文档库 最新最全的文档下载
当前位置:文档库 › 1.1.11定积分的简单应用

1.1.11定积分的简单应用

§1.1.11定积分的简单应用

1. 由直线x=a,x=b(a

若在[a,b]上,0)(≥x f ,(如图

1)则S = 若在[a,b]上,0)(≤x f ,(如图2)则S =

若在[a,c]上,

0)(≤x f

,在[c,d]上0)(≥x f ,

如图3,则在[a,b]上,S=

2、由直线x=a,x=b(a

b

x g dx x f )()(3、计算变速直线运动的路程

(1)如果物体做变速直线运动的函数是u=u(t)(u(t)≥0),那么从时刻t=a 到时刻t=b 所经过的路程是s= (2)如果物体做变速直线运动的函数是u=u(t)(u(t)≤0),那么从时刻t=a 到t=b 所经过的路程是s= 4、计算变力所做的功

物体在变力F(x)作用下,沿力F 相同方向从x =a 移动到x=b 时,力F 所做的功W= .

题型一 封闭图形的面积 【例1】计算由22,x y x y ==围成的图形的面积。

【练习1 求由曲线x

y x y x y 3

,2,-=-==围成图形的面积。

题型二 求变速直线运动的路程

【例2】一辆汽车的速度—时间曲线如图所示,求汽车在这1min 内所行驶的路程。

【练习2】汽车以每小时32千米的速度行驶,到某处需要减速停车,设汽车以等减速度a=1.8米/秒2

刹车,问从开始刹车到停车,汽车走了多少距离?

题型三 求变力做功 【例3】 一物体按规律 3bt x

=做直线运动,式中

x 为时间t 内通过的距离,媒质阻力与速度的平方成正比,试求物体由x=0运动到x=a 时,阻力所做的功。

【练习3】设有一长25cm 的弹簧,若加以100N 的力,则弹簧伸长到30cm,求使弹簧由25cm 伸长到40cm 所做的功。

课时作业

一、选择题

1、如果1N 的力能拉长弹簧1cm,为了将弹簧拉长6cm,所耗费的功为

A. 0.18J

B.0.26J

C.0.12J

D.0.28J 2.由曲线

)2

3

0(cos π≤

≤=x x y 与坐标轴围成的图形面积为

A.2

B. 3

C.

2

5

D. 4

3.如图所示,阴影部分面积是 A.32

B 、32- C.

332 D. 3

35 4、由曲线

12-=x y 、直线x=0,x=2和x 轴围成的

封闭图形(如图)的面积是 A. ?

-2

2

)1(dx x B .?-2

2)1(dx

x

C.

-22

1dx x

D.

dx x dx x )1)1(2

1

21

2-+-?(

5、设f(x)在[a,b]上连续,则曲线f(x)与直线x=a,x=b,y=0围成的图形的面积为 A.

?

b

a dx x f )( B.

?

b

a

dx

x f )(

C.

?

b

a

dx x f )( D.以上都不对

二、填空题 6、 一物体以s m t v

/1+=的速度沿直线运动,

该物体开始运动后10s 内所经过的路程是 。 7.函数y=sinx(0≤x ≤2π)与x 轴围成的图形面积为 。 三、解答题 8、计算由曲线

12+=x y ,直线x+y=3及两坐标轴

围成的图形的面积。

9、变速直线运动的物体的速度为21)

(t t v -= ,初

始位置为0x =1,求它在前2秒内所走过的路程及2

秒末所在的位置。

10、在曲线

)0(2≥=x x y 上某一点

A 处作一切线

使之与曲线以及x 轴所围成的面积为12

1

,试求: (1)切点A 的坐标; (2)过切点A 的切线方程。

定积分的简单应用求体积

定积分的简单应用求体 积 Document number:BGCG-0857-BTDO-0089-2022

定积分的简单应用(二) 复习: (1) 求曲边梯形面积的方法是什么 (2) 定积分的几何意义是什么 (3) 微积分基本定理是什么 引入: 我们前面学习了定积分的简单应用——求面积。求体积问题也是定积分的一个重要应用。下面我们介绍一些简单旋转几何体体积的求法。 1. 简单几何体的体积计算 问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲) 绕x 轴旋转一周所得旋转体的体积为V ,如何求V 分析: 在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=,把曲线()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。设第i 个“小长条”的宽是1i i i x x x -?=-,1,2,,i n =。这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ?的小圆片,如图乙所示。当i x ?很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。因此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=? 该几何体的体积V 等于所有小圆柱的体积和:

2221122[()()()]n n V f x x f x x f x x π≈?+?+ +? 这个问题就是积分问题,则有: 22()()b b a a V f x dx f x dx ππ==?? 归纳: 设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π=? 2. 利用定积分求旋转体的体积 (1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数 (2) 分清端点 (3) 确定几何体的构造 (4) 利用定积分进行体积计算 3. 一个以y 轴为中心轴的旋转体的体积 若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为 2()b a V g y dy π=? 类型一:求简单几何体的体积 例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路: 由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。 解:以正方形的一个顶点为原点,两边所在的直线为,x y 轴建立如图所示的平面直角 坐标系,如图:BC y a =。则该旋转体即为圆柱的体积为: 22300|a a V a dx a x a πππ=?==?

高二定积分的简单应用(理科)

年 级 高二 学科 数学 内容标题 定积分的简单应用(理科) 编稿老师 胡居化 一、教学目标 1. 能用定积分知识解决在物理学中的一些简单问题及求曲边图形的面积等问题 2. 体会数与形结合的思想、等价转化的数学思想的应用. 二、知识要点分析 1. 定积分在物理学中的简单应用 (1)变速直线运动的路程:作变速直线运动的物体在时间t=a 到时间t=b (a

(2)求曲边图形面积的一般步骤: (a )画图,并将图形分割成若干个曲边梯形 (b )对每个曲边梯形确定其存在的范围,从而确定积分的上下限. (c )确定被积函数 (d )求出各曲边梯形的面积和,即各种定积分的绝对值之和. 【典型例题】 知识点一:定积分在物理学中的简单的应用 例1:一物体在力F ?? ?>+≤≤=) 2(,43) 20(,10)(x x x x (单位:N )的作用下沿力F 相同的方向, 从x=0处运动到x=4处(单位:米),这力F (x )所做的功是( ) A . 44 B . 46 C . 48 D . 50 【题意分析】本题考查物理学中的变力做功问题,物体在x=0到x=4距离内所做的功是函 数F (x )在区间[0,4]上的定积分. 【思路分析】由已知F (x )的表达式是分段函数,故物体所做的功是函数F (x )在[0,2],[2,4]上的积分之和. 【解题步骤】由定积分的物理意义知: ????++=+=42202042)43(10)()(dx x dx dx x F dx x F W =4222 0|)42 3(|10x x x ++ =46, 故选(B ) 【解题后的思考】本题考查的知识点是利用定积分求变力做功的问题,易错点是:认为F (x )在区间[0,4]内所做的功是 ? +4 )43(dx x . 例2:一物体做变速直线运动,其v -t 曲线(如图所示),求物体在s s 62 1 -内的运动路程. 【题意分析】本题考查物理学中变速直线运动路程问题,由v (t )曲线知:0)(≥t v ,故在 s s 621-间的物体运动的路程是v (t )在区间]6,2 1 [上的定积分.

第五讲定积分的几何应用

第五讲 定积分的几何应用 教学目的要求:基本掌握定积分的元素法,会用定积分计算平面图形的面积,两类特殊 几何体的体积以及平面曲线的弧长。 知识点:定积分的元素法;平面图形面积的计算;旋转体体积的计算;截面面积已知的 几何体体积的计算;平面曲线弧长的计算。 教学重点:定积分的元素法;平面图形面积的计算,旋转体体积的计算。 教学难点: 定积分的元素法; 截面面积已知的几何体体积的计算; 平面曲线弧长的计算。 教学方式:讲授、演示、练习 教学思路:先讲授定积分的元素法,由此导出平面图形的面积、两种特殊几何体体积以 及平面曲线弧长等积分计算公式,再以实例说明公式的运用。 教学过程: 一、复习 1.定积分的几何意义; 2.定积分的定义。 二、新授 (一)定积分的元素法 一般地,如果某一实际问题中的所求量U 符合下列条件: (1)U 是与一个变量x 的变化区间[a , b ]有关的量; (2)U 对于区间[a , b ]具有可加性,即,如果把区间[a ,b ]分成许多部分区间,则U 相应 地分成许多部分量,而 U 等于所有部分量之和; (3)部分量 i U D 的近似值可表示为 () i i f x x D ; 那么,就可考虑用定积分来表示这个量 U ,通常用如下方法(微元法或元素法)来建立 所求量 U 的积分式: (1)根据问题的具体情况,选取一个变量作积分变量,并确定其变化区间[a , b ]; (2) 在区间[a , b ]上任取一个小区间[,] x x dx + , 并求出相应于这个小区间的部分量 U D 的近似值。如果 U D 的近似值可以表示成某连续函数在x 处的值 () f x 与dx 的乘积,就把 () f x dx 称为 U 的元素(或微元),且记作 dU ,即 () dU f x dx = ; (3)在整个区间[a , b ]上以U 的元素(或微元) () f x dx 为被积表达式求积分,就得所 求的量: () b a U f x dx = ò 。 (二)平面图形的面积 1.直角坐标系中平面图形的面积 设 () f x , () g x 均为[a , b ]上的连续函数, 且 ()() f x g x £ , 则由曲线 () y f x = , () y g x = , x a = ,x b = 所围成的平面图形面积(由元素法推出)为 (()()) b a A g x f x dx =- ò 一般,若去掉 ()() f x g x £ 的条件,则应有 ()() b a A f x g x dx =- ò 。 类似地,若平面图形由曲线, () x y j = , () x y y = , y c = , y d = 围成,则其面积为

§1.7定积分的简单应用

定积分的简单应用 一:教学目标 知识与技能目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 过程与方法 情感态度与价值观 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x x y x ?=??==? =??及,所以两曲线的交点为 (0,0)、(1,1),面积S=1 1 20 xdx x dx = -? ?,所以 ?1 2 0S =(x -x )dx 321 3 023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 2 x y =y x A B C D O

巩固练习 计算由曲线36y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x = 以及x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯 形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x =的交点的横坐标, 直线4y x =-与 x 轴的交点. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的 面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 334 82822044 2222140||(4)|23 x x x =+-=. 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图, 再借助图形直观确定出被积函数以及积分的上、下限. 例3.求曲线], [sin 320π∈=x x y 与直线,,3 20π==x x x 轴所围成的图形面积。

高中数学选修2-2同步练习题库:定积分的简单应用(较难)

定积分的简单应用(较难) 1、由直线,,曲线及轴所围成的封闭图形的面积是() A. B. C. D. 2、已知,,则展开式中,项的系数为()A. B. C. D. 3、的值为( ) A.0 B. C.2 D.4 4、设则多项式的常数项是() A.-332. B.332 C.166 D.-166 5、由直线,曲线及轴所围图形的面积为() A. B. C. D.

积是() A. B. C. D. 7、函数的图象与轴所围成的封闭图形的面积为()A. B. C. D. 8、设,则多项式的常数项() A. B. C. D. 9、曲线在点(1,)处的切线与坐标轴围成的三角面积为()A. B. C. D. 10、的值为 A.0 B. C.2 D.4

积是() A.1 B. C. D.2 12、设下列关系式成立的是() A. B. C. D. 13、设,则的值为() A. B. C. D. 14、 A. B. C. D. 15、若S1=dx,S2=dx,S3=dx,则S1,S2,S3的大小关系为( ) A.S1<S2<S3 B.S2<S1<S3 C.S2<S3<S1 D.S3<S2<S1 16、由曲线,直线及y轴所围成的图形的面积为()

A. B.4 C. D.6 17、下列等于1的积分是() A. B. C. D. 18、下列计算错误的是()A. B. C. D. 19、由曲线所围成的封闭图形的面积为 A. B. C. D. 20、如图,阴影部分的面积是( ) A.2 B.2- C. D. 21、由曲线围成的封闭图形面积为() A. B. C. D.

北师大版数学高二选修2试题 4.3定积分的简单应用--简单几何体的体积

4.3定积分的简单应用 定积分在物理中应用及简单几何体的体积同步练习 1.物本做变速度直线运动经过的路程s ,等于其速度函数v = v (t ) (v (t )≥0 )在时间区间 [a ,b ]上的 定积分 ,即?=b a dt t v s )(. 2.质点直线运动瞬时速度的变化为v (t ) = – 3sin t ,则 t 1 = 3至t 2 = 5时间内的位移是 ()dt t ?-5 3sin 3.(只列式子) 3.变速直线运动的物体的速度v (t ) = 5 – t 2,初始位置v (0) = 1,前2s 所走过的路程为 3 25 . 4.如果物体沿恒力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的功W = F (b —a ). 5.如果物体沿与变力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的 功W =?b a dx x F )(. 6.一物体在力F (x ) =10(02)34(2)x x x ≤≤?? +>?(单位:N )的作用下沿与力F (x )做功为( B ) A .44J B .46J C .48J D .50J 7.证明:把质量为m (单位kg )的物体从地球的表面升高h (单位:m )处所做的功W = G ·() Mmh k k h +,其中G 是地球引力常数,M 是地球的质量,k 是地球的半径. 证明:根据万有引力定律,知道对于两个距离为r ,质量分别为m 1、m 2的质点,它们之间的引力f 为f = G ·122 m m r ,其中G 为引力常数. 则当质量为m 物体距离地面高度为x (0≤x ≤h )时,地心对它有引力f (x ) = G ·2 ()Mm k x +故该物体从地面升到h 处所做的功为 0()h W f x =?d x =20() h Mm G k x ?+?·d x = GMm 201()h k x +? d (k + 1) = GMm 01()|h k x -+ =11()() Mnh GMm k G k h k k h -+=?++. 8.直线2y x =,1x =,2x =与x 轴围成的平面图形绕旋x 轴转一周得到一个圆台,

第十章 定积分的应用

第十章 定积分的应用 §1.平面图形的面积 习题 1. 求由抛物线2 22x y x y -==与所围图形的面积。 解:设所围图形的面积为S ,如图10-1 解方程组 2 2 2y x y x ?=??=-?? 得两曲线两交点坐标为(1,1),(1,1)A B -,则积分区间为[1,1]-, 图形面积为 11 221 1 1 221 (2)[(2)]83 S x dx x dx x x dx ---=--=--= ??? 2. 求由x y ln =与直线 ,10,101 == x x 和10,0x y ==所围图形的面积。 解:设所围图形总面积为S , 110 11 10 1 101110 (ln )ln (ln ) (ln ) 1 (99ln1081)10 S x dx xdx x x x x x x =-+=--+-= -?? 3. 抛物线x y 22=把圆 822=+y x 分成两部分,求这两部分面积之比。 解:设12,S S 分别表示被抛物线分割成的两部分圆面积,则 2 2 12244 )28 8cos 3423 y S dy d π πθθπ--==- =+ ??

2184 823463 S S ππππ=-=--=- 124 2323492 63 S S ππππ+ += =-- 4. 试证摆线33cos ,sin (0)x a t y a t a ==>所围图形的面积(图10—7)。 解:设所围图形的全部面积为S ,取积分变量为t ,当t 由2 π 变到0时,就得到曲线在第一象限的部分, '2 2322 2 4220 224()()12sin cos (sin )12sin (1sin )3153112()4226422 83 S y t x t dt a t t t dt a t t dt a a πππ ππ π==?-=?-???=?-????=??? 5. 求心形线(1cos )(0)r a a θ=+>所围图形的面积。 解:设所围图形面积为S ,取积分变量为θ,当θ由0变到π时,即得到曲线在x 轴上方部分,由极坐标系下面积的积分表达式有: 2 202220 2 212(1cos )2(12cos cos )31 [2sin sin 2]2432 S a d a d a a ππ πθθ θθθ θθθπ=?+=++=++=?? 6. 求三叶形线)0(3sin >=a a r θ所围图形的面积。 解:2 223 3 013sin 63(sin 3)()2224 4 a S a d a ππθθπ θθ=?= -= ?

定积分的简单应用(6)

§1.7 定积分的简单应用(一) 一:教学目标 1、 进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法; 2、 让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、 初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、 体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程: 定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 解:201y x x x y x ?=??==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 1 20 xdx x dx = -? ?,所以 ?1 20S =(x -x )dx 32 1 3023 3x x ??=-????=13 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S. 解:作出直线4y x =-,曲线2y x =的草图,所求面积为图阴影部分的面积. 解方程组2, 4 y x y x ?=?? =-?? 得直线4y x =-与曲线2y x = 的交点的坐标为(8,4) . 直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2 4 8 8 4 4 2[2(4)]xdx xdx x dx =+--? ? ? 33482822044 2222140||(4)|3323 x x x =+-=. 例3.求曲线],[sin 3 20π ∈=x x y 与直线,,3 20π ==x x x 轴所围成的图形面积。 答案: 2 33 2320 = -=? ππo x xdx S |cos sin = 练习 1、求直线32+=x y 与抛物线2x y =所围成的图形面积。 答案:3 32 33323132 23 1= -+=--? |))x x x dx x x S (-+(= 2、求由抛物线342-+-=x x y 及其在点M (0,-3) 2 x y =y x = A B C D O

最新定积分的简单应用测试题

一、选择题 1. 如图所示,阴影部分的面积为() 2. 如图所示,阴影部分的面积是() 面积(如图)是( A. 2(x2—1)dx '0 B . | 2(x2—1)dx| ■ 0 C. 2|x2 —1|dx D. '(x2—1)dx + 2(x2—1)dx J c J ▲ 0 1 4.设f(x)在[a, b]上连续,则曲线f(x)与直线x= a, x= b, y= 0 围成图形的面积为() A. b f(x)dx B. | b f(x)dx| 'a ' a 精品文档 A. b f(x)dx 'a C. b[f(x) —g(x)]dx 'a B. b g(x)dx 'a D. b[g(x)—f(x)]dx -a C.32 肿5 D.35 3.由曲线y= x2—1、直线x= 0、x= 2和x轴围成的封闭图形的

C. b |f(x)|dx 'a D .以上都不对 5. 16 曲线y =1—w 与x 轴所围图形的面积是() D.5 1 2 比较积分值0 e x dx 和 1 2 1 — U x dx 大于 0e x dx 2 1 C . U x dx 等于 0 7.由曲线y = x 2, y = x 3围成的封闭图形面积为( ) B.1 D. 12 6. 1 x >e dx fe"dx 的大小() 1 2 , 1 B . o e xdx 小于 ° 1 2 1 - D . o e x dx 和°e Xjx 不能比较 e dx A-12 Cl 8.求 1 /dx 的解( ) C . -1 9.求 12 x 2dx 的解( ) A.* C .- 3 10 .过原点的直线I 与抛物线y =x 2— 2ax (a>0)所围成的图形面 积 为9a 3,则直线I 的方程为( ) A . y = iax B . y = ax C . y = — ax D . y = — 5ax

高中培优讲义定积分及其简单应用

第十三讲定积分及其简单应用 教学目标:1、了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2、了解微积分基本定理的含义. 一、知识回顾课前热身 知识点1、定积分 (1)定积分的相关概念在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质 ①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. (4).定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 知识点2、微积分基本定理如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F(b)-F(a)记成F(x)|b a,即∫b a f(x)d x=F(x)|b a=F(b)-F(a). 基础练习 1.∫421 x d x等于( ) A.2ln 2 B.-2ln 2 C.-ln 2 D.ln 2 解析:选D ∫421 x d x=ln x |42=ln 4-ln 2=ln 2. 2.一质点运动时速度和时间的关系为V(t)=t2-t+2,质点作直线运动,则此物体在时间[1,2]内的位移

知识讲解_定积分的简单应用(基础)

定积分的简单应用 【学习目标】 1.会用定积分求平面图形的面积。 2.会用定积分求变速直线运动的路程 3.会用定积分求变力作功问题。 【要点梳理】 要点一、应用定积分求曲边梯形的面积 1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积: ()[()()]b b a a S f x dx f x g x dx ==-?? 2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线 ()y f x =(0)(≤x f )围成的曲边梯形的面积: ()()[()()]b b b a a a S f x dx f x dx g x f x dx = =-=-? ?? 3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上 ()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积: ()c a S f x dx = + ? ()b c f x dx ? =()c a f x dx -?+()b c f x dx ?. 4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围

成图形的面积: 1212[()()]()()b b b a a a S f x f x dx f x dx f x dx =-=-??? 要点诠释: 研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积; ② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值); 要点二、求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形; (2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式; (5)运用微积分基本定理计算定积分,求出平面图形的面积。 要点三、定积分在物理中的应用 ① 速直线运动的路程 作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间 [,]a b 上的定积分,即()b a S v t dt =?. ②变力作功 物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W = ()b a F x dx ? . 要点诠释: 1. 利用定积分解决运动路程问题,分清运动过程中的变化情 况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】 类型一、求平面图形的面积 【高清课堂:定积分的简单应用 385155 例1】 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

定积分的简单应用

定积分的简单应用 海口实验中学陈晓玲 一、教材分析 “定积分的简单应用”是人教A版《普通高中课程标准实验教科书数学》选修2-2第一章1.7的内容。从题目中可以看出,这一节教学的要求就是让学生在充分认识导数与积分的概念,计算,几何意义的基础上,掌握用积分手段解决实际问题的基本思想和方法,在学习过程中了解导数与积分的工具性作用,从而进一步认识到数学知识的实用价值以及数学在实际应用中的强大生命力。在整个高中数学体系中,这部分内容也是学生在高等学校进一步学习数学的基础。 二、教学目标(以教材为背景,根据课标要求,设计了本节课的教学目标) 1、知识与技能目标: (1)应用定积分解决平面图形的面积、变速直线运动的路程问题; (2)学会将实际问题化归为定积分的问题。 2、过程与方法目标: 通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。 3、情感态度与价值观目标: 通过教学过程中的观察、思考、总结,养成自主学习的良好学习习惯,培养数学知识运用于生活的意识。 三、教学重点与难点 1、重点:应用定积分解决平面图形的面积和变速直线运动的路程问题,在解决问题的过程中体验定积分的价值。 2、难点:将实际问题化归为定积分的问题。 四、教学用具:多媒体 五、教学设计

教学环节教学设计师生 互动 设计意图 一、 创设情境 引出新课1、生活实例: 实例1:国家大剧院的主题构造 类似半球的构造,如何计算建造时中间玻璃段的使用面积? 边缘的玻璃形状属于曲边梯形,要计算使用面积可以通过计算 曲边梯形的面积实现。 实例2:一辆做变速直线运动的汽车,我们如何计算它行驶的 路程? 2、复习回顾: 如何计算曲边梯形的面积? 3、引入课题: 定积分的简单应用 学生:观 察。 教师:启 发,引导 学生:思 考,回 忆。 学生:疑 惑,思 考,感 受。 教师:启 发,引 导。 学生:复 习,回忆 老师:引 入课题 数学源于生活,又服 务于生活。 通过对国家大剧院的 观察,创设问题情境,体 验数学在现实生活中的 无处不在,激发学生的学 习热情,引导他们积极主 动的参与到学习中来。 启发学生把物理问题 与数学知识联系起来,训 练学生对学科间的思维 转换和综合思维能力。 学生感受定积分的工 具性作用与应用价值。 在生活实例的启发 下,引导学生把所学知识 与实际问题联系起来,回 忆如何计算曲边梯形面 积。 这是这节课的知识基 础。 引入本节课的课题。 哎呀,里程表坏了,你 能帮我算算我走了多 少路程吗? x y o y f(x) = a b A ?=b a dx x f A) (

21-17定积分的简单应用

1.7.1定积分在几何中的应用 教材分析 这一节的教学要求是让学生在充分认识导数与积分的概念、计算、几何意义的基础上,掌握用积分解决实际问题的基本思想和方法.在学习过程中,理解导数与积分的工具性作用,从而进一步认识到数学知识的使用价值以及数学在实际应用中的强大作用.在整个高中数学体系中,这部分内容也是进一步学习高 等数学的基础.教学方法是“问题诱导一一启发讨论一一探索结果”、“直观观察一一抽象归纳一一总结规 律”的一种研究性教与学的方法,过程中注重“诱、思、探、练”的结合,从而引导学生转变学习方式采用激发兴趣、主动参与、积极体验、自主探究地学习,形成师生互动的教学氛围.探究式的学习方法能 够激发学生的求知欲,培养学生对学习的浓厚兴趣;探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神;探究过程中对学生进行数学美育的渗透,用哲学的观点指导学生自主探究. 课时分配 本课时是定积分应用部分的第一课时,主要解决的是平面图形的面积问题 教学目标 重点:应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值. 难点:如何恰当选择积分变量和确定被积函数 知识点:应用定积分解决平面图形的面积. 能力点:通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法. 教育点:在解决问题的过程中体会定积分的价值 自主探究点:探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法. 考试点:应用定积分解决平面图形的面积. 易错易混点:如何恰当选择积分变量和确定被积函数 拓展点:链接咼考. 教具准备实物投影机和粉笔. 课堂模式基于问题驱动的诱思探究. 一、创设情境 1、求曲边梯形的思想方法是什么?(以直代曲,无限逼近) 2、定积分的几何意义是什么? o - - cos 二-(-cosO) =2 , 若f(x)^O则表示面积 sin xdx = -cosx =f "sin xdx=—cosx ?=—cos2x —(—cosn) =-2,若f (x)兰0则表示面积相反数

巩固练习_定积分的简单应用(基础)125

【巩固练习】 一、选择题 1.如右图所示,阴影部分面积为( ) A .()d b a f x x ? B .()d b a g x x ? C . [()()]d b a f x g x x -? D .[()()]d b a f x g x x +? 2.已知做自由落体运动的物体的速度为v=gt ,则物体从t=0到t=t 0所走过的路程为( ) A . 2013gt B .2 gt C .2012gt D .2014 gt 3.如图1-5-3-14所示,阴影部分的面积是( ) A .23 B .23- C . 323 D .35 3 4.将边长1米的正方形薄片垂直放于液体密度为ρ的液体中,使其上边缘与液面距离为2米,则该正方形薄片所受液压力为( ) A . 3 2 d x x ρ? B .21 (2)d x x ρ+? C .10 d x x ρ? D .3 2 (1)d x x ρ+? 5.由抛物线y=x 2―x ,直线x=―1,x=1及x 轴围成的图形面积为( ) A . 23 B .1 C .43 D .5 3 6.某物体的运动方程S(t)=?t x dx xe 2 ,则此物体在t=2时刻的瞬间速度为( ) A.0 B.e 4 C.e 2 D.2e 4 7.在底面积为S 的圆柱形容器中盛有一定量的气体,在等温条件下,由于气体的膨胀,把容器中的一个活塞(面积为S )从点a 处推到b 处,则在移动过程中,气体压力所做的功为( )焦耳。 A .ln b k a B .ln b a C .(ln ln )k b a + D .ln k b 二、填空题 8.质点直线运动瞬时速度的变化为v (t ) = – 3sin t ,则 t 1 = 3至t 2 = 5时间内的位移是 ________。(只列式子) 9. 由曲线y=x 2+1,x+y=3,及x 轴,y 轴所围成的区域的面积为: . 10.如图1-5-3-16所示,将一弹簧从平衡位置拉到离平衡位置l m 处,则克服弹簧力所做的功为________。(弹簧的劲度系数为k )

最新17定积分的简单应用03622

17定积分的简单应用 03622

定积分的简单应用 一:教学目标 知识与技能目标 1、进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边 梯形的思想方法; 2、让学生深刻理解定积分的几何意义以及微积分的基本定理; 3、初步掌握利用定积分求曲边梯形的几种常见题型及方法; 4、体会定积分在物理中应用(变速直线运动的路程、变力沿直线做 功)。 过程与方法 情感态度与价值观 二:教学重难点 重点曲边梯形面积的求法 难点定积分求体积以及在物理中应用 三:教学过程: 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线?Skip Record If...?和?Skip Record If...?所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 仅供学习与交流,如有侵权请联系网站删除谢谢- 6 -

仅供学习与交流,如有侵权请联系网站删除 谢谢- 6 - 解:?Skip Record If...?,所以两曲线的交点为(0,0)、(1,1),面积S=?Skip Record If...?,所以?Skip Record If...??Skip Record If...?=13 【点评】在直角坐标系下平面图形的面积的四 个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线?Skip Record If...?和?Skip Record If...?所围成的图形的面积. 例2.计算由直线?Skip Record If...?,曲线?Skip Record If...?以及x 轴所围 图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和S 2.为了确定出被积函数和积分的上、下限,需要求出直线?Skip Record If...?与曲线?Skip Record If...?的交点的横坐标,直线?Skip Record If...?与 x 轴的交点. 解:作出直线?Skip Record If...?,曲线?Skip Record If...?的草图,所求面积为图1. 7一2 阴影部分的面积. 解方程组?Skip Record If...? 得直线?Skip Record If...?与曲线?Skip Record If...?的交点的坐标为(8,4) . 2x y =y x = A B C D O

1.7定积分的简单应用

§1.7定积分的简单应用(二课时) 一:教学目标 知识与技能:初步掌握利用定积分求曲边梯形的几种常见题型及方法;让学生深刻理解定积 分的几何意义以及微积分的基本定理。 过程与方法:进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方 法 情感态度与价值观:体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功), 培养学生唯物主义思想。 二:教学重难点 重点 曲边梯形面积的求法 难点 定积分求体积以及在物理中应用 三:教学过程:(第一课时) 1、复习 1、求曲边梯形的思想方法是什么? 2、定积分的几何意义是什么? 3、微积分基本定理是什么? 2、定积分的应用 (一)利用定积分求平面图形的面积 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。 解:2 01y x x y x ?=?==?=??及,所以两曲线的交点为(0,0)、(1,1),面积 S=1 20 0x dx = -? ? ,所以 ?1 20S =x )dx 32 1 3023 3x x ??=-????=13 【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。 巩固练习 计算由曲线3 6y x x =-和2 y x =所围成的图形的面积. 例2.计算由直线4y x =- ,曲线y = x 轴所围图形的面积S. 分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形 2 x y =y x A B C D O

最新定积分的简单应用导学案

定积分的简单应用导 学案

定积分的简单应用导学案 学科:高二数学课型:新授课课时:2课时编写时间:2013-3-15 编写人:邓朝华审核人:陈平班级:姓名: 【导案】 【学习目标】 1.熟练掌握应用定积分求解平面图形的面积问题。 2.掌握应用定积分解决变速直线运动的路程和变力做功等问题。 3.培养学生的建模水平和解决实际问题的能力。 【学习重难点】 重点:应用定积分解决平面图形的面积、变速直线运动的路程和变力做功等问题使学生在解决问题的过程中体验定积分的价值。 难点:将实际问题化归为定积分的问题。 【学案】 1.计算平面图形面积的一般步骤 在利用定积分求平面图形的面积时,一般要先____________,再借助 ________________直观确定出____________________以及积分的____________。 2.变速直线运动的路程 作变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a, b]上的定积分,即s=____________________________. 仅供学习与交流,如有侵权请联系网站删除谢谢10

3.变力作功 (1)恒力F的作功公式 一物体在恒力F(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向移动了s(单位:m),则力F所作的功为____________。 (2)变力F(x)的作功公式 如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F(x)相同的方向从x=a移动到x=b(a<b),那么变力F(x)所作的功为W=________________。 4.例题分析 【例1】计算由曲线y2=x, y=x2所围图形的面积S。 【例2】计算由直线y=x-4,曲线 以及x轴所围图形的面积S. 【例3】一辆汽车的速度-时间曲线如图所示。求汽车在这1min行驶的路程。 仅供学习与交流,如有侵权请联系网站删除谢谢10

数学北师大选修同步练习 第四章§定积分的简单应用 含解析

高手支招6体验成功 基础巩固 1.抛物线y=x 2-x 与x 轴围成的图形面积为( ) A. 81 B.1 C.61 D.2 1 答案:C 思路分析:所求面积S=- ?0 1 (x 2-x )dx=( 22x -33x )|10|10=-(31-21)=6 1 2.如果某质点的初速度v(0)=1,其加速度a(t)=6t,做直线运动,则质点在t=2 s 时的瞬时速度为 ( ) A.5 B.7 C.9 D.13 答案:D 思路分析:v(2)-v(0)= ?0 2 a(t)dt= ?0 2 6tdt=3t 2| 2 . ∴v(2)=v(0)+3×22=1+12=13. 3.曲线y 2=4ax,x=a 绕x 轴旋转所得的旋转体体积是( ) A.2πa 2 B.4πa 2 C.2πa 3 D.4πa 3 答案:C 思路分析:不妨设a >0,由旋转体体积公式可得:V=π ?0 a y 2dx=π ?0 a 4axdx=4πa( 2 1x 2)|0a =2πa 3. 4.若f(x)=???<-≥+, 0,, 0,32x x x x 则?-11f(x)dx=_____________. 答案: 6 23 思路分析: ?-11f(x)dx=?-10(-x)dx+?01(x 2+3)dx=-21x 2|01-+(31x 3+3x)|10=6 23 . 5.?-a a (xcosx-5sinx+2)dx=_____________. 答案:4a 思路分析:原式= ?-a a xcosxdx-?-a a 5sinxdx+?-a a 2dx,由于前两个积分的被积函数是奇函 数,画出图像,由定积分的几何意义可知,前两个积分值都为0.所以原式=?-a a 2dx=2x |a a -=4a. 6.如果 ?0 1 f (x )dx=1, ?0 2 f (x )dx=-1,则 ?12 f (x )dx=______________.

相关文档
相关文档 最新文档