文档库 最新最全的文档下载
当前位置:文档库 › 2.5 函数的连续性答案

2.5 函数的连续性答案

2.5  函数的连续性答案
2.5  函数的连续性答案

高等数学II 练习题 第二章 极限与连续

________系_______专业 班级 姓名______ ____学号_______

习题2.5 函数的连续性

一.选择题

1.函数

)(x f 在点0x 处有定义,是)(x f 在0x 处连续的

( A )

(A )必要不充分条件 (B )非必要又非充分条件

(C )充要条件 (D )充分又非必要条件

2.函数)(x f 在点0x 处连续的充要条件是当0x x →时 ( C )

(A ))(x f 有极限 (B ))(x f 的左右极限都存在

(C )0()()f x f x -是无穷小量 (D ))(x f 是无穷小量 3.要使sin 6,0,0()sin 22,

0x x x f x x k x ππ?-<<<

在0x =处连续,必须使k = ( D ) (A )0 (B )1 (C )16

(D )6 4.函数0,0()1,0x f x x x

≤??=?>??在点0x =不连续是因为 ( C )

(A )(0)f -

不存在 (B)(0)(0)f f -≠

(C )(0)f +不存在 (D)()f x 在点0x =处无定义 5.函数34122+--=x x x y 间断点的个数为 ( B )

(A )1 (B )2 (C )3 (D )4

二.填空题

1.如果1sin 0()01sin 0x

x x f x a x x b x x ??

在0x =处连续,则a b += 。

2.为使)1ln(1)(x xe x

x f +=在0=x 处连续,则需补充定义0()f = 。 3.6

33)(223-+--+=x x x x x x f 的连续区间是 。 4.若1,0()0,0

x f x x ≥?=?

21(,3)(3,2)(2,)-∞--+∞或或(,0)[0,)-∞+∞或

1.研究函数???≤<-≤≤=2

1210)(2x x x x x f 的连续性,并画出其图形。

2.求下列函数间断点并判断其间断点类型,若是可去间断点,请补充定义使之连续:

(1)2

3122+--=x x x y

(2)201()211212x f x x x x x ?

21111,1()(1)lim ()lim 1,(1)1(1)lim ()lim(2)1(1)(1)(1)()[0,2]x x x x x f x f f x x f f f x x f f f f x --++-→→+→→-+=======-===解:由题意知是唯一可能的不连续点,因为,,

所以,所以在上连续。

22112222,1211lim lim 21322

1211lim lim ,2322x x x x x x x x x x x x x y x x x x x x →→→→==-+==-∴=-+-==--+==∞∴=-+-解:由题意知与是该函数的可能间断点,

,是函数的可去间断点(第一类间断点),补充定义时,,可使函数在该点连续。

是函数的无穷间断点(第二类间断点)。,12(1)0,(1)3,(1)3,1(2)5,(2)5,(2),,2(2)5x x f f f x f f f x f -+-+=====∴===∴==解:由题意知与是该函数的可能间断点,

,是函数的跳跃间断点(第一类间断点),不存在是函数的可去间断点(第一类间断点),补充定义,可使函数在该点连续。

函数-在一点的连续概念

第2章 连续函数 §2.1 连续函数的概念 【导语】 连续是客观世界中最常见的现象,如岁月的流逝、植物的生长、物体的运动等都是连续的.函数的连续性反映了函数在一点的值与这点附近的函数值之间的关系,是函数在一点的性质.如何刻画函数的连续性,连续函数具有什么性质,这就是第2章要解决的问题.本讲主要介绍函数在一点连续的定义。 【正文】 一、函数在一点连续的概念 定义1 设函数()f x 在0x 的某邻域内有定义,如果0 0lim ()()x x f x f x →=成立,那么就称函 数()f x 在0x 处连续,0x 称为函数()f x 的连续点. 一般地,0x x x ?=-称为自变量的改变量,0000()()()()()f x f x f x f x x f x ?=-=+?-称为函数()f x 在0x 处的改变量.函数()f x 在0x 连续指的是:当0x ?→时,有0()0f x ?→,即00 lim ()0x f x ?→?=. 也就是说,函数()f x 在0x 连续指的是:对任意的正数ε,都存在正数δ,使得当x δ?<时,就有0()f x ε?<成立. 从定义可以看出,连续性是函数的一种点性质.函数()f x 在0x 处是否连续与它在其他点是否连续没有关系. 例如对于函数 ,, (),,x x f x x x ∈?=? -?? Q Q 因为0 lim ()0x f x →=,且(0)0f =,所以()f x 在0x =处连 续.由于在00x ≠时极限0 lim ()x x f x →不存在,所以()f x 也 x 0 x 0y=x y x O

只有0x =这一个连续点. 从运算的角度看,连续性保证了函数求值运算与极限运算满足交换律,即 0lim ()()(lim )x x x x f x f x f x →→==. 例1 若函数21 ,1,()1,1x x f x x a x ?-≠-? =+??=-? 在1x =-处连续,求a 的值. 解 因为()f x 在1x =-处连续,所以 1 lim ()(1)x f x f →-=-. 又因为 2111 1lim ()lim lim(1)21x x x x f x x x →-→-→--==-=-+,(1)f a -=, 所以 2a =-. 例2 利用定义证明:若函数()f x 在0x 处连续,则函数()f x 在0x 处连续. 证 对任意的正数ε,因为函数()f x 在0x 处连续,所以存在正数δ,当0||x x δ-<时,有 0()()f x f x ε-<。 又因为00()()()()f x f x f x f x --≤,所以当0||x x δ-<时,有0()()f x f x ε-<。 所以函数()f x 在0x 处连续. Remark:1,, ()1,.x f x x ∈?=?-?? Q Q 例3 利用定义证明函数()e x f x =在任意点0x 处连续. 证 对任意实数0x 和x ,000e e e (e 1)x x x x x --=-. 对任意正数ε,不妨设0e x ε<.要使 0e e x x ε-<, 即要使 00e (e 1)x x x ε--<, 即 0001e e 1e x x x x εε----<<+,

数学分析(华东师大)第四章函数的连续性

第四章函数的连续性 §1 连续性概念 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说, 连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一函数在一点的连续性 定义1 设函数f 在某U( x0 ) 内有定义.若 lim x → x f ( x ) = f ( x0 ) , ( 1) 则称f 在点x0 连续. 例如, 函数f ( x ) = 2 x + 1 在点x = 2 连续,因为 又如,函数li m x → 2 f ( x) = lim x →2 ( 2 x + 1 ) = 5 = f (2 ) . f ( x) = x sin 1 x , x ≠ 0, 0 , x = 0 在点x = 0 连续,因为 lim x →0f ( x) = lim x →0 x sin 1 x= 0 = f ( 0) . 为引入函数y = f ( x ) 在点x0 连续的另一种表述, 记Δx = x - x0 , 称为自变量x( 在点x0 ) 的增量或改变量.设y0 = f ( x0 ) , 相应的函数y ( 在点x0 ) 的增量记为 Δy = f ( x ) - f ( x0 ) = f ( x0 + Δx) - f ( x0 ) = y - y0 . 注自变量的增量Δx或函数的增量Δy 可以是正数,也可以是0 或负数. 引进了增量的概念之后,易见“函数y = f ( x ) 在点x0 连续”等价于 lim Δy = 0 . Δx→0

极限的概念_函数的连续性详解

第二章.极限概念函数的连续性 对于函数的概念,我们总是能够从日常直观出发,就能很好地加以理解, 因为毕竟因果关系的观念在我们的意识当中是非常深根蒂固的。那么要真正 严格地理解极限的观念,就不是那么自然的了。 对于极限的观念,最为关键的问题是,如何定量地加以描述,并把这种描述作为一般的判别标准。 这个问题实际上困扰了人们几百年,一直到19世纪才加以解决的。 数列的极限描述(数列存在极限判别定理,定义法、柯西法、子数列法、夹逼法、单调有界法) 设存在一个数列,也就是一个数值的集合,这个集合的元素可以一个一个的数出来,同时每一个元素都可以加上唯一的标志,而自然数是最为适宜 作这件工作的。比如说,把一个数列写成这样的样子:a i,a2,a3,?…,或者简单地记成{a n}。 观察这个数列取值变化,有的数列变化具有下面的变化规律: 对于数列a i,a2,a3,.…,假设存在一个确定的常数a,现在我们考虑变量a n a (显然这是一个反映数列数值变化的,随着n而发生变化的变量。),如果我们任意找到一个数,无论它的数值有多么大或者多么小, 我们总是能够在这个数列当中找到一个元素a N,使得在这个a N元素后面 的所有的数列元素,都使得相应的变量a n a的值小于, 换一句话来说,对于任意的,总是存在一个N,当n>N时, 总是有a n a成立 这时我们就把a称为数列a1, a2,a3,...的极限。并且称数列 lim a n a a i,a2,a3,.…收敛于极限a。我们使用记号n 来表示该数列极限。 否则我们就说数列{a n}是发散的。

这就是一个数列收敛于一个极限或者说存在一个极限的定义。 在这个定义里面,最为关键的地方,也是初学者最为困难的地方有两个: 1。数值是任意的。就是说只要存在一个的数值不满足定义的条件, 就不能说数列收敛于极限a。 这里初学者感到非常困难的地方是,我们是不是一定要对所有可能的 都进行检验,才能得到最后的判断呢?不是的,在实际问题中,由于我们的 目的是希望知道变量a n a是否越来越小,一般只要取大于0,并且足够小(我们在有关极限的定义当中,总是先假设了这点,),当然这样不能减少 我们对的任意取值进行验证的任务,但是我们所处理的数列,总是按照某 种特定的规律来变化,一般从这个数列的变化规律本身就可以找到由决定 的N的值,使得a n a小于,或者是找到反例。从而实现对所有可能的们进行判断?不过,我们的课程在这个方面的要求并不是过高的,因此我们只是需要 考虑一些比较简单的例子,而我们的精力应该集中在对于极限思想的理解。 2.满足条件的n必须取遍所有大于N的自然数。 初学者往往会觉得这是不可能的,实际上,我们并不需要对所有大于N 的n值进行检验,同样由于数列的变化是具有规律的,从数列本身的规律,我们一般总是能够通过有限的步骤,来得到所需要的判断。 那么数列的规律是什么呢?一般说来,一个数列的元素总是一个由变量 n决定的函数,这里变量n取遍自然数,就生成了数列的全部项。这个函数的表达式称 为通项a n的通项公式。 不过通项公式有时候并非完全只是n的函数,有时由变量n和第n项之 前的项所决定,这时,通项公式表现为一个递推公式,这种情况的处理比较 复杂,我们不过多的涉及。 利用极限的定义和应用不等式(绝对值不等式?)对一个数列进行检验是否存在极限,实际上是预先假设知道了这个极限是多少,所谓的检验只不过是证明这个数列的极限是否是这个给出的极限值。 答疑解难。 1 .数列的极限的定义当中,与N的取值是一一对应的吗? [答]:不是。 初学者对于极限的定义的叙述往往理解不够深入,并且常常产生歧义,这个问题就是最为典型的。 尽管在根据定义进行具体的极限分析时,常常是由推出N的表达式, 但这并不是意味着这两个变量之间具有一定的函数关系,这两个变量之间确 实是具有一定的关系,但决不是函数的关系,而是一种两个区间的相互影响与决定的关系,实际上,我们给出一个的意思,实际上是给出了一个区间, 同样由此而得到的N,也是一个区间的概念,而不是两个数值变量的关系,因此N的求法是很多形式的,实际问题当中,我们只是选择了最为方便的形式而已。 那么在不知道预先极限值时,有没有方法验证数列是否有极限,这就是相当重要的柯西收敛原理:

高等数学第4章第1节连续性概念

第四章 函数的连续性 ● 引言 在数学分析中,要研究种种不同性质的函数,其中有一类重要的函数,就是连续函数.从今天开始,我们就来看看这类函数的特点.主要讲以下几个问题: 1.什么是“函数的连续性”? 2.“间断”或“不连续”有哪些情形? 3.连续函数有哪些性质? 4.初等函数的连续性有何特点? §1 连续性概念 ● 引言 “连续”与“间断”(不连续)照字面上来讲,是不难理解的.例如下图1中的函数()y f x =,我们说它是连续的,而图2中的函数在0x 处是间断的. 由此可见,所谓“连续函数”,从几何上表现为它的图象是坐标平面上一条连绵不断的曲线.而所谓“不连续函数”从几何上表现为它的图象在某些点处“断开”了. 当然,我们不能满足于这种直观的认识,因为单从图形上看是不行的,图形只能帮助我们更形象地理解概念,而不能揭示概念的本质属性. 例如,可以举出这样的例子,它在每点都连续但却无法用图形表示出来(如Rieman 函数). 因此,为了给出“连续”的定义,需要对此作进一步分析和研究. 从图2看出,在0x 处,函数值有一个跳跃,当自变量从1x 左侧的近傍变到1x 右侧的近旁时,对应的函数值发生了显著的变化.而在其它点处(如1x 处),情况则完全相反.:当自变量从1x 向左侧或向右侧作微小改变时,对应的函数值也只作微小的改变;这就是说,当自变量x 靠近1x 时,函数值就靠近1()f x ,而当1x x →时,1()()f x f x →.换句话说,当1x x →时,()f x 以1()f x 为极限,即1 1lim ()()x x f x f x →=. 根据这一分析,引入下面的定义: 一 函数在一点的连续性 1. 函数f 在点0x 连续的定义 定义1(f 在点0x 连续)设函数f 在某0()U x 内有定义,若0 0lim ()()x x f x f x →=,则称f 在点0x 连续. 注 00 0lim ()()(lim )x x x x f x f x f x →→==,即“f 在点0x 连续”意味着“极限运算与对应法则f 可交换. 2.例子 例1.0,sin ,cos x R x x ?∈在0x 处连续. 例2.2 lim(21)5(2)x x f →+==.

函数连续性

第四章 函数的连续性 §1 连续性概念 Ⅰ. 教学目的与要求 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. Ⅱ. 教学重点与难点: 重点: 函数连续性的概念. 难点: 函数连续性的概念. Ⅲ. 讲授内容 连续函数是数学分析中着重讨论的一类函数. 从几何形象上粗略地说,连续函数在坐标平面上的图象是一条连绵不断的曲线.当然我 们不能满足于这种直观的认识,而应给出函数连续性的精确定义,并由此出发研究连续函数 的性质.本节中先定义函数在一点的连续性和在区间上的连续性. 一 函数在一点的连续性 定义1 设函数f 在某U ()0x 内有定义.若()x f x x 0 lim →=()0x f , 则称f 在点0x 连续. 例如,函数连续()x f 12+=x 在点2=x 连续,因为 2lim →x ()x f =2 lim →x ()()2512f x ==+ 又如,函数()x f ???=0 ,00,1sin =≠x x x x ,在点0=x 连续,因为 ()()001sin lim lim 00f x x x f x x ===→→ 为引入函数()x f y =在点0x 连续的另一种表述,记0x x x -=?,称为自变量x (在点 0x )的增量或改变量.设()00x f y =,相应的函数y (在点0x )的增量记为: ()()()()0000y y x f x x f x f x f y -=-?+=-=? 注 自变量的增量x ?或函数的增量y ?可以是正数,也可以是0或负数.引进了增 量的概念之后,易见“函数()x f y =在点0x 连续”等价于0lim 0 =?→?y x . 由于函数在一点的连续性是通过极限来定义的,因而也可直接用δε-方式来叙述, 即:若对任给的0>ε,存在0>δ,使得当δ<-0x x 时有 ()()ε<-0x f x f (2) 则称函数f 在点0x 连续.

极限的概念函数的连续性

第二章.极限概念 函数的连续性 如果说对于函数的概念,我们总是能够从日常直观出发,就能很好地加以理解,因为毕竟因果关系的观念在我们的意识当中是非常深根蒂固的。那么要真正严格地理解极限的观念,就不是那么自然的了。 对于极限的观念,最为关键的问题是,极限的模糊形象是谁都有的,但是如何定量地加以描述,从而是可以应用来作为一般的判别标准的呢? 这个问题实际上困扰了人们几百年,一直到19世纪才加以解决的。 数列的极限。 数数是人类最原始的数学活动,应该说,对于数数我们没有更多的数学方面的分析可言的了,或者说至少从数学的角度而言,数数是一个足够清楚而明确的行为。因此我们引入极限这么一个抽象概念就从数数开始。 最为主要的一种事物运动变化的方式,是一种给人以连续性的感觉的变化。对于这样的变化方式,我们可以有两种研究方式,一是属于物理学范畴的研究方式,就是说去探讨事物变化发展中表现出来的连续性,究竟是一个什么样的过程。另一种研究方式是并不考虑所谓连续性究竟是什么回事,而是首先人为地定义一种明确的可以定量处理的连续性,使得我们对于一般事物变化发展的描述都具有这种连续性的特点,并且总是在这种应用当中,随时对实际过程与理论推理进行验证与对比,从而得到使用这种人为连续性的观念的合理性,一直到实验表明再也不能使用这个人为前提为止。 确实,我们应该学会承认,当我们对客观事物进行描述与分析时,肯定是要基于一些前提条件或者说假设的,问题的关键,不是在于我们是不是应该首先证明了这些前提的正确性,才能再来进行随后的工作,而是承认任何的理论工作都只是相对的,是否有用必须经过实验的证明才能决定。 现在我们的主要工作就是建立一个关于日常生活的连续性的严格表述。而这个概念是可以从我们进行最为简单的数数开始的。 设存在一个数列,也就是一个数值的集合,这个集合的元素可以一个一个的数出来,同时,每一个元素都可以加上唯一的标志,而自然数是最为适宜作这件工作的。比如说,把一个数列写成这样的样子:,....,,321a a a ,或者简单地记成{}a n 。 显然,可以想象,随着我们的数数,这个数列的取值,就会发生某种变化,(当然,对于总是取同一个数值的数列,我们没有什么兴趣。)这种变化的过程应该说是相当明确而没有任何含糊与抽象的地方。 然后,我们来规定一种具有特定规律的数列变化过程: 对于数列,....,,321a a a ,假设存在一个确定的常数a ,现在我们考虑变量a a n -(显然这是一个反映数列数值变化的,随着n 而发生变化的变量。),如果我们任意找到一个数ε,无论它的数值有多么大或者多么小,我们总是能够在这个数列当中找到一个元素a N ,使得在这个元素后面的所有的数列元素,都使得相应的变量a a n -的数值小于ε,换一句话来说,就是,对于任意的ε,总是存在一个N ,使得当n>N 时,总是有 ε<-a a n 成立,这时我们就把a 称为数列,...,,321a a a 的极限。并且称数列,....,,321a a a 收敛于极限a 。我们使用记号a a n n =∞→lim 来表示这点。否则我们就说数列{}a n 是发散的。 这就是一个数列收敛于一个极限或者说存在一个极限的定义。 在这个定义里面,最为关键的地方,也是初学者最为困难的地方有两个: 1。数值ε是任意的。实际上也就是说,只要存在一个ε的数值不满足定义的条件,就

函数的连续性与间断点

第七节 函数的连续性与间断点 一、函数的连续性 1. 增量:变量x 从初值1x 变到终值2x ,终值与初值的差叫变量x 的增量,记作 x ?,即x ?=1x -2x 。(增量可正可负)。 例1 分析函数2x y =当x 由20=x 变到05.20=?+x x 时,函数值的改变量。 2.函数在点连续的定义 定义1:设函数y =)(x f 在点0x 的某个邻域内有定义,如果自变量x 的增量 x ?=0x x -趋向于零时,对应的函数增y ?=)()(0x f x f -也趋向于零,则称函数y =)(x f 在点0x 处连续。 定义2:设函数y =)(x f 在点0x 的某个邻域内有定义,如果函数)(x f 当 0x x →时的极限存在,即)()(lim 00 x f x f x x =→,则称函数y =)(x f 在点0x 处连续。 定义3:设函数y =)(x f 在点0x 的某个邻域内有定义,如果对任意给定的正数 ε,总存在正数δ,使得对于适合不等式δ<-0x x 的一切x ,所对应的函数值 )(x f 都满足不等式:ε <-)()(0x f x f ,则称函数y =)(x f 在点0x 连续。 注:1、上述的三个定义在本质上是一致的,即函数)(x f 在点0x 连续,必须同时满足下列三个条件:(1) 函数y =)(x f 在点0x 的某个邻域内有定义(函数y =)(x f 在点0x 有定义) ,(2) )(lim 0 x f x x →存在;(3))()(lim 00 x f x f x x =→。 3.函数y =)(x f 在点0x 处左连续、右连续的定义: (1)函数y =)(x f 在点0x 处左连续?)(x f 在(]00,x x δ-内有定义,且 )()(lim 000 x f x f x x =-→(即)()0(00x f x f =-)。 (2)函数y =)(x f 在点0x 处右连续?)(x f 在[)δ+00,x x 内有定义,且 )()(lim 000 x f x f x x =+→(即)()0(00x f x f =+)。 显然,函数y =)(x f 在点0x 处连续?函数y =)(x f 在点0x 处既左连续又右连

函数的连续性

第九节 函数的连续性和间断点 有了极限的概念,我们就可以来讨论函数的一种重要特性——连续性。首先,我们应注意到连续性也是客观现实的反映,是从许多自然现象的观察中抽象出来的一种共同特性。如气温T 随时间t 的变化而连续变化,铁棒长度l 随着温度u 的变化而连续变化等。它们的共同特性是:一方面在变化,另一方面是在逐渐变化的。可在很短一段时间内,T 的变化很小;同样当温度u 变化很小时,l 的变化也很小。这些现象反映在数学上就是自变量有一个微小的变化时,函数的变化也是微小的。下面我们就专门来讨论这种概念。 一、函数的连续性 1. 预备知识 改变量:设变量u 从它的一个初值1u 变到终值2u ,终值与初值的差21u u -,就叫u 的改变量,记作21u u u ?=-。改变量也叫增量。 注意:①1u ,2u 并不是u 可取值的起点和终点,而是u 变化过程中从1u 变到 2u 。 ②u ?可正可负。 ③u ?是一个整体记号,不是某个量?与变量u 的乘积。 2. 函数()y f x =在0x x =定义1 当自变量x 在点0 x 的改变 量x ?为无穷小时,相应函数的改变量 ()()()()000y f x x f x f x f x ?=+?-=- 也是同一过程中的无穷小量,即0 lim x y ?→?则称()f x 在0x 处连续,见图1-37. 定理1 ()f x 在0x 处连续的充要条 件是()()0 0lim x x f x f x →=。 证明 由定义1, ()()()()()000 000lim 0lim lim lim 0lim . x x x x x x x x x y f x f x f x f x f x ?→→→→→?=??? ?-=?= 由定理1,我们可将定义1改写为以下定义2. 定义2 如果0ε?>,0δ?>,当0x x δ-<时,有()()0f x f x ε-<,则()f x 在0x 处连续。 3. 函数()y f x =在点0x 连续的要求 ⑴()f x 在点0x 有意义,即有确定的函数值()0f x ; ⑵()0 lim x x f x →存在; ⑶极限值=函数值,即()()0 0lim x x f x f x →=。

函数的连续性与间断点(重点内容全)

函数的连续性与间断点 一、函数的连续性 1. 增量:变量x 从初值1x 变到终值2x ,终值与初值的差叫变量x 的增量,记作x ?,即x ?=1x -2x 。(增量可正可负)。 例1 分析函数2x y =当x 由20=x 变到05.20=?+x x 时,函数值的改变量。 2.函数在点连续的定义 定义1:设函数y =)(x f 在点0x 的某个邻域内有定义,如果自变量x 的增量x ?=0x x -趋向于零时,对应的函数增y ?=)()(0x f x f -也趋向于零,则称函数y =)(x f 在点0x 处连续。 定义2:设函数y =)(x f 在点0x 的某个邻域内有定义,如果函数)(x f 当 0x x →时的极限存在,即)()(lim 00 x f x f x x =→,则称函数y =)(x f 在点0x 处连续。 定义3:设函数y =)(x f 在点0x 的某个邻域内有定义,如果对任意给定的正数ε,总存在正数δ,使得对于适合不等式δ<-0x x 的一切x ,所对应的函数值)(x f 都满足不等式:ε<-)()(0x f x f ,则称函数y =)(x f 在点0x 连续。 注:1、上述的三个定义在本质上是一致的,即函数)(x f 在点0x 连续,必须同时满足下列三个条件:(1) 函数y =)(x f 在点0x 的某个邻域内有定义(函数y = )(x f 在点0x 有定义),(2) )(lim 0x f x x →存在;(3))()(lim 00 x f x f x x =→。 3.函数y =)(x f 在点0x 处左连续、右连续的定义: (1)函数y =)(x f 在点0x 处左连续?)(x f 在(]00,x x δ-内有定义,且)()(lim 000x f x f x x =-→(即)()0(00x f x f =-)。 (2)函数y =)(x f 在点0x 处右连续?)(x f 在[)δ+00,x x 内有定义,且)()(lim 000x f x f x x =+→(即)()0(00x f x f =+)。 显然,函数y =)(x f 在点0x 处连续?函数y =)(x f 在点0x 处既左连续又右连

函数的连续性与间断点

第 6 次课 2 学时

§1.9 函数的连续性与间断点 一、函数的连续性 连续性是函数的重要性态之一,在实际问题中普遍存在连续性问题,如气温的变化,物体速度的变化,动植物的生长等。这些现象在函数上的反映,就是函数的连续性问题。 1.函数的增量 一个变量u 由初值1u 变到终值2u ,终值与初值之差称为u 的增量( 或改变量),记作 1,u u ??-2即 u=u 对于函数()y f x =,设它在0x 及0x 的某个邻域内有定义,在0x 处给自变量 x 一个增量x ?,则函数有相应的增量00((y y f x f x ??=?, +x)- ) (几何解释) 21()2 1.f x x =-??例设分别求: (1) x 由1变到1.2时, (2) x 由1变到0.8时, 的增量x 和y . 解:(略) 2.函数的连续性 如果自变量 x 的增量 x ?很小时,函数y 的增量y ? 也很小,则说明函数是随着自变量的渐变而渐变的,这时称函数是连续的。 定义 1:设)(x f y =在0x 的某邻域内有定义,如果当自变量x 在0x 的增量0x ?→时,相应函数的增量00()()0y f x x f x ?=+?-→,就称函数)(x f y =在0x 点处连续。 注 :)(x f 在0x 点连续0lim 0x y ?→??=。 例2 :证明函数2 ()21f x x =-在x=1 处连续。 证明:函数的定义域为(),-∞+∞,在x=1 的邻域内有定义。 ()()()()2222002:1112*1142lim lim 420()211x x x x x x y x x f x x x ?→?→→+?→??????---=?+??? ???=?+?=? ?=-= , f(x): f(1)f(1+x) y=f(1+x)-f(1)=21+x 故 在 处连续 . (类似可证该函数在其定义域内的任意一点处都连续。)

函数的连续性与间断点共5页

一、函数的连续性 变量的增量: 设变量u 从它的一个初值u 1变到终值u 2, 终值与初值的差 u 2u 1就叫做变量u 的增量, 记作u , 即u u 2u 1. 设函数y f (x )在点x 0的某一个邻域内是有定义的. 当自变量 x 在这邻域内从x 0变到x 0x 时, 函数y 相应地从f (x 0)变到 f (x 0 x ), 因此函数y 的对应增量为 y f (x 0 x ) f (x 0). 函数连续的定义 设函数y f (x )在点x 0 的某一个邻域内有定义, 如果当自变量的增量 x x x 0 趋于零时, 对应的函数的增量 y f (x 0x ) f (x 0 )也趋于零, 即 lim 0 =?→?y x 或)()(lim 00 x f x f x x =→, 那么就称函数y f (x )在点x 0 处连续. 注 ①0)]()([lim lim 000 =-?+=?→?→?x f x x f y x x ②设x x 0+x , 则当 x 0时, x x 0, 因此 lim 0 =?→?y x 0 )]()([lim 00 =-→x f x f x x )()(lim 00 x f x f x x =→. 函数连续的等价定义2:设函数y f (x )在点x 0的某一个邻域内有定义, 如果对于任意给定义 的正数 , 总存在着正数 , 使得对于适合不等式

|x x 0|< 的一切x , 对应的函数值f (x )都满足不等式 |f (x )f (x 0)|< , 那么就称函数y f (x )在点x 0处连续. 左右连续性: 如果)()(lim 00x f x f x x =- →, 则称y f (x )在点0x 处左连续. 如果)()(lim 00x f x f x x =+ →, 则称y f (x )在点0x 处右连续. 左右连续与连续的关系: 函数y f (x )在点x 0处连续?函数y f (x )在点x 0处左连续且 右连续. 函数在区间上的连续性: 在区间上每一点都连续的函数, 叫做在该区间上的连续函数, 或者说函数在该区间上连续. 如果区间包括端点, 那么函数在右端点连续是指左连续, 在左端点连续是指右连续. 连续函数举例: 1. 如果f (x )是多项式函数, 则函数f (x )在区间(¥, ¥) 内是连续的. 这是因为, f (x )在( ¥, ¥)内任意一点x 0处有定义, 且 ) ()(lim 00 x P x P x x =→ 2. 函数 x x f =)(在区间[0, ¥)内是连续的. 3. 函数y sin x 在区间( ¥, ¥)内是连续的. 证明 设x 为区间( ¥, ¥)内任意一点. 则有

《实变函数》第四章 可测函数

第四章 可测函数(总授课时数 14学时) 由于建立积分的需要,我们还必须引进一类重要的函数——Lebesgue 可测函数,并讨 论其性质和结构. §1 可测函数及其性质 教学目的 本节将给出可测函数的定义并讨论其基本性质 教学要点 可测函数有若干等价的定义. 它是一类范围广泛的函数, 并且有很好 的运算封闭性. 可测函数可以用简单函数逼近, 这是可测函数的构造性特征. 本节难点 可测函数与简单函数的关系. 授课时数 4学时 —————————————————————————————— 1可测函数定义 定义:设()f x 是可测集E 上的实函数(可取±∞),若[],f a a R E >?∈可测,则称()f x 是E 上的可测函数. 2可测函数的性质 性质1 零集上的任何函数都是可测函数。 注:称外测度为0的集合为零集;零集的子集,有限并,可数并仍为零集 性质2 简单函数是可测函数 若1n i i E E ==? (i E 可测且两两不交),()f x 在每个i E 上取常值i c ,则称()f x 是E 上的 简单函数; 1()()i n i E i f x c x χ==∑ 其中1()0i i E i x E x x E E χ∈?=?∈-? 注:Dirichlet 函数是简单函数 性质3 可测集E 上的连续函数()f x 必为可测函数 设()f x 为E 上有限实函数,称()f x 在0x E ∈处连续 00(,)((),)0,0,()x f x f O E O δεεδ?>?>??若使得 对比:设()f x 为(),a b 上有限实函数,0()(,)f x x a b ∈在处连续 0lim ()()x x f x f x →=若

函数的连续性的例题与习题

函数的连续性的例题与习题 函数连续性这个内容所涉及到的练习与考试题目,大致有3大类。第一类是计算或证明连续性;第二类是对间断点(或区间)的判断,包括间断点的类型;第三类是利用闭区间上的连续函数的几个性质(最值性质,零点存在性质),进行理论分析。 下面就这三大类问题,提供若干例题和习题。还是那句老话:看到题目不要看解答,而是先思考先试着做!这是与看文学小说的最大区别。 要提醒的是,例题里有不少是《函数连续性(一)(二)》中没有给出解答的例题,你事先独立做了吗?如果没有做,是不会做好是根本不想做,还是没有时间? 一.函数的连续 例(例(一),这个序号值的是《函数连续性(一)中的例题号,请对照) 设()f x 满足()()()f x y f x f y +=+,且()f x 在0x =连续。证明:()f x 在任意点x 处连续。 分析:证明题是我们很多同学的软肋,不知道从何下手。其实,如果你的基本概念比较清晰,证明题要比计算题号做,因为它有明确的方向,不像计算题,不知道正确的答案是什么 在本题里,要证的是“()f x 在任意点x 处连续”,那么我们就先固定一个点x ,用函数连续的定义来证明在x 处连续。你可能要问:函数连续的定义有好几个,用哪一个? 这要看已知条件,哪个容易用,就用那一个。在本题中,提供了条件()()()f x y f x f y +=+,也就是()()()f x y f x f y +-=,你的脑海里就要想到,如果设y x =?,那么就有 ()()()y f x x f x f x ?=+?-=?;这个时候,你应该立即“闪过”,要用题目给的第二个条件了:()f x 在0x =连续!它意味着:0 lim (0)(0)x f x f ?→+?=。 证明的思路就此产生! 证明:因为 ()()()f x y f x f y +=+,取0y =,则有 ()()(0)f x f x f =+,所以(0)0f =。 (#) 对于固定的x (任意的!),若取y x =?,有 ()()()y f x x f x f x ?=+?-=?, (+) 在(+)式两边取0x ?→的极限,那么 lim lim(()())lim ()x x x y f x x f x f x ?→?→?→?=+?-=? , (&) 由已知条件:()f x 在0x =连续,所以0 lim (0)(0)x f x f ?→+?=,代入(#)的结果,就有 lim (0)lim ()(0)0x x f x f x f ?→?→+?=?==, 但从(&)知,0 lim lim ()x x y f x ?→?→?=?,所以 lim 0x y ?→?=。

数学分析原理第四章连续性第一节函数的连续性外文翻译

外文翻译: 数学分析原理第四章连续性第一节函数的连续性 原文来源:“Principles of Mathematical Analysis.”from Walter Rudin 译文正文: 在定义2.1和2.2中引进了函数概念和一些与它有关的术语.虽然我们(在后面各章里)主要感兴趣的是实函数和复函数(即值是实数或复数的函数),但是我们也要讨论向量 值函数(即在R k 中取值的函数)和在任意度量空间中取值的函数.我们在这个更一般的基础 上将要讨论的定理,并不会因为我们限制在(例如)实函数而显得更容易些,放弃不必要的假定和用适当普遍的措辞来叙述和证明定理,反而会使得情景确实简洁了. 我们的函数的定义域也是度量空间,遇有不同的要求,便加以适当的说明. 函数的极限 4.1定义 令X和Y是度量空间,假设X E ?,f将E映入Y内.且p是E的极限点.凡是我们写当p x →时q x f →)(,或 q x f p x =→)(lim (1) 的时候,就是存在一个点Y q ∈具有以下的性质:对于每个ε>0,存在着δ>0,使得 ε<)),((q x f d Y (2) 对于满足 δ<<),(0p x d X (3) 的一切点E x ∈成立. 记号Y X d d 和分别表示X和Y中的距离. 如果X和(或)Y换成实直线,复平面或某一欧式空间k R ,那么距离Y X d d 和自然该换成绝对值或相应的范数(见第2.16段). 应当注意X p ∈,但是上面的定义中,并不一定要求p是E的点.此外,即使E p ∈,也完全可能)(lim )(x f p f p x →≠. 我们还可以将这个定义用序列的极限改述为: 4.2 定理 令X,Y,E,f和p是定义4.1说的那些,那么

极限的概念_函数的连续性详解

第二章.极限概念 函数的连续性 对于函数的概念,我们总是能够从日常直观出发,就能很好地加以理解,因为毕竟因果关系的观念在我们的意识当中是非常深根蒂固的。那么要真正严格地理解极限的观念,就不是那么自然的了。 对于极限的观念,最为关键的问题是,如何定量地加以描述,并把这种描述作为一般的判别标准。 这个问题实际上困扰了人们几百年,一直到19世纪才加以解决的。 数列的极限描述(数列存在极限判别定理,定义法、柯西法、子数列法、夹逼法、单调有界法) 设存在一个数列,也就是一个数值的集合,这个集合的元素可以一个一个的数出来,同时每一个元素都可以加上唯一的标志,而自然数是最为适宜作这件工作的。比如说,把一个数列写成这样的样子:,....,,321a a a ,或者简单地记成{}a n 。 观察这个数列取值变化, 有的数列变化具有下面的变化规律: 对于数列,....,,321a a a ,假设存在一个确定的常数a ,现在我们考虑变量a a n -(显然这是一个反映数列数值变化的,随着n 而发生变化的变量。),如果我们任意找到一个数ε,无论它的数值有多么大或者多么小,我们总是能够在这个数列当中找到一个元素a N ,使得在这个a N 元素后面的所有的数列元素,都使得相应的变量a a n -的值小于ε, 换一句话来说,对于任意的ε,总是存在一个N ,当n>N 时, 总是有ε <-a a n 成立 这时我们就把a 称为数列,...,,321a a a 的极限。并且称数列 ,....,,321a a a 收敛于极限a 。我们使用记号a a n n =∞→lim 来表示该数列极限。 否则我们就说数列{}a n 是发散的。

第四章Lebesgue积分的知识要点与复习自测

第四章 Lebesgue积分的知识要点与复习自测 一、非负简单函数与非负可测函数L积分的知识要点: ◇体会非负简单函数、非负可测函数L积分的定义,理解为什么它们的L积分总是存在的,并且为什么它们的L积分都可用下方图形的测度来表示; ◇能正确地区分非负简单函数L积分存在与L可积的差异;非负可测函数L积分存在与L可积的差异; ◇熟练掌握非负简单函数与非负可测函数L积分的常用基本运算性质【数乘性、加法性、不等式性质、集合的可加性和完全(可数)可加性、集合的单调性和唯一性(即几乎处处相等的非负简单函数或非负可测函数的L积分必相等)】,并能熟练地运用这些性质进行积分的运算。 ◇熟练掌握并能正确地叙述非负可测函数列L积分的两个重要的极限定理(Levi 定理和Fatou引理);能正确地区分这两个定理各自的适用范围(Levi定理只适合于单调递增的非负可测函数列,而Fatou引理对任意的非负可测函数列都适合);会用Levi 定理证明非负可测函数项级数的逐项积分性(Lebesgue基本定理),会用Lebesgue基本定理证明非负可测函数L积分的集合的完全可加性;会用Levi定理证明非负可测函数L可积的重要性质—积分的绝对连续性。 ◇注意体会将非负可测函数根据集合的可数不交的可测分解,借助集合的示性函数转化为非负可测函数项级数的方法; 注意体会将非负可测函数通过截断函数转化为单调递增非负可测函数列的极限的方法。 ◇会用积分的几何意义简洁地证明:非负可测函数的L积分与表示它的单调递增非负简单函数列的选取无关;以及Levi定理。

◇ 掌握并会证明有关非负可测函数L 积分的以下几个重要的结论: ① 设()f x 为可测集E 上的非负可测函数,则()d 0E f x x =??()0..f x a e =于E (称 为非负可测函数积分值为零的特征); ② 设()f x 为可测集E 上的非负可测函数,则()()f x L E ∈?()f x 在E 上几乎处处有限(称为非负可测函数L 可积的有限性,注意L 积分存在不具有这个性质); ③ mE <+∞,()f x 为E 上几乎处处有限的非负可测函数,{}n y 满足: n y ,lim n n y →∞ =+∞,00y =,1n n y y δ+-<, 则()()f x L E ∈?10 [()]n n n n y mE x y f x y ∞ +=≤<<+∞∑; ④(非负可测函数L 可积的积分绝对连续性)设()f x 为可测集E 上的非负可测函数,若()()f x L E ∈,则A E ??,A 为可测集,总有 lim ()d 0mA A f x x →=?, 即0ε?>,0δ?>,使得A E ??,A 为可测集,当mA δ<时,总有 0()d A f x x ε≤

函数的连续性连续性与间断点

增量:变量"从初值 1变到终值巴,则“卫一"称为变量I的增量或 改变量,记为,即'■-二 对于函数「,当自变量从 6变到二时I称为自变量工 的增量; 对应的函数值从/(心)变到/K1,如叮0)-/? 7E十㈤-/(心)称为函数°的增量。 注:增量可正可负。

图3-1 定义设函数」-■■在点门的某一邻域内有定义, 如果当自变量的增量-一 --趋于零时,对应函数的增量 I 一」「:匚:也趋于零 lim ]/国 +&) -/E)]?Q 那么就称函数」■■在点 r连续,i 称为函数J \的连续 点。 如“?=lim[/(x0十㈤-/(r0)] = 0 r「寺血I/W - /(勺)]=0 丄」- -■- 可与^成:_极限 所以此定义也可改写为 如果!]丁—定义设函数」在点"的某一邻域内有定义, 那么就称函数?- L在点'连续。 由定义可知,函数在点连续,必满足三个条件 (1) '在点&有定义 Im; /(A) (2)-」存在(左、右极限存在且相等) to/W=/(x0) 如果三条中有一条不满足,则■■' '■'■■■在厂点就不连续。 (3)

1< 2 解 在 〔处 图 3-2 SF ~* 0— Hrn /W ir- rti-t- WO- /w 例1设 尹十4 解丿「丿是一分段函数, 所以';L '''不存在,故在 「「=〔处不连续。 例2讨论函数 在卞=:,二=[及=-处的连续性。 liin =lim (x-t =-l T TT (T 4旷 :亠二二、」讨论-‘ ‘在工=〔的连续性。 x >

lim /(A ) 片0 不存在,所以不连续。 在K =]处: = lim_2x = 2, lun / (x) = lim (f +1) = 2, jf-^r r-j-l" x-4r FT ■广 在x = 2处: bm 丁(£ = bm.C?十 1) = 5, Inn /迂)=lim +(lx 十 4) = 5r JCT ST r ->2 KT Z* 富—^2,2 /⑵7所以连续。 左连续、右连续: 在可点左连续; 在仓点右连续。 Inn /?=/(!) =2 ?->i 所以连续。 Inn /㈤ 若心町 存在且等于 朗怒g),则称临 lim j (x) 若宀血+ …存在且等于 f ,则称八工)

数学分析之函数的连续性

第四章函数的连续性 教学目的: 1.使学生深刻掌握函数连续性的概念和连续函数的概念; 2.熟练连续函数的性质并能加以应用; 3.知道所有初等函数都是在其定义域上的连续函数,并能加以证明; 4.理解函数在某区间上一致连续的概念,并能清楚地认识到函数在一区间上连续与这一区间上一致连续的联系与区别。 教学重点、难点:本章重点是函数连续性的概念和闭区间上连续 函数的性质;难点是一致连续性的概念与有关证明。 教学时数:14学时 § 1 函数的连续性(4学时) 教学目的:使学生深刻掌握函数连续性的概念和连续函数的概念。 教学要求: 1. 使学生深刻理解函数在一点连续包括单侧连续的定义,并能熟练写出函数在一点连续的各种等价叙述; 2. 应使学生从分析导致函数在一点不连续的所有可能的因素出发,理解函数在一点间断以及函数间断点的概念,从反面加深对函数在一点连续这一概念的理解力并能熟练准确地识别不同类型的间断点; 3. 明确函数在一区间上连续是以函数在一点连续的概念为基础的,使学生清楚区分“连续函数”与“函数连续”所表述的不同内涵。 教学重点:函数连续性概念。 教学难点:函数连续性概念。

一、引入新课:通过生活和科学研究中的实例说明学习连续函数的必要性。 二、讲授新课: (一)函数在一点的连续性: 1.连续的直观图解:由图解引出解析定义. 函数在一点连续的定义: 设函数在点某邻域有定义. 2. 定义用例如 [1]P87例1和例2, P88 例3. 定义用 和 定义用先定义 定义连续的Heine定义. 定义( “ ”定义.) (注:强调函数 ”定义验证函数在点连续. 例1 用“ 例2 试证明: 若 在点连续. 则 3.单侧连续: 定义单侧连续, 并图解. Th ( 单、双侧连续的关系 )

相关文档
相关文档 最新文档