文档库 最新最全的文档下载
当前位置:文档库 › 分析前处理因素对化学发光法cTnI检测结果的影响分析

分析前处理因素对化学发光法cTnI检测结果的影响分析

分析前处理因素对化学发光法cTnI检测结果的影响分析
分析前处理因素对化学发光法cTnI检测结果的影响分析

干扰及其消除-氨氮

干扰及其消除-氨氮 一、项目名称:氨氮 二、方法名称:纳氏试剂比色法 三、干扰及其消除 大多数水样,均可直接用纳氏试剂比色测定。但任何能与纳氏试剂反应,产生颜色或浑浊 的物质都将有严重的干扰。 1.浊度 水样混浊或有细小颗粒物时,易使纳氏反应生成物沉淀,故应预先过滤除去。过滤时最初的200~300ml滤液弃去,或者在过滤前用水充分洗涤滤纸,以防滤纸中的氨混入水样。 2.有机物质 脂肪族胺、芳香胺、有机氯胺对本方法有干扰,如甘氨酸、肼和某些胺类与纳氏试剂在试验所需的时间内反应而给出特征黄色,产生正干扰。在pH9.5时进行蒸馏,可尽量减少干扰。 酮类、醛类、醇类和某些胺类与纳氏试剂可产生淡黄色或淡绿色的反常色或浊度。如少量的丙酮能阻碍氨的有色物生成;较高浓度的乙醇,使加入纳氏试剂的溶液变浑。其中某些物质如甲醛等可以.在进行纳氏比色前,在较低pH下用煮沸的办法除掉。 3.金属与非金属离子 干扰本方法的金属离子,主要是在碱性溶液中易水解产生沉淀的Ca2+、M g2+和Fe3+等离子。加入酒石酸钾钠溶液或EDTA可掩蔽这些离子,消除干扰。 与纳氏试剂中的汞离子生成沉淀,而使溶液混浊的离子所产生的干扰,如硫化物,可在预蒸馏前加碳酸铅而消除。 一般说来,当水样含有大量钙、镁和铁等离子,或浑浊、有底色时,则必须采用蒸馏法将氨分离出来,再进行纳氏比色测定。有机物质干扰,而难于消除时,应考虑改用其他的测定方法。 另一简便的去除干扰的方法是加入硫酸锌和碱共沉淀,可较满意地消除溶液浑浊、底色和易水解的金属离子,如镁和钙等的干扰。 四、注意事项

(1)所配制的任何试剂,若有沉淀均应过滤除去(若用滤纸过滤,应用无氨水将滤纸洗净)。纳氏试剂是浓碱溶液,故不能用滤纸过滤。更方便的是用静置后倾泻法分离,取其上清液。用具胶塞的棕色硬质玻璃瓶贮存。 (2)酒石酸钾钠溶液空白值较高时,需将此溶液过滤以后,加纳氏试剂5ml,于有色瓶中放 置2~3d,取其上清液使用。 (3)纳氏试剂配制不当,随着放置时间的延长,会影响显色灵敏度,并有可能线性变差,应予注意。 (4)纳氏试剂毒性很强,故需注意使用。

化工仪表的外部干扰及消除方法

化工仪表的外部干扰及消除方法 吕文坡,贾 飞,胡瑞军 (内蒙古天野化工集团有限公司) 摘 要 化工测量仪表运行过程中常会遇到各种各样的干扰,分析干扰产生的原因及相应的消除方法。 关键词 仪表;干扰;接地;屏蔽 化工测量仪表在运行过程中常会遇到各种各样的干扰,不仅能造成测量结果的失真,还能造成逻辑关系的混乱,使自控系统无法正常工作,甚至导致化工生产出现停车事故,给企业带来很大的经济损失。所以,如何有效地排除和抑制干扰,是仪表自控系统必须考虑并解决的问题。 1 干扰的分类 干扰来自干扰源,在化工生产现场和环境中干扰源是多种多样的。在检测仪表中,经常将外部干扰分为两类:横向干扰和纵向干扰。所谓横向干扰是指由电磁感应产生的垂直干扰。横向干扰电压与正常的测量信号相叠加,直接影响仪表的正常工作,一般横向干扰有几mV到几十mV之间。纵向干扰是指由漏电阻等引起的平行干扰,一般在几V到几十V之间。纵向干扰必须通过回路转化为横向干扰之后,才能对仪表产生影响。 2 干扰的产生及消除 211 横向干扰的产生及消除 21111 产生的原因 (1)交变电磁场。在大功率变压器、交流电动机、强电流电网等周围都存在有很强的交变磁场,交变磁场切割仪表输入回路的导线就会在其中感应出交变电势,因而产生干扰。 (2)高压电磁。仪表附近有高压设备时,可通过分布电容在输入回路中产生干扰电压。 (3)高频干扰。带电容或电感的回路断开或闭合时,接触器触点产生的火花等都是高频率的干扰源,故而对触发电路影响较大。但是大部分仪表都在低频范围内工作,所以影响较小。 21112 消除方法 (1)屏蔽法。使用屏蔽是为了防止电磁场干扰。将仪表电缆穿入导电的穿线管中(穿线管接地),由于金属的磁阻很小,这样,交变磁场将切割不到电缆导线。在屏蔽后可以使干扰电压减少为原来的1/ 20。为了减少干扰,把导线绞合起来再穿入屏蔽管内,也能将干扰降为原来的1/10。 (2)远离电磁场,不要离动力线太近。 (3)滤波法。在仪表的输入端加入L-C或R -C滤波电路,以便于使混杂在有用信号中的交流干扰衰减至最小。同时也可以用提高二次仪表输入触发电平的方法,拦住不需要的杂波信号。 212 纵向干扰的产生及消除21211 产生的原因 (1)地电流。在大地中流过的电流为地电流。仪表附近有大功率的电气设备,当设备的绝缘性较差而对地漏电,就会在大地中有较大的电流流过,因而在大地中的各个不同点上存在有电位差,而在仪表使用中往往又会有意无意地使输入回路有两个以上的接地点(或通过大电容接地)。这样就会把不同接地点的电位差引入到仪表中产生干扰。 (2)漏电流。由于导线的绝缘破损等原因,使得导线与地之间产生干扰电压 21212 消除方法 (1)隔离法。放大器浮空。所谓浮空就是使放大器外壳不与仪表外壳接触。用绝缘材料将放大器垫起隔离,使之与仪表外壳绝缘。以切断纵向干扰电压的泄漏途径,是干扰无法进入。 (2)接地法。一般说来,干扰源的频率在1MHz 以下,可用一点接地;而高于10MHz时,则应多点接地。在1~10MHz之间时,如果采用一点接地的方式,其地线长度就不应超过波长的1/20。否则,应采用多点接地的方式。 若信号电路是一点接地 ,低频电缆的屏蔽层也 应是一点接地。如果电缆的屏蔽层接地点有一个以 上,会产生噪声电流。对于扭绞电缆的芯线来说,屏 蔽层中的电流便在芯线中耦合出不同的电压形成干 扰源。 若电路有一个不接地的信号源与一个接地的放 大电路相连,输入端的屏蔽应接在放大电路的公共 端。相反,若接地的信号源与不接地的放大器连接, 即使信号源接的不是大地,放大电路的输入端也应 接到信号源的公共端。 3 结语 在化工仪表自控系统中,出现干扰的情况有时 是很复杂的,往往有多种干扰同时存在,因此,首先 要弄清干扰源是什么?干扰是通过什么通道传输给 仪表的?然后再采取适当的措施,干扰是可以消除 的。 参考文献 [1] 余成波等.传感器与自动检测技术.高等教育出版社, 2003年1 作者简介:吕文坡,男,助理工程师,现在内蒙古天野化工集 团有限公司仪表车间从事仪表检维修工作。 收稿日期:2005年9月28日06内蒙古石油化工 2005年第11期

AAS干扰及消除方法

原子吸收光谱法的主要干扰有物理干扰、化学干扰、电离干扰、光谱干扰和背景干扰等。 一、物理干扰 物理干扰是指试液与标准溶液物理性质有差异而产生的干扰。如粘度、表面张力或溶液的密度等的变化,影响样品的雾化和气溶胶到达火焰传送等引起原子吸收强度的变化而引起的干扰。 消除办法:配制与被测试样组成相近的标准溶液或采用标准加入法。若试样溶液的浓度高,还可采用稀释法。 二、化学干扰 化学干扰是由于被测元素原子与共存组份发生化学反应生成稳定的化合物,影响被测元素的原子化,而引起的干扰。 消除化学干扰的方法: (1)选择合适的原子化方法 提高原子化温度,减小化学干扰。使用高温火焰或提高石墨炉原子化温度,可使难离解的化合物分解。 采用还原性强的火焰与石墨炉原子化法,可使难离解的氧化物还原、分解。(2)加入释放剂 释放剂的作用是释放剂与干扰物质能生成比被测元素更稳定的化合物,使被测元素释放出来。 例如,磷酸根干扰钙的测定,可在试液中加入镧、锶盐,镧、锶与磷酸根首先生成比钙更稳定的磷酸盐,就相当于把钙释放出来。 (3)加入保护剂 保护剂作用是它可与被测元素生成易分解的或更稳定的配合物,防止被测元素与干扰组份生成难离解的化合物。保护剂一般是有机配合剂。例如,EDTA、8-羟基喹啉。 (4)加入基体改进剂 对于石墨炉原子化法,在试样中加入基体改进剂,使其在干燥或灰化阶段与试样发生化学变化,其结果可以增加基体的挥发性或改变被测元素的挥发性,以消除干扰。

三、电离干扰 在高温条件下,原子会电离,使基态原子数减少,吸光度下降,这种干扰称为电离干扰。 消除电离干扰的方法是加入过量的消电离剂。消电离剂是比被测元素电离电位低的元素,相同条件下消电离剂首先电离,产生大量的电子,抑制被测元素的电离。 例如,测钙时可加入过量的KCl溶液消除电离干扰。钙的电离电位为6.1eV,钾的电离电位为4.3eV。由于K电离产生大量电子,使钙离子得到电子而生成原子。 四、光谱干扰 (1)吸收线重叠 共存元素吸收线与被测元素分析线波长很接近时,两谱线重叠或部分重叠,会使结果偏高。 (2)光谱通带内存在的非吸收线 非吸收线可能是被测元素的其它共振线与非共振线,也可能是光源中杂质的谱线。一般通过减小狭缝宽度与灯电流或另选谱线消除非吸收线干扰。 (3)原子化器内直流发射干扰 五、背景干扰 背景干扰也是一种光谱干扰。分子吸收与光散射是形成光谱背景的主要因素。 1. 分子吸收与光散射 分子吸收是指在原子化过程中生成的分子对辐射的吸收。分子吸收是带状光谱,会在一定的波长范围内形成干扰。例如,碱金属卤化物在紫外区有吸收;不同的无机酸会产生不同的影响,在波长小于250nm时,H2SO4和 H3PO4有很强的吸收带,而HNO3和HCl的吸收很小。因此,原子吸收光谱分析中多用HNO3 和HCl配制溶液。 光散射是指原子化过程中产生的微小的固体颗粒使光发生散射,造成透过光减小,吸收值增加。 2. 背景校正方法

化学发光免疫分析技术原理简介

化学发光免疫分析技术原理简介 20 世纪60 年代即有人利用化学发光法测定水样中细菌含量和菌尿症患者尿液检查。1977 年Halman 等将化学发光系统与抗原抗体反应系统相结合,创建了化学发光免疫分析法,保留了化学发光的高度灵敏性,又克服了它特异性不足的缺陷。近年来对技术与仪器的不断改进,使此技术已成为一种特异,灵敏,准确的自动化的免疫学检测方法。1996 年推出的电化学发光免疫技术,在反应原理上又具有一些新的特点。这两种技术目前已在国内一些大型医院实验室用于常规免疫学检验。 一、化学发光免疫分析法 化学发光免疫分析法( chemiluminescence immunoassay , CLlA) 是把免疫反应与发光反应结合起来的一种定量分析技术,既具有发光检测的高度灵敏性,又具有免疫分析法的高度特异性。在CLIA中,主要有两个部分,即免疫反应系统和化学发光系统。免疫反应系统与放射免疫测定中的抗原抗体反应系统相同化学发光系统则是利用某些化合物如鲁米诺( luminol) 、异鲁米诺(isolu-minol) 、金刚烷( AMPPD) 及吖啶酯( AE) 等经氧化剂氧化或催化剂催化后成为激发态产物,当其回到基态时就会将剩余能量转变为光子,随后利用发光信号测量仪器测量光量子的产额。将发光物质直接标记于抗原(称为化学发光免疫分析)或抗体上(称为免疫化学发光分析) ,经氧化剂或催化剂的激发后,即可快速稳定的发光,其产生的光量子的强度与所测抗原的浓度可成比例。亦可将氧化剂(如碱性磷酸酶等)或催化剂标记于抗原或 抗体上,当抗原抗体反应结束后分离多余的标记物,再与发光底物反应,其产生的光量子的强度也与待测抗原的浓度成比例。发光免疫分析的灵敏度高于包括RIA 在内的传统检测方法,检测范围宽,测试时间短,仅需30 - 60min 即可。试

荧光和化学发光免疫分析方法

荧光和化学发光免疫分析方法 免疫分析是利用抗原抗体反应进行的检测方法,即利用抗原与抗体的特异性反应, 应用制备好的抗原或抗体作为试剂,以检测标本中的相应抗体或抗原。由于免疫的特异性结合,免疫分析方法具有很好的选择性,荧光免疫分析和化学发光免疫分析是其中典型的两种。本文将对这两种免疫分析方法进行详细的介绍。 一、免疫 免疫是指机体免疫系统识别自身与异己物质,并通过免疫应答排除抗原性异物,以维持机体生理平衡的功能。免疫是人体的一种生理功能,人体依靠这种功能识别“自己”和“非己”成分,从而破坏和排斥进入人体的抗原物质,或人体本身所产生的损伤细胞和肿瘤细胞等,以维持人体的健康。 特异性免疫系统,是一个专一性的免疫机制,针对一种抗原所生成的免疫淋巴细胞(浆细胞)分泌的抗体,只能对同一种抗原发挥免疫功能。而对变异或其他抗原毫无作用。 1、抗原 1.1抗原的定义 抗原:是一类能刺激机体免疫系统使之产生特异性免疫应答(免疫原性) ,并能与相应抗体在体内或体外发生特异性结合的物质(免疫反应性)。 抗原一般为大分子物质,其分子量在10kD以上。 1.2抗原的分类

完全抗原:同时具有免疫原性和免疫反应性的抗原,如细菌、病毒、异种动物血清等。 半抗原:仅具有与相应抗原或致敏淋巴细胞结合的免疫反应性,而无免疫原性的物质。如大多数的多糖、类脂及一些简单的化学物质,它们本身不具免疫原性,但当与蛋白质大分子结合后形成复合物,便获得了免疫原性, 1.3抗原的性质 决定簇是指抗原分子表面的基团,它直接决定免疫学反映的特异性。 抗原通过抗原决定簇与相应淋巴细胞表面抗原受体结合,从而激活淋巴细胞,引起免疫应答,抗原也藉此与相应抗体或致敏淋巴细胞发生特异性结合。 因此,抗原决定簇是被免疫细胞识别的靶结构,也是免疫反应具有特异性的物质基础。 2、抗体 2.1抗体的定义 抗体:是机体受抗原刺激后,由淋巴细胞合成的一类能与相应抗原发生特异性结合的球蛋白。 2.2抗体的结构 抗体是机体受抗原刺激后,由淋巴细胞特别是浆细胞合成的一类能与相应抗原发生特异性结合的球蛋白,因其具有免疫活性故又称作免疫球蛋白。 人免疫球蛋白有五类,分别为IgG、IgA、IgM、IgD和IgE。 3、抗原抗体的结合

化学发光法及其应用

化学发光法及其应用 摘要:对近年来化学发光分析法的研究应用最新进展作了评述,包括化学发光体系的类型,化学发光法的新方法,化学发光在无机、药物分析及食品中的应用。 关键字:化学发光法;化学发光体系;应用; 化学发光是在没有光、电、磁、声、热源激发的情况下,由化学反应或生物化学反应产生的一种光辐射。以此为基础的化学发光化学发光(Chemiluminescence ,简称CL)分析法是近30 年来发展起来的一种高灵敏的微量及痕量分析法,由于可以进行发射光子计量,又没有外来激发光源存在时散射光背景的干扰,因而具有很高的灵敏度(检出限可达 10-12-10-21mol),很宽的线性范围(3-6个数量级),同时仪器设备又很简单、廉价、易微型化,在二十世纪的最后十年发展非常迅速。 近来,在改进和完善原有发光试剂和体系的同时,新发光试剂的合成,新体系的开发,与其它技术的联用,尤其是流动注射技术,传感器技术,HPLC 技术及各种固定化试剂技术的联用,更显示出化学发光分析快速,灵敏,简便等优点,也进一步拓宽了化学发光的应用范围。并且,化学发光在多类复杂有机物质,如氨基酸、蛋白质、维生素、核酸、DNA、激素、生物碱及各类药物及毒物的检测,多种生物活性物质的分析,多种抗体和抗原的免疫分析,基因芯片、蛋白质芯片、受体芯片、酶芯片、微流控芯片研究中得到了广泛地应用,而且呈现出上升趋势。为生命科学、环境科学、材料科学的研究提供了许多新的、高灵敏度的、有效的分析手段,推动了这方面科学理论和高新技术的发展;同时,其他相关学科的研究成果也为化学发光和生物发光提供了许多新的技术和手段,出现了许多新的化学发光和生物发光法,如纳米发光、发光成像、发光活体分析,大大促进了化学发光的发展及应用。本文将从以下几个方面论述化学发光分析法。 1 化学发光分析法的原理 化学发光(Chemiluminescence,简称CL) 分析法是分子发光光谱分析法中的一类,是指物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发至激发态,受激分子由激发态回到基态时,便发出一定波长的光。根据化学发光反应在某一时刻的发光强度或发光总量来确定组分含量的分析方法叫化学发光分析法[1]。 换句话说,化学发光是指吸收了化学反应能的分子由激发态回到基态时所产生的光辐射现象, 广义的化学发光也包括电致化学发光。一个化学反应要产生化学发光现象, 必须满足

火焰原子吸收测定人发中钙的化学干扰及其消除方法

实验报告 一、实验名称(Title of experiment)火焰原子吸收测定人发中钙的化学干扰及其消除方法 二、实验目的(Purpose of experiment) 1、通过本实验,能熟练使用火焰原子吸收(FAAS)测定痕量金属离子。 2、掌握化学干扰对火焰原子吸收测定钙的影响及其消除方法。 三、实验原理(Principium of experiment) 原子吸收光谱法是基于被测元素基态原子在蒸气状下对其原子共振辐射吸收进行元素定量分析的方法。原子吸收测定中存在着化学干扰、物理干扰、光谱干扰和电离干扰。探讨干扰的消除方法,对于提高原子吸收测定的准确度具有重要的意义。用火焰原子吸收测定人发中的钙,磷酸根的存在会产生比较严重的干扰,加入一定量的释放剂可以消除其干扰。四、仪器及测试条件(Instrument and parameters) 实验仪器: Z-5000型原子吸收分光光度计、钙空心阴极灯、钢瓶乙炔、空气压缩机、冷却水系统、容量瓶、吸量管等。 实验试剂: 钙储备液及钙系列标准溶液、Na 3PO 4 、La(NO 3 ) 3 或Sr(NO 3 ) 2 溶液、HNO 3 、高纯 水等。 五、实验步骤(Procedure of experiment) 1、查阅国内外文献,了解人发中元素的组成。 2、设计对比实验,探讨FAAS测定钙时可能存在的化学干扰因素。 先将钙储备液稀释成50 mg/L钙的标准溶液,再进一步稀释成0、2、4、6、8 mg/L系列标准溶液,然后上机测定吸光度值,以熟练使用VARIAN火焰原子吸收分光光度计。记录相关数据见表1。 本实验主要研究头发中Al3+、Fe3+、PO 4 3-离子对钙的干扰,所以对三种离子要分别设计对比实验。以Al3+为例,设计方案如下: 取5支25 mL容量瓶,编号,分别移入4 mL 50 mg/L的钙标准溶液。将Al3+储备液先稀释成50 mg/L的标准溶液,再分别移取0、2.0、4.0、6.0、8.0 mL 至5支25 ml容量瓶内,定容,配制成的系列混合溶液中钙的浓度都为8 mg/L, - 1 -

化学发光分析法的应用研究与新进展

化学发光分析法的应用研究与新进展 摘要:化学发光分析法是根据化学反应的发光强度或发光总量确定相应组分含量的一种分析方法。同荧光法相比,化学发光法不需要外来的光源,减少了拉曼散射和瑞利散射,降低了噪音信号的干扰,提高了检测的信噪比,扩大了线性范围。并具通过特定的化学发光可以定性定量的测定微量物质,有操作方便,易于实现自动化,分析快等特点。同时在实践的过程中化学发光分析法与其他方法相比较其灵敏度也较高,此外线性范围宽和仪器简单也是化学发光分析法的特点之一。正是基于这些特点,化学发光分析法在环境化学、临床医学、生物科学等领域得到十分广泛的应用和研究。本文从化学发光分析法的原理、优缺点和应用研究的新进展等方面进行了综述。 关键词:化学发光分析法,化学发光体系,鲁米诺,光泽精 引言 化学发光是化学反应体系中的某些分子或原子中的电子,如反应物、中间体或反应产物吸收了化学反应释放出的化学能后,由基态(较低能级)跃迁到激发态(较高能级),然后再返回到基态,并释放光子所产生的光辐射[2]。化学发光又称为冷光,它是在没有任何光、热或电场等激发的情况下由化学反应而产生的光辐射。由于不需要外源性激发光源,避免了背景光和杂散光的干扰,降低了噪声,大大提高了信噪比。具有灵敏度高,线性范围宽,设备简单,操作方便,易于实现自动化,分析快等特点。在生物工程学,药物学,分子生物学,临床和环境化学等各个领域正显示出它蓬勃的生机。本文主要介绍化学发光分析法的原理、优缺点,常用的化学发光试剂及其体系,和在环境化学、临床医学、生物科学等领域的应用研究和化学发光分析法的近两年的应用新进展。 1 化学发光 1.1化学发光的原理 发光是指分子或原子中的电子吸收能量后,由基态(较低能级)跃迁到激发态(较高能级),然后再返回到基态,并释放光子的过程。根据形成激发态分子

化学发光免疫分析方法的研究及应用

本文由:华夏学术传媒网提供https://www.wendangku.net/doc/8a5154789.html, 摘要:本文根据各化学发光免疫分析方法所使用标记物质的不同,将化学发光免疫分析方法分为化学发光免疫分析、化学发光酶免疫分析和电化学发光免疫分析法,并对各方法经典标记物质及分析方法原理进行了分析。同时,介绍了化学发光免疫分析方法在医学检验、食品安全及环境科学方面的应用进展情况。 关键词:化学发光免疫分析;分类;研究进展 化学发光是在常温下由化学反应产生的光的发射。其发光机理是:反应体系中的某些物质分子,如反应物、中间体或者荧光物质吸收了反应释放的能量而由基态跃迁到激发态,当中间体由激发态回到基态时会释放等能级的光子,对光子进行测定而实现定量分析[1]。 化学发光免疫分析方法是将化学发光与免疫反应相结合的产物,因化学发光具有荧光的特异性,但与荧光产生需要激发光不同,化学发光由化学反应产生光强度,并不需要激发光,从而避免了荧光分析中激发光杂散光的影响。化学发光免疫分析包含了免疫化学反应和化学发光反应两个部分。免疫分析系统是将化学发光物质或酶标记在抗原或抗体上,经过抗原与抗体特异性反应形成抗原-抗体免疫复合物。化学发光分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,化学发光物质经氧化剂的氧化后,形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测。待测物质浓度因为与发光强度成一定的关系而实现检测目的[2]。 一、化学发光免疫分析方法的类别化学发光免疫分析法根据标记物的不同可分为3 大类,即化学发光免疫分析、化学发光酶免疫分析和电化学发光免疫分析法。(一)化学发光免疫分析化学发光免疫分析是用化学发光剂直接标记抗体或抗原的一类免疫测定方法。目前常见的标记物主要为鲁米诺类和吖啶酯类化学发光剂。 1. 鲁米诺类标记的化学发光免疫分析。鲁米诺类物质的发光为氧化反应发光。在碱性溶液中,鲁米诺可被许多氧化剂氧化发光,其中H2O2最为常用。因发光反应速度较慢,需添加某些酶类或无机催化剂。酶类主要是辣根过氧化物酶(HRP),无机类包括O3、卤素及Fe3+、Cu2+、Co2+和它们的配合物。鲁米诺在碱性溶液下可在催化剂作用下,被H2O2等氧化剂氧化成3-氨基邻苯二酸的激发态中间体,当其回到基态时发出光子。鲁米诺的发光光子产率约为0.01,最大发射波长为425 nm。 2. 吖啶酯类标记的化学发光免疫分析 吖啶酯用于化学发光免疫分析方法(ChemiluminescentImmunoassay,CLIA)由于热稳定性不是很好,Klee 等研究合成了更稳定的吖啶酯衍生物。在含有H2O2的碱性条件下,吖啶酯类化合物能生成一个有张力的不稳定的二氧乙烷,此二氧乙烷分解为CO2和电子激发态的N-甲基吖啶酮,当其回到基态时发出一最大波长为430 nm 的光子。吖啶酯类化合物量子产率很高,可达0.05。吖啶酯作为标记物用于免疫分析,发光体系简单、快速,不需要加入催化剂,且标记效率高,本底低。吖啶酯或吖啶磺酰胺类化合物应用于CLIA,通常采用HNO3+H2O2和NaOH 作为发光启动试剂,有些在发光启动试剂中加入Triton X-100,CTAC,Tween-20等表面活性剂以增强发光。(二)化学发光酶免疫分析化学发光酶免疫分析(Chemiluminescent Enzyme Immunoassay,CLEIA)是以酶标记生物活性物质进行免疫反应,免疫反应复合物上的酶再作用于发光底物,在信号试剂作用下发光,用发光信号测定仪进行发光测定。目前常用的标记酶为辣根过氧化物酶(HRP)和碱性磷酸酶(ALP),它们有各自的发光底物。HRP 最常用发光底物是鲁米诺及其衍生物。在CLEIA 中,使用过氧化物酶标记抗体,进行免疫反应后,利用鲁米诺作为发光底物,在过氧化物酶和起动发光试剂(NaOH和H2O2)作用下鲁米诺发光,酶免疫反应物中酶的浓度决定了化学发光的强

化学发光及生物发光的原理及其应用(精)

化学发光及生物发光的原理及其应用 第一部分概述 化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。化学发光体系用化学式表示为: 依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反 应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、气相、掖相 CL 。分析法; 5 )酵联免疫 CL 分析法等。 化学发光的系统一般可以表示为:

在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。 第二部分、化学发光常用的化学试剂及其原理 化学发光是某种物质分子吸收化学能而产生的光辐射。任何一个化学发光反应都包括两个关键步骤,即化学激发和发光。因此,一个化学反应要成为发光反应,必须满足两个条件:第一:反应必须提供足够的能量( 170 ~ 300KJ / mol ),第二,这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。到目前为止,所研究的化学发光反应大多为氧化还原反应,且多为液相化学发光反应。 化学发光反应的发光效率是指发光剂在反应中的发光分于数与参加反应的分子数之比。对于一般化学发光反应,值约为 10 - 6 ,较典型的发光剂,如鲁米诺,发光效率可达 0 . 01 ,发光效率大于 0 。 01 的发光反应极少见。现将几种发光效率较高的常用的发光剂及其发光机理归纳如下。 1. 鲁米诺及其衍生物 鲁米诺的衍生物主要有异鲁米诺、 4—氨基已基—N 一乙基异鲁诺及 AHEI 和 ABEI 等。鲁米诺在碱性条件下可被一些氧化剂氧化,发生化学发光反应,辐射出最大发射波长为 425nm 的化学发光。 在通常情况下鲁米诺与过氧化氢的化学发光反应相当缓慢,但当有某些催化剂存在时反应非常迅速。最常用催化剂是金属离子,在很大浓度范围内,金属离子浓度与发光强度成正比,从而可进行某些金属离子的化学发光分析,利用这一反应可以分析那些含有金属离子的有机化合物,达到很高的灵敏度。其次是利用有机化合物对鲁米诺化学发光反应的抑制作用,测定对化学发光反应具有猝灭作用的有机化合物。其三是通过偶合反应间接测定无机或有机化合物。其四是将鲁米诺的衍生物如异鲁米诺 (ABEI) 标记到羧酸和氨类化合物上,经过高效液相色谱 (HPLC) 或液相色谱 (LC) 分离后,再在碱性条件下与过氧化氢-铁氰化钾反应进行化学发光检测。也可以采用其它分离方法,如将新合成的化学发光试剂异硫氰酸异鲁米诺标记到酵母 RNA 后,通过离心和透析分离,然后进行化学发光检测。此外应用的还有 N 2(B2 羧基丙酰基 ) 异鲁米诺,并对其性能进行了研究。

全自动化学发光免疫分析仪Immulite2000标准操作规程完整

IMMULITE ? 2000 全自动化学发光免疫分析仪 标准操作程序 本文件仅供参考,各实验室需根据各自情况建立自己的操作规程 IMMULITE?2000全自动化学发光免疫分析系统标准操作规程

SOP编码:页数: 制定人签名:日期: 审核人签名:日期: 批准人签名:日期: 生效日期:颁发日期:周期性审查:年一次 修订登记: 审查登记:

[目的]描述IMMULITE?2000全自动化学发光免疫分析系统的使用和维护。 [范围] 适用IMMULITE?2000全自动化学发光免疫分析系统的操作。 [仪器工作原理和检测过程] 1 IMMULITE 2000使用包被特定抗体的聚苯乙烯珠子作为固相,包被珠放在一个特定的反应杯中,从而进行温育,清洗以及信号发生。

2. 样本与结合了碱性磷酸酶的试剂温育反应结合之后,通过高速离心将剩余试剂甩到与反应杯同轴的废液管路中。系统在几秒钟内完成四次离心清洗,以便与系统的其他同步。去除未包被试剂的包被珠仍然保留在反应杯中。 3. 包被珠上的结合标记随后同发光底物进行定量发光。当包被珠上结合的碱性磷酸酶标记同化学发光底物反应时,就产生发光。发光强度同样本中待测物的含量有关。仪器通过光电倍增管检测发光强度,随后计算出每个样本的结果。 4. 操作者在IMMULITE 2000上运行测试时,需要做下列操作:: 4.1进行每日探针清洗工作。 4.2 选择RUN IMMULITE 2000按钮。 4.3 查系统状态指示,加满或者清空耗材或者废物。 4.4 初始化样本和试剂加样器、蒸馏水喷嘴和底物喷嘴。 4.5 使用图像扫描器扫描试剂转盘上的过敏原试剂楔。 4.6在样本转盘上装载病人血清、质控、校正液和稀释液。 注意: 运行仪器需要用到的试剂都在 IMMULITE 2000试剂盒中。只有需要预稀释的测试项目才会有稀释液。 4.7 在工作列表列表界面为样本指定测试项目以及编号。 4.8 检查试剂以及与之匹配的包被珠是否足够完成所需测试。 4.9选择RUN开始实验。 5. 仪器自动检测过程: 在操作者按下 RUN 按钮之后,Immulite 2000 自动开始检测并输出检测结 果。 5.1 在反应杯中加入一个包被珠。 5.2 样本,特定的试剂和水加入到包被珠上。 5.3 反应杯运到温育圈,在37°C (98.6°F)的环境中震荡温育。 5.4 清洗测试杯。 5.5 加入底物,发光。 5.6 光电倍增管(PMT)检测光子强度,计算结果并打印。 [免疫分析原理] 1.双抗体夹心法:双抗体夹心法使用ALP标记的抗体在检测单位中进行反应。 1.1 标记的抗体的液相试剂加到检测单位中,标记有ALP的特异性抗体(Ab※ALP)与样品中的相应抗

化学干扰及其消除方法

化学干扰及其消除方法 一、化学干扰的本质 化学干扰是指试样溶液转化为自由基态原子的过程中,待测元素与其他组分之间的化学作用而引起的干扰效应。它主要影响待测元素化合物的熔融、蒸发和解离过程,这种效应可以是正效应,增强原子吸收信号;也可以是负效应,降低原子吸收信号。化学干扰是一种选择性干扰,它不仅取决于待测元素与共存元素的性质,而且还与火焰类型、火焰温度、火焰状态及观测部位等因素有关。 化学干扰是火焰原子吸收中干扰的主要来源,其产生的原因是多方面的。待测元素与共存元素之间形成热力学更稳定的化合物,是参与吸收的基态原子数减少而引起负干扰;自由基态原子自发地与火焰中的其他原子或基团反应生成了氧化物,氢氧化物或碳化物而降低了原子化效率。 二、消除化学干扰的方法 由于化学干扰的复杂性,目前尚无一种通用的消除这种干扰的方法,需针对特定的样品,待测元素和实验条件进行具体分析。 1、利用高温火焰 火焰温度直接影响着样品的熔融、蒸发和解离过程,许多在低温火焰中出现的干扰,在高温火焰中可部分或完全消除。例如:在空气---乙炔火焰中测定钙,有磷酸根时,因其和钙形成稳定的焦磷酸钙而干扰钙的测定。有硫酸根存在时,干扰钙和镁的测定。若改用N2O---乙炔火焰,这些干扰可完全消除。 2.利用火焰气氛 对于易形成难熔难挥发氧化物的元素,如硅、钛、铝、铍等,如果使用还原性气氛很强的火焰,则有利于这些元素的原子化。N2O---乙炔火焰中有很多半分解产物CN、CH、OH 等,它们都有可能强夺氧化物中的氧而有利于原子化。利用空气---乙炔火焰测定铬时,火焰气氛对铬的灵敏度的影响非常明显,若选择适当的燃助比使火焰具有富燃性,由于CrO通过还原反应原子化,则灵敏度明显提高。火焰各区域由于温度和区域不一样,因此在不同观测高度所出现的干扰程度也不一样,通过选择观测高度,也可减少或消除干扰。 3.加入释放剂 待测元素和干扰元素在火焰中形成稳定的化合物时,加入另一种物质使之与干扰元素反应,生成更难挥发的化合物,从而使待测元素从干扰元素的化合物中被释放出来,加入的这种物质称为释放剂。 常用的释放剂有氯化镧、氯化锶等。例如,磷酸根干扰钙的测定,加入镧和锶后,由于与磷酸根结合成稳定的化合物而将钙释放出来,其反应如下: 2CaCl2+2H3PO4=Ca2P2O7+4HCl+H2O+H1 CaCl2+H3PO4+LaCl3=LaPO4+3HCl+CaCl2+H2

全自动化学发光免疫分析仪产品技术要求

全自动化学发光免疫分析仪 主要由主机(包含样本架输送模块、反应杯配备模块、加样模块、试剂处理模块、温育反应模块、清洗分离模块、光学检测模块、电路控制模块)、软件(发布版本:V1.0)、电源线、串口线及附件(包含样本架、液路管)组成。 该产品基于间接化学发光法,与配套的检测试剂共同使用,在临床上用于对来源于人体血清、血浆或者其他体液样本中的被分析物进行体外定性或定量检测。 1.1产品型号划分说明 1.2结构组成 主要由主机(包含样本架输送模块、反应杯配备模块、加样模块、试剂处理模块、温育反应模块、清洗分离模块、光学检测模块、电路控制模块)、软件(发布版本:V1.0)、电源线、串口线及附件(包含样本架、液路管)组成。 1.3软件信息 1.3.1 软件名称:利德曼化学发光免疫分析仪器软件平台 1.3.2 发布版本:V1.0 1.3.3 版本命名规则 发布版本号:VX.Y 其中:VX.Y由version缩写V,主版本号及次版本号构成:表示正式发布的第一版程序。 X为主版本号,表示全功能集成第一个版本; Y为次版本号,表示此版本程序发布后暂时未发生变更。 1.3.4 运行环境 硬件配置:

CPU:主频1.7GHz以上。 内存:1G以上内存。 硬盘空间:40G以上均可。 软件配置:操作系统:WINDOWS 7 或WINDOWS 10。 2.1加样正确度与重复性 对仪器标称的样品最小加样量和最大加样量、试剂最小加样量和最大加样量进行检测,应符合表1的规定。 表1 加样正确度与重复性要求 2.2 反应区温度控制的正确度和波动度 反应区温度的偏倚应在:37.0℃±0.5℃,波动度不超过0.5℃。 2.3 光检测装置部分 2.3.1仪器噪声 检测空反应管的发光值应不大于200RLU。 2.3.2发光值的线性 在不小于3个发光值数量级范围内,线性相关系数(r)应≥0.99。 2.3.3发光值的重复性 采用发光剂法,变异系数(CV)不超过5%。 2.3.4发光值的稳定性 采用发光剂法,发光值的变化不超过±10%。 2.4 携带污染率 携带污染率应≤10-5。 2.5临床项目的批内精密度

化学发光免疫分析方法

化学发光是在常温下由化学反应产生的光的发射。其发光机理是:反应体系中的某些物质分子,如反应物、中间体或者荧光物质吸收了反应释放的能量而由基态跃迁到激发态,当中间体由激发态回到基态时会释放等能级的光子,对光子进行测定而实现定量分析。 化学发光免疫分析方法是将化学发光与免疫反应相结合的产物,因化学发光具有荧光的特异性,但与荧光产生需要激发光不同,化学发光由化学反应产生光强度,并不需要激发光,从而避免了荧光分析中激发光杂散光的影响。化学发光免疫分析包含了免疫化学反应和化学发光反应两个部分。免疫分析系统是将化学发光物质或酶标记在抗原或抗体上,经过抗原与抗体特异性反应形成抗原-抗体免疫复合物。化学发光分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,化学发光物质经氧化剂的氧化后,形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测。待测物质浓度因为与发光强度成一定的关系而实现检测目的。 一、化学发光免疫分析方法的类别 化学发光免疫分析法根据标记物的不同可分为 3 大类,即化学发光免疫分析、化学发光酶免疫分析和电化学发光免疫分析法。 (一)化学发光免疫分析化学发光免疫分析是用化学发光剂直接标记抗体或抗原的一类免疫测定方法。目前常见的标记物主要为鲁米诺类和吖啶酯类化学发光剂。 1. 鲁米诺类标记的化学发光免疫分析。 鲁米诺类物质的发光为氧化反应发光。在碱性溶液中,鲁米诺可被许多氧化剂氧化发光,其中H2O2最为常用。因发光反应速度较慢,需添加某些酶类或无机催化剂。酶类主要是辣根过氧化物酶(HRP),无机类包括O3、卤素及Fe3+、Cu2+、Co2+和它们的配合物。鲁米诺在碱性溶液下可在催化剂作用下,被H2O2等氧化剂氧化成3-氨基邻苯二酸的激发态中间体,当其回到基态时发出光子。鲁米诺的发光光子产率约为0.01,最大发射波长为425 nm。 2. 吖啶酯类标记的化学发光免疫分析 吖啶酯用于化学发光免疫分析方法(ChemiluminescentImmunoassay,CLIA)由于热稳定性不是很好,Klee 等研究合成了更稳定的吖啶酯衍生物。在含有H2O2的碱性条件下,吖啶酯类化合物能生成一个有张力的不稳定的二氧乙烷,此二氧乙烷分解为CO2和电子激发态的N-甲基吖啶酮,当其回到基态时发出一最大波长为430 nm 的光子。吖啶酯类化合物量子产率很高,可达0.05。吖啶酯作为标记物用于免疫分析,发光体系简单、快速,不需要加入催化剂,且标记效率高,本底低。吖啶酯或吖啶磺酰胺类化合物应用于CLIA,通常采用HNO3+H2O2和NaOH 作为发光启动试剂,有些在发光启动试剂中加入Triton X-100,CTAC,Tween-20等表面活性剂以增强发光。 (二)化学发光酶免疫分析 化学发光酶免疫分析(Chemiluminescent Enzyme Immunoassay,CLEIA)是以酶标记生物活性物质进行免疫反应,免疫反应复合物上的酶再作用于发光底物,在信号试剂作用下发光,用发光信号测定仪进行发光测定。目前常用的标记酶为辣根过氧化物酶(HRP)和碱性磷酸酶(ALP),它们有各自的发光底物。HRP 最常用发光底物是鲁米诺及其衍生物。在CLEIA 中,使用过氧化物酶标记抗体,进行免疫反应后,利用鲁米诺作为发光底物,在过氧化物酶和起动发光试剂(NaOH和H2O2)作用下鲁米诺发光,酶免疫反应物中酶的浓度决定了化学发光的强度。此传统的化学发光体系(HRP-H2O2-lumi-nol)为几秒内瞬时闪光,存在发光强度低、不易测量等缺点。后来,在发光系统中加入增强发光剂,以增强发光信号,并在较长时间内保持稳定,便于重复测量,从而提高分析灵敏度和准确性。碱性磷酸酶(ALP)已广泛用于酶联免疫分析和核酸杂交分析。 碱性磷酸酶和1,2-二氧环己烷构成的发光体系是目前最重要、最灵敏的化学发光体系。这类体系中具有代表性的是Bronstein 等提出的ALP-AMPPD 发光体系。AMPPD 为1,

常见化学发光免疫分析技术比较

常见化学发光免疫分析技术比较 1、化学发光免疫分析 化学发光免疫分析(chemiluminescence immunoassay,CLIA),英音:[,kemi,lju:mi'nes?ns] [,imju:n?u?'sei] 是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。 CLIA是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术。是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。 1.1、化学发光免疫分析原理 化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hv) , 利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。 1.2、化学发光免疫分析类型

化学发光免疫分析法以标记方法的不同而分为两种: (1)化学发光标记免疫分析法; (2)酶标记、以化学发光底物作信号试剂的化学发光酶免疫分析法 1.2.1化学发光标记免疫分析 化学发光标记免疫分析又称化学发光免疫分析(CL IA ) , 是用化学发光剂直接标记抗原或抗体的免疫分析方法。常用于标记的化学发光物质有吖啶酯类化合物-acridiniumester (AE) , 是有效的发光标记物,其通过起动发光试剂(NaOH-H2O2) 作用而发光, 强烈的直接发光在一秒钟内完成, 为快速的闪烁发光。吖啶酯作为标记物用于免疫分析, 其化学反应简单、快速、无须催化剂; 检测小分子抗原采用竞争法, 大分子抗原则采用夹心法, 非特异性结合少, 本底低; 与大分子的结合不会减小所产生的光量, 从而增加灵敏度。 1.2.2化学发光酶免疫分析 从标记免疫分析角度, 化学发光酶免疫分析(chemiluminescent enzyme immunoassay,CLEIA ) , 应属酶免疫分析, 只是酶反应的底物是发光剂, 操作步骤与酶免分析完全相同: 以酶标记生物活性物质(如酶标记的抗原或抗体) 进行免疫反应, 免疫反应复合物上的酶再作用于发光底物, 在信号试剂作用下发光, 用发光信号测定仪进行发光测定。目前常用的标记酶为辣根过氧化物酶(HRP) 和碱性磷酸酶(AL P) , 它们有各自的发光底物。 12.2.1HRP 标记的CLEIA

石墨炉原子吸收中基体干扰的产生和消除干扰的方法

石墨炉原子吸收中基体干扰的降低和消除 摘要:石墨炉原子吸收光谱法中的干扰相对比较少,但在某些情况下也是不可忽视的。石墨炉原子吸收光谱法中的干扰大体可分为物理干扰、电离干扰、光谱干扰及化学干扰四类。其中化学干扰是主要的干扰来源。它是选择性干扰,即对试样中各种元素的影响各不相同,亦称基体干扰。 离干扰元素。后者能使被测元素得到富集,有利于提高测定灵敏度,但手续麻烦,所以加入消除基体干扰的方法有:加入集体改进剂(释放剂、保护剂和干扰缓冲剂)及利用化学分集体改进剂是降低或消除石墨炉原子吸收中基体干扰的主要手段。Ediger首先提出了硝酸镍和硝酸铵等无机试剂可作为基体改进剂用于石墨炉原子吸收测定某些金属元素。到目前,基体改进剂约有50余种,它们分为无机试剂、有机试剂和活性气体三种类型。 关键词:石墨炉基体干扰基体改进剂化学干扰 一、前言 电热源原子吸收光谱法即石墨炉原子吸收法以其固有的高灵敏度噁选择性成为生物和环境样品中测定痕量元素最有效的方法之一。然而,问题在于样品由复杂和易变的材料组成。在一个脉冲加热的电热原子化器中常常出现潜在的化学干扰影响。这种化学干扰经常导致对原子吸收信号的抑制。减少这种干扰的方法有:恒温炉,石墨平台,探针等。样品在石墨炉中的化学处理四一种简单的减少干扰的方法,尤其在大量基体的样品中测定易挥发元素。本文介绍了石墨炉原子吸收法中干扰的种类及消除干扰的方法,其中主要讲了化学干扰(基体干扰)的消除方法。 二、石墨炉原子吸收中基体干扰的产生和消除干扰的方法 1 物理干扰及其消除方法 物理干扰是指试样在转移,灰化和原子化过程中,由于试样任何物理性质的变化而引起的原子吸收信号强度变化的效应。物理干扰属非选择性干扰。 物理干扰产生的原因 在石墨炉原子吸收中,试样溶液的性质发生任何变化,都直接或间接的影响原子阶级效率。如试样的粘度生生变化时,则影响吸喷速率进而影响雾量和雾化效率。试样的表面张力和粘度的变化,将影响雾滴的细度、脱溶剂效率和蒸发效率,最终影响到原子化效率。当试样中存在大量的基体元素时,它们在石墨管中蒸发解离时,不仅要消耗大量的热量,而且在蒸发过程中,有可能包裹待测元素,延缓待测元素的蒸发、影响原子化效率。 物理干扰一般都是负干扰,最终影响火焰分析体积中原子的密度。 2 光谱干扰及其消除方法

相关文档
相关文档 最新文档