路电抗标幺值: 2 d 0* 5.10100235.0S )(kV MVA km U l X X c WL ??===0.63 (3)总电抗标幺值和短路电流及短路容量 ①总电抗标幺值:* **1 WL s X X X +=∑=0.22+0.63=0.85 ②三相短路电流周期分量有效值85 .050.5* 111 kA X I I d k = ∑==6.5kA ③各三相短路电流 10kV 母线侧短路电流为:1"k I I I =6.5kA

10kV 母线侧短路稳态电流为:"51.1I I sh ==1.51×6.5kA=9.82kA 10kV 母线侧短路冲击电流为:"55.2I i sh ==2.55×6.5kA=16.58kA 3)三相短路容量 10kV 母线侧短路容量为:85 .0100* )3(1 1 MVA X S S d k = ∑= =117.65MVA 结论:地面变电所高压配电窒采用HXGN-12型高压开关柜,主接线采用单母线分段。高压开关柜额定电压12kV ,额定电流630A ,额定短路开断电流31.5kA ,额定动稳定电流50kA ,额定热稳定电流(4s )16kA 。采用开关柜及真空断路器允许通过的最大电流峰值大于三相短路电流冲击值,开关设备分断能力、动热稳定性及保护装置可靠,系统符合要求。 表10-2 10kV 变电所主要设备选择及校验结果表 注:表中分子为计算值,分母为设备参数。 2、地面低压供电系统三相短路电流与高压开关柜断路器开断能力校验 10kV 母线侧短路容量为117.65MVA ,取较大的短路容量折算到0.4kV 母线侧电抗为:400×400/1000/117.65=1.36

断路器的分段能力

断路器的分段能力: 极限分段能力(icu):额定极限短路分断能力指的是低压断路器在分断了断路器出线端最大三相短路电流后还可再正常运行并再分断这一短路电流一次,至于以后是否能正常接通及分断,断路器不予以保证。 运行分段能力(ics):而额定运行短路分断能力 Ics指的是断路器在其出线端最大三相短路电流发生时可多次正常分断。 无论是哪种断路器,虽然都具备 Icu和Ics这两个重要的技术指标。但是,作为支线上使用的断路器,可以仅满足额定极限短路分断能力即可。现在出现的较普遍的偏颇是宁取大,不取正合适,认为取大保险。但取得过大,会造成不必要的浪费(同类型断路器,其H型—高分断型,比S型—普通型的价格贵1.3倍~1.8倍)。因此支线上的断路器没有必要一味追求它的运行短路分断能力指标。而对于干线上使用的断路器,不仅要满足额定极限短路分断能力的要求,同时也应该满足额定运行短路分断能力的要求,如果仅以额定极限短路分断能力Icu来衡量其分断能力合格与否,将会给用户带来不安全的隐患。 IEC947—2《低压开关设备和控制设备低压断路器》标准规定:A类断路器(指仅有过载长 延时、短路瞬动的断路器)的Ics可以是Icu的25%、50%、75%和100%。B类断路器(有过载长延时、短路短延时、短路瞬动的三段保护的断路器)的Ics可以是Icu的50%、75%和100% 。因此可以看出,额定运行短路分断能力是一种比额定极限短路分断电流小的分断电流 值,Ics是Icu的一个百分数。 断路器的1P,2P的意思:1. 1P表示直控制火线的输出。就是我们常用的空气开关。 2. 2P表示同时可以控制火线和零线的。但不是漏电保护器。 漏电保护器要控制底线的。 2.3P是指三相电的,可控制三相电的3根火线。 4. 4P是指可以控三根火线和1根零线。1P、2P、3P、4P指断路器的极数,电相序的排序是A、B、C、N。ABC指三相电的火线,N指三相四线的零线。1P断路器可接任意一相火线,2P断路器可接任意一相火线和一零线, 3P断路器接三相火线,但前后相序要正确,即ACB。如果你负载的设备额定电压是220V时,就可以用1P或2P的断路器,如果是380V,就需要3P或4P了,对负载设备不需要零的就只选3P就可以了,如电动机、风机、水泵等只用3P断路器;如是380V的开水器、热水器之类的设备,就需要4P了,而且还要带漏电保护功能的断路器,这是为防止漏电事故,保障人身安全是必须的要用的。 接线时需要注意的是:如果在同一个楼层里面,需要引出的1P及2P断路器较多的话,注意保持A、B、C相电的平衡,从总开关所引出的断路器ABC相要均衡引出,否则就会使总断路器使用寿命下降。

短路分断能力参考资料

一、极限短路分断能力(Icu),是指在一定的试验参数(电压、短路电流、功率因数) 条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。它的试验程序为0—t(线上)C0 (“0”为分断,t 为间歇时间,一般为3min,“C0”表示接通后立即分断)。试检后要验证脱扣特性和工频耐压。 运行短路分断能力(Ics),是指在一定的试验参数(电压、短路电流和功率因数) 条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,还要继续承载其额定电流的分断能力,它的试验程序为0—t(线上)C0—t (线上)C0。短时耐受电流(Icw),是指在一定的电压、短路电流、功率因数下,忍受0.05、0. 1、0.25、0.5或1s而断路器不允许脱扣的能力,Icw 是在短延时脱扣时,对断路器的电动稳定性和热稳定性的考核指标 选择断路器的一个重要原则是断路器的短路分断能力≥线路的预期短路电流,这个断路器的短路分断能力通常是指它的极限短路分断能力。低压断路器的电流参数摘要:本文分析低压断路器的各个电流参数的概念,提出选择低压断路器时就标定的电流参数和标定方法。 断路器是配电系统中主要的保护电器之一,也是功能最完善的保护电器,其主要作用是作为短路、过载、接地故障、失压以及欠电压保护。根据不同需要,断路器可配备不同的继电器或脱扣器。脱扣器是断路器总体的一个组成部分,而继电器,则通过与断路器操作机构相连的欠电压脱扣器、分励脱器来控制断路器。低压断路器一般由脱扣器来完成其保护功能。 标明低压断路器电流特性的参数很多,容易混淆不清。在设计文件中,常常在标明断路器的电流值时,不说明电流值的意义,给定货造成混乱。要完整准确的选择断路器,清楚地标定断路器的各个电流参数是必要的。 1 断路器的额定电流参数 国标《低压开关设备和控制设备低压断路器》GBl4048.2—94(等效采用IEC947—2)对断路器的额定电流使用两个概念,断路器的额定电流1n和断路器壳架等级额定电流1nm,并给出如下定义: ——断路器的额定电流1n,是指脱扣器能长期通过的电流,也就是脱扣器额定电流。对带可调式脱扣器的断路器则为脱扣器可长期通过的最大电流。 ——断路器壳架等级额定电流lnm,用基本几何尺寸相同和结构相似的框架或塑料外壳中所装的最大脱扣器额定电流表示。 国标GBl4048.2—94中对断路器额定电流的定义与我们通常所说的概念有些不同。当我们提及“断路器额定电流”这一概念时,通常是指“断路器壳架等级额定电流”而不是“脱扣器额定电流”。例如当我们选择一只DZ20Y—100/3300—80A型断路器时,通常我们简单地说其额定电流为100A,脱扣器的额定电流为80A。多数低压断路器供应商所提供的产品资料中,也一般不提“断路器壳架等级额定电流”这一复杂的说法,而只给出“断路器额定电流”这一参数,其实就

断路器极限短路分断能力说明

断路器的极限短路分断能力和运行短路分断能力 国际电工委员会的IEC947-2和我国等效采用IEC的GB4048.2《低压开关设备和控制设备 低压断路器》标准,对断路器极限短路分断能力和运行短路分断能力作了如下的定义: 1、断路器的额定极限短路分断能力(Icu):按规定的试验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力; 2、断路器的额定运行短路分断能力(Ics):按规定的试验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力。 3、极限短路分断能力Icu的试验程序为otco。 其具体试验是:把线路的电流调整到预期的短路电流值(例如380V,50KA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50KA短路电流,断路器立即开断(OPEN简称O)并熄灭电弧,断路器应完好,且能再合闸。t为间歇时间(休息时间),一般为3min,此时线路处于热备状态,断路器再进行一次接通(CLOSE简称C)和紧接着的开断(O)(接通试验是考核断路器在峰值电流下的电动和热稳定性和动、静触头因弹跳的磨损)。此程序即为CO。断路器能完全分断,熄灭电弧,并无超妯规定的损伤,就认定它的极限分断能力试验成功; 4、断路器的运行短路分断能力(Icu)的试验程序为otco t co,它比Icu的试验程序多了一次co。经过试验,断路器能完全分断、熄灭电弧,并无超出规定的损伤,就认定它的额定进行短路分断能力试验通过。 Icu和Ics短路分断试验后,还要进行耐压、保护特性复校等试验。由于运行短路分断后,还要承载额定电流,所以Ics短路试验后还需增加一项温升的复测试验。 5、Icu和Ics短路或实际考核的条件不同,后者比前者更严格、更困难,因此IEC947-2和GB14048.2确定Icu有四个或三个值,分别是25%、50%、75%和100%Icu(对A类断路器即塑壳式)或50%、75%、100%Icu(对B类断路器,即万能式或称框架式)。 断路器的制造厂所确定的Ics值,凡符合上述标准规定的Icu百分值都是有效的、合格的产品。万能式(框架式)断路器,绝大部分(不是所有规格)都具有过载长延时、短路短延时和短路瞬动的三段保护功能,能实现选择性保护,因此大多数主干线(包括变压器的出线端)都采用它作主(保护)开关,而塑壳式断路器一般不具备短路短延时功能(仅有过载长延时和短路瞬动二段保护),不能作选择性保护,它们只能使用于支路。 由于使用(适用)的情况不同,IEC92《船舶电气》建议:具有三段保护的万能式断路器,偏重于它的运行短路分断能力值,而大量使用于分支线塑壳断路器确保它有足够的极限短路能力值。我们对此的理解是:主干线切除故障电流后更换断路器要慎重,主干线停电要影响一大片用户,所以发生短路故障时要求两个CO,而且要求继续承载一段时间的额定电流,而在支路,经过极限短路电流的分断和再次的合、分后,已完成其使命,它不再承载额定电流,可以更换新的(停电的影响较小)。但是,无论是万能式或塑壳式断路器,都有必须具备Icu和Ics这两面三刀个重要的技术指标。 只有Ics值在两类断路器上表现略有不同,塑壳式的最小允许Ics可以是25%Icu,万能式最小允许Ics是50%的Ics=Icu的断路器是很少的,即使万能式也少有Ics=100%[国外有一种采用旋转双分断(点)技术的塑壳式断路器,它的限流性能极好,分断能力的裕度很大,可做到Ics=Icu,但价格很高]。我国的DW45智能型万能式断路器的Ics为62.5%~65%Icu,国际上,ABB公司的F系列,施耐德的M系列也不过是70%左右,而塑壳式断路器,国内各种新型号,Ics大抵在50%~75%Icu之间。有些断路器应用的设计人员,按其所计算的线路预期短路电流选择断路器时,以断路器的额定运行短

断路器分断能力

1 分断能力 分断能力是指断路器开关的一种特殊功能,是指该断路器安全切断故障电流的能力(往往也是价格的决定因素)。 断路器的额定分断能力分为额定极限短路分断能力(Icu)和额定运行短路分断能力(Ics)两种。国标《低压开关设备和控制设备低压断路器》(GB14048.2—94)对断路器额定极限短路分断能力和额定运行短路分断能力作了如下的解释: 断路器的额定极限短路分断能力(Icu):按规定的试验程序所规定的条件,不包括断路器继续承载其额定电流能力的分断能力。 极限短路分断能力Icu的试验程序为o-t-co,具体试验是:把线路的电流调整到预期的短路电流值(例如380V,50KA),而试验按钮未合,被试断路器处于合闸位置,按下试验按钮,断路器通过50KA短路电流,断路器立即开断(OPEN简称O)并熄灭电弧,断路器应完好,且能再合闸。t为间歇时间(休息时间),一般为3min,此时线路处于热备状态,断路器再进行一次接通(CLOSE简称C)和紧接着的开断(O)(接通试验是考核断路器在峰值电流下的电动和热稳定性和动、静触头因弹跳的磨损)。此程序即为CO。断路器能完全分断,熄灭电弧,并无超出规定的损伤,就认定它的极限分断能力试验成功。 断路器的额定运行短路分断能力(Ics):按规定的试验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力。 断路器的运行短路分断能力(Ics)的试验程序为o-t-co-t-co,它比Icu的试验程序多了一次co。经过试验,断路器能完全分断、熄灭电弧,并无超出规定的损伤,就认定它的额定进行短路分断能力试验通过。 好吧,我承认,编写国标的人很有内涵,上面的几段话我不太能看懂,咱们来一个通俗点的说法:假如断路器Icu=50KA,那么当线路中发生50KA的故障电流,断路器可以安全切断电路,而不发生触头熔接、爆炸等异常状况,至于以后是否能正常分断,断路器不予以保证。所以,做过极限分断的断路器不允许再用(往往失效了),必须更换。而如果断路器Ics=60KA,分断该电流后,断路器允许合闸再使用。 Icu和Ics短路分断试验后,还要进行耐压、保护特性复校等试验。由于运行短路分断后,还要承载额定电流,所以Ics短路试验后还需增加一项温升的复测试验。Icu和Ics

断路器的额定极限和额定运行短路分断能力

一、断路器的额定极限和额定运行短路分断能力 用户在设计、选择低压断路器的短路分断能力时,应遵循的基本原则是:断路器的额定短路分断能力3线路可能出现(预期)的短路电流。 国际电工委员会IEC947 - 2和我国等效采用IEC的GB14048.2《低压开关设备和控制设备低压断路器》标准规定的短路分断能力有两种;额定极限短路分断能力Icu和额定运行短路分断能力Ics。 1. Icu和Ics的定义 分别定义如下:Icu为按规定的试验程序所规定条件,不包括断路器继续承载其额定电流能力的分断能力;Ics为按规定的试验程序所规定的条件,包括断路器继续承载其额定电流能力的分断能力。 Icu 的试验程序为o t co;Ics的试验程序为o t co t co。Ics比Icu的试验程序多了一次co。经过程序试验,能完全分断,熄灭电弧,并无超出规定的损伤,被认为Icu试验通过,而Ics的合格标准,除与Icu相同外,还要增加温升和5%寿命次数的接通、断开额定电压、额定电流的试验,Ics试验条件更苛严。 2. Icu和Ics的关系 Icu和Ics都是断路器的一项重要技术性能指标。从实际情况出发,根据线路保护的需要和断路器的不同结构,IEC947 - 2和GB14048.2确定的Ics有4个或3个值,分别是25%、50%、75%和100%Icu(对A类断路器,即塑料外壳式),或50%、75%和 100%Icu(对B类断路器,即万能式或称框架式)。断路器制造厂确定其产品的Ics值,凡符合上面标准规定的Icu百分值都是有效的、合格的产品。 万能式断路器的绝大部分(不是所有规格)都是有过载长延时、短路短延时和短路瞬动的三段保护功能,能实现选择性保护。因此大多数主干线(包括变压器的出线端)都采用它作主(保护)开关,而塑壳式断路器一般不具备短路短延时功能(仅有过载长延时和短路瞬动的二段保护),不能作选择性保护,它们只能使用于支路。 由于使用(适用)的情况不同,IEC92《船舶电气》标准建议:具有三段保护的万能式断路器,偏重于它的Ics,而大量使用于分支线路的塑壳式断路器,应确保它有足够的Icu。笔者对此的理解是:主干线切除故障电流后更换新断路器要慎重,主干线停电时间较久要影响一大片用户的供电,所以发生短路故障时要求有2个co,并且还要求继续承载一段时间的额定电流;而使用于支路的仅有二段保护的断路器,在经过极限短路电流的分断和再次的接通分断后,已完成其使命,它不再承载额定电流,可以更换新的(更换时停电的区域仅限于支路,因此影响较小),而它的Ics就可小于极限短路电流。 Ics在两类断路器上规定值也有所不同,塑壳式最小允许的Ics是25%Icu,而万能式的Ics最小是50%Icu。Ics = Icu 的断路器是很少的,即使是万能式,也很少有Ics = 100%Icu [有一种采用旋转双分断(点)技术的塑壳式断路器,它的限流性能极好,短路分断能力的裕度很大,可以做到Ics = Icu,但价格很高]。我国的DW15型万能式断路器Ics =(60% ~ 75%)Icu,DW45智能型万能式断路器Ics =(62.5% ~ 65%)Icu,国际上ABB公司的F系列,施耐德公司的M系列Ics也不过达到70%左右的Icu。而塑壳式断路器,国各种新型号的Ics大多数在(50% ~ 75%)Icu 之间。有些厂商的广告或样本中称它的断路器Ics = Icu,如果不是限流型,则是有水分的。选用它,最可靠、最严肃的办法是向他们索取Ics = Icu的试验证书或型式试验报告。 3. Icu和Ics的选用 一台容量为1600kVA的变压器,其副边的额定电流为2312A,阻抗电压百分数uK取6%,最大预期短路电流应为38.5kA,作保护用的断路器额定短路分断能力应是340kA,若选DW15 - 2500Y的2500A或DW45 - 3200的2500A作主开关是能胜任的。由于现代的动力中心的变

相关文档
相关文档 最新文档