文档库 最新最全的文档下载
当前位置:文档库 › 水下无人航行器编队识别目标的一种融合方法

水下无人航行器编队识别目标的一种融合方法

水下无人航行器编队识别目标的一种融合方法
水下无人航行器编队识别目标的一种融合方法

显著性目标检测中的视觉特征及融合

第34卷第8期2017年8月 计算机应用与软件 Computer Applications and Software VoL34 No.8 Aug.2017 显著性目标检测中的视觉特征及融合 袁小艳u王安志1潘刚2王明辉1 \四川大学计算机学院四川成都610064) 2 (四川文理学院智能制造学院四川达州635000) 摘要显著性目标检测,在包括图像/视频分割、目标识别等在内的许多计算机视觉问题中是极为重要的一 步,有着十分广泛的应用前景。从显著性检测模型过去近10年的发展历程可以清楚看到,多数检测方法是采用 视觉特征来检测的,视觉特征决定了显著性检测模型的性能和效果。各类显著性检测模型的根本差异之一就是 所选用的视觉特征不同。首次较为全面地回顾和总结常用的颜色、纹理、背景等视觉特征,对它们进行了分类、比较和分析。先从各种颜色特征中挑选较好的特征进行融合,然后将颜色特征与其他特征进行比较,并从中选择较 优的特征进行融合。在具有挑战性的公开数据集ESSCD、DUT-0M0N上进行了实验,从P R曲线、F-M easure方法、M A E绝对误差三个方面进行了定量比较,检测出的综合效果优于其他算法。通过对不同视觉特征的比较和 融合,表明颜色、纹理、边框连接性、Objectness这四种特征在显著性目标检测中是非常有效的。 关键词显著性检测视觉特征特征融合显著图 中图分类号TP301.6 文献标识码 A DOI:10. 3969/j. issn. 1000-386x. 2017.08. 038 VISUAL FEATURE AND FUSION OF SALIENCY OBJECT DETECTION Yuan Xiaoyan1,2Wang Anzhi1Pan Gang2Wang Minghui1 1 (College o f Computer Science,Sichuan University,Chengdu 610064,Sichuan,China) 2 {School o f Intelligent M anufacturing, Sichuan University o f A rts and Science, Dazhou 635000, Sichuan, China) Abstract The saliency object detection is a very important step in many computer vision problems, including video image segmentation, target recognition, and has a very broad application prospect. Over the past 10 years of development of the apparent test model, it can be clearly seen that most of the detection methods are detected by using visual features, and the visual characteristics determine the performance and effectiveness of the significance test model. One of the fundamental differences between the various saliency detection models is the chosen of visual features. We reviewed and summarized the common visual features for the first time, such as color, texture and background. We classified them, compared and analyzed them. Firstly, we selected the better features from all kinds of color features to fuse, and then compared the color features with other characteristics, and chosen the best features to fuse. On the challenging open datasets ESSCD and DUT-OMON, the quantitative comparison was made from three aspects:PR curve, F-measure method and MAE mean error, and the comprehensive effect was better than other algorithms. By comparing and merging different visual features, it is shown that the four characteristics of color, texture, border connectivity and Objectness are very effective in the saliency object detection. Keywords Saliency detection Visual feature Feature fusion Saliency map 收稿日期:2017-01-10。国家重点研究与发展计划项目(2016丫?80700802,2016丫?80800600);国家海洋局海洋遥感工程技术 研究中心创新青年项目(2015001)。袁小艳,讲师,主研领域:计算机视觉,机器学习,个性化服务。王安志,讲师。潘刚,讲师。王 明辉,教授。

水下目标搜索与识别技术

水下目标搜索与识别技术 水下目标搜索与识别系统一般分为光视觉系统和声视觉系统,当距离物体十米以内,一般采用光视觉系统,当距离物体大于十米以上时则用声视觉系统。当前流行的趋势是采用激光的方式来进行目标搜索与识别。 一.光视觉系统 传统的光视觉系统包括水下摄像机、照明等设备用来满足获取光学图像和视频信息等基本的要求。而现在的光视觉系统不仅要求满足上述要求,还要求具备对图像和视频信息进行处理、特征提取以及分类识别的功能。总之,只能水下机器人中光视觉系统的使命是:快速、准确德获取水下目标的相关信息,并对信息进行实时处理,将处理结果反馈给计算机,从而指导机器人进行正确的作业。 1.光视觉系统框架 水下光视觉系统主要分为三大块:(1)底层模块:图像采集系统,包括专用水下CCD感光摄像头和图像采集卡,这部分属于硬件部分;(2)中层模块:图像处理,包括图像预处理、图像分割、特征提取、根据目标模型进行学习,形成知识库和逻辑推理机制,得到单幅图像的初步理解和评价。(3)高层模块:分类是水下目标识别最为核心的技术,也是最终实现部分。 1.1硬件组成 光视觉系统硬件包括光视觉计算机、水下CCD摄像头、云台和辅助照明灯。光视觉计算机完成视觉建模、高层视觉信息处理和理解、与机器人主控计算机的网络通讯,实时监控系统每个时间节拍的运行状态与处理参数。 1.2软件体系 水下光视觉系统的软件体系涵盖了两个部分:中层模块和高层模块。中层模块主要负责图像处理工作(图像处理一般包括图像预处理、图像分割和特征提取三方面)。高层模块是水下目标识别系统的最终实现部分,一般采用的是神经网络识别算法进行识别分类。 二.声视觉系统 理想的声视觉系统作为智能水下机器人的传感设备,应该具备灵敏度高、空间分辨率高、隐蔽性好、抗干扰能力强、自主调节和全天候作业等特点,能适合

水下航行器视景仿真系统的研究

第14卷第6期系统仿真学报 Vol. 14 No. 6 2002年6月JOURNAL OF SYSTEM SIMULATION June 2002 文章编号 唐凯褚彦军 西安 710072 基于软件平台MultiGen Creator和Vega开发出DIS 环境下水下航行器视景仿真系统 论述了基于Creator的实体建模方法 水下等海洋环境效果的生成方法 仿真结果表明并且满足系统仿真的实时性要求 水下航行器 视景仿真Vega 中图分类号A Research on Visual Simulation System of Autonomous Underwater Vehicle SONG Zhi-ming, KANG Feng-ju, TANG Kai, GAO li-e, CHU Yan-jun Abstract: Based on software platform and besides, it satisfies the real time requirement of system simulation. Keywords: autonomous underwater vehicle; DIS; visual simulation; MultiGen Creator; Vega 1 引言 水下航行器将是未来战争的重要组成部分 对于缩短水下武器系统研制周期为了将基于多武器平台的水下作战仿真过程及作战环境直观地表现出来将各仿真节点所产生的信息数据实时转换为可被感受的场景动画和声响 评判和决策 近年来已取得大量研究成果尤其是基于先进的仿真软件平台MultiGen Creator和Vega ?a′? ±??????í???μí3μ?èíó2?t?????°?÷1??ü??ê?×÷ò?2?ê?2001-07-05 修回日期 国防重点实验室基金资助项目(编号 宋志明(1972-), 男, 内蒙古锡盟人, 博士, 研究方向为精确制导 虚拟作战视景仿真需要强有力的仿真支撑软件 如OpenGL3Dmax 等 其中MultiGen Creator是一套高逼真度 拥有强大的多边形建模大面积地形精确生成功能以及多种专业选项和插件 优化地生成实时三维(RT3D)数据库 完成视景仿真 极小的磁盘空间 Vega 是开发实时视觉和听觉仿真 它包括图形开发环境Lynx ò??μáD?à1?μ??a 在Vega的图形界面Lynx 中 设置了系统的初始化参数等之后 运动方式视点方式物体和视点的运动方式都有两种方式 路径设置可以在Lynx中直接进行 包括实时和非实时两种Vega提

基于图像融合的目标识别研究

基于图像融合的目标识别研究 王立琦雷洁 (西安交通大学电子信息工程学院综合自动化研究所,陕西西安 710049) 【摘要】:红外与可见光传感器是目标识别系统中常用的两种传感器,将两种传感器图像进行融合能为我们提供更多的有效信息,从而提高目标识别正确率。本文在总结了传统的图像融合方法的基础上,改进了基于区域能量的小波图像融合规则,并设计了一种由支持向量机构建的分类器,对两类目标进行识别。实验表明,本文方法可以有效的提高识别正确率与识别速度。 【关键词】:目标识别;小波变换;图像融合;支持向量机; 1、引言 在高科技信息爆炸时代,各种监控设备功能不断增强,检测到的信息复杂多变,各种隐身、干扰和欺骗等反对抗技术应用广泛,仅依靠单一传感器难以保证目标识别系统高性能稳定工作,这就使得多传感器数据融合作为一种特殊的数据处理方法在目标识别领域越来越得到人们的重视。 红外成像传感器在夜间可以很好的工作,由其拍摄的红外图像可以直观地得到探测目标与背景间的热辐射差异,但只有目标的大致轮廓,细节信息很少;普通摄像机对场景的亮度变化较为敏感,由其拍摄的可见光图像清晰且细节信息较为丰富。红外与可见光图像的融合可以综合红外图像的目标指示特性和可见光图像的场景信息,提供更多、更有效的信息[1]。 小波变换是一种非冗余的多尺度,多分辨率分解图像经过小波变换之后数据的总量不会增大,同时小波变换具有方向性,利用这一特性可以获得视觉效果更佳的融合图像。在融合过程中,对图像的高频成分和低频成分加以区分,采用不同的融合算子和融合规则,可提高融合图像清晰度。目前已有的文献中提到的融合规则[2]可大致分为两类:一类是基于单个像素点的融合规则,如加权平均法、像素值取极值法等;另一类是基于区域的融合规则,如区域标准差,区域极值,区域能量法。由于区域能量较大的中心像素代表了原始图像中的明显特征,并且图像的局部特征一般不是只取决于某一像素,因此基于区域能量的融合规则显得更合理、更科学。但当两幅图像对应像素的区域能量相差比较大时,区域能量选大法可充分保留显著图像信号的细节特征。而当区域能量比较接近,其匹配程度比较大,这种方式容易导致选择错误,使融合图像不稳定,产生失真。鉴于此,本文提出了一种改进算法,即引入一个阈值,当两幅图像对应像素的区域能量差大于阈值时,采用区域能量选大法;当区域能量差小于阈值是,采用平均法。这样既可以清晰的保留显著图像信号的细节特征,又避免了失真,减少了噪声。 支持向量机 (SVM) [3-4]是一种基于统计理论的学习方法,由于其采用结构风险最小化原则,在固定经验风险的条件下,最小化分类函数的VC维,因此比传统的以经验风险最小化为原则的神经网络具有更好的泛化能力,在小样本学习中表现出良好的性能。对于多类模式识别问题,利用改进后的“一对一”策略的支持向量机构建分类器,可以大大减小训练量,提高识别速度。 本文将同一批配准后的红外图像与可见光图像进行小波变换后分别选择未改进的融合规则和改进后的融合规则进行融合,经过图像分割,特征提取,最后利用改进后的支持向量机构造的分类器进行分类。试验证明,采用本文方法得到的识别正确率与速度明显高于单纯使用红外图像或可见光图像或普通融合图像所得到的识别正确率与速度,有效提高了识别系统的正确性与实时性。 2、图像融合的意义 本文研究的为智能自主探测车辆系统中的识别子系统,主要工作是针对某个已检测到的目标,采用多种的传感器对目标进行信息采集,通过融合多源异构信息达到对目标的识别,并将识别结果传送给实验平台,便于后续研究。正常白天,可见光图像可以清晰的反映目标及周围环境的细节信息,但是强光下产生的影子难以与目标分离,而在夜间、阴雨天等光线不足的时候,可见

水下图像目标识别的预处理综述

水下图像目标识别的预处理综述 【摘要】图像预处理是对水下图像目标识别处理的一项关键技术,也是一项经典难题。文章分析归纳了基本的预处理技术,以及目标识别方法和应用,提出了一些发展思路和要点。【关键词】目标识别;水下图像;预处理 0、引言 自主式水下机器人(AUV-Autonomous Underwater Vehicle,本文简称水下机器人)是新一代水下机器人,由于其在军事和商业上的重要应用价值和在高技术运用上面临的众多挑战,它越来越多的受到军事工程师和技术人员的重视,并进行了大量的研究与试验工作。在军用领域则可用于侦察、布雷、灭雷和援潜救生等;在民用领域,它可应用于数据收集,海底头探测,海底考察,管道铺设,水下设备的维护与维修等。鉴于水下机器人的诸多重要的应用领域,其视觉分辨能力又是其执行各种任务,获取水下信息的重要途径,所以对水下机器人的图像采集,水下目标的图像处理与识别就显得越来越重要,是水下机器人能够正常工作的不可或缺的技术保障。 水下图像采集的复杂性: 1、江、河、海洋等水体环境复杂。水体流动噪声的波纹、浮游生物以及水中微粒等都会造成成像背景不单一,总会有噪声出现。 2、光源不稳定。入射到摄像头里面的光会因不同类型的物体在水下反射在水下的反射程度不同而不均匀。 3、所采集到的图像是三维景物的二维投影,所以一幅图像本身不具备完全复现三维景物的全部几何信息的能力,造成空间几何失真。 总之,水下目标识别是目前智能机器人技术发展的关键能力之一,既要发挥光学成像技术的分别率高的优势,又要克服噪声相对复杂的一些技术难点。 在对国内外大量的相关文献进行查阅的基础上,进行归纳总结发现近些年的水下目标识别主要采取的方法有以下几个方面:(1)数理统计方法的应用;(2)神经网络方法的应用;(3)数学形态学的处理与识别方法;(4)声图像的阴影暗区方法的应用;(5)Markov 随机场模型理论应用到识别领域。 一般来说,目标识别是在对图像目标进行预处理之后,选取一定的特征量加以识别和分类,然后输出结果。

水下磁异常探测

基于水下磁异常的潜艇探测技术 0引言 目前以声响讯号探测水面下的人造物体成为运用最广泛的手段。但由于复杂的海洋环境,声纳探测的灵敏度受到一定的限制,同时,声纳探测还有自身的诸如“声影区”的局限,探测海洋中的运动物体(如潜艇)和海洋资源,非声探测技术将发挥重要的作用,其中水下磁场探测技术是一种基于磁异信号的目标探测技术,是近年来随着磁传感器的测量精度不断提高而新兴的一种目标磁探测技术。虽然电磁波在水中衰减的速率非常的高,但随着减声降噪技术的发展,磁测量定位可以准确地推算出磁体与探头之间的相对位置,获得磁体在不同的位置下准确的磁场信息,磁探测技术被广泛地应用于军事设施上可以定位侵入防护区域的磁性目标(坦克,潜水艇,导弹等)的探测。因此,开展水下目标磁探测研究,根据水下大型目标磁场的远场分布特征,建立目标磁场分布的探测模型,对水下大型目标进行远程探测,迅速准确地判断出目标物的类型,并进一步对其进行定向与定位,已成为在现代海战中取得决胜的关键性因素。 1水下目标磁异常探测原理 磁探测技术是各种非声探测中发展较早、技术较成熟的一种探测方法,与声纳技术相比具有识别能力高、运行时间短、定位精度高及成本低等优点。海洋磁探测是搜索水下磁性体最有效的手段之一,这些磁性体产生的感应磁场叠加在海洋磁背景场之上,会导致海洋磁背景场明显畸变,会改变所在位置周围空间的地磁场分布,从而产生磁场异常信号,通过测试和处理磁异信号,可以得到反映磁性目标的探测信息,其物理基础为:含有铁磁性物质的物体会改变所在位置周围空间的地磁场分布,从而产生磁场异常信号,其原理如图1所示。 图 1 磁异常现象示意图 可见基于磁异信号的目标磁探测技术与磁异常场和地磁场有关。对磁性目标的探测信息的提取都是通过对磁异信号的测量,从地磁场(近似均匀场)为背景中提取出来的。 2水下磁异常探测研究现状 2.1潜艇磁场模型建立 分析目标的磁特性可以使磁异常探测系统准确确定目标,根据磁场来源可将用于水下目标探测的电磁场主要有四种:第一种是水下潜艇一般都是由不同金属构成的,不同金属之间会产生电化学腐蚀电流从而产生的感应电磁场,还有就是为了防止海水腐蚀金属,外加电流

多源测试信息融合真题及参考答案)

2012-2013 学年 第一学期期末试卷 学号 姓名 成绩 考试日期: 2013年 1 月 7日 考试科目:《 多源测试信息融合 》(A 卷) 注意事项:1、闭卷考试,考试时间120分钟; 2、请在答题纸和试卷上写明自己的姓名和学号。 题目: 一、简答题(本题共50分,每小题10分) 1. 简述多源测试系统数据融合的目的和定义。 答:目的:对多源知识和多个传感器所获得的信息进行综合处理,消除多传感器信息之间可能存在的冗余和矛盾,利用信息互补来降低不确定性,以形成对系统环境相对完整一致的理解,从而提高系统智能规划和决策的科学性、反应的快速性和正确性,进而降低决策风险过程。 定义:利用计算机技术,对不同传感器按时序获得的观测信息,按照一定的准则加以自动分析、优化和综合,为完成所需的决策和估计任务而进行的信息处理过程。 2. 简述D-S 证据理论中,mass 函数的定义,什么是焦元和焦元的基? 答:(1)基本置信度指派m 是2Θ→[0,1]集合的映射,A 为2Θ一子集,记A ?2Θ ,且满足: m(A)也称为假设的质量函数或mass 函数; 2()0 ()1A m m A Θ ??=?? ?=??∑

(2)若m(A)>0,则称元素A 为证据的焦元;焦元中所包含识别框架中的元素个数称为该焦元的基,记作|A|。(4分) 3. 分布式融合系统常见的融合策略有哪些?(论述其中五个即可得满分) 答:常见的融合策略:“与”融合检测准则、“或”融合检测准则、表决融合检测准则、最大后验概率融合检测准则、Neyman-Pearson 融合检测准则、贝叶斯融合检测准则、最小误差概率准则。 4. 举例说明D-S 证据理论中的0信任冲突悖论。 答:如果识别框架下的多条证据中的一个证据的某一焦元的基本置信度分配为0,且该焦元与同一证据中其它基本置信度指派值不为0的焦元的交集不是其本身,则无论其它证据对该焦元的基本置信度分配有多大,组合结果中该焦元的基本置信度分配始终为0。 11230.5{}()0.2{}0.3{}=??==??=?A A m A A A A A ,12230.0{}()0.9{}0.1{}=??==??=?A A m A A A A A ,13230.55{} ()0.10{}0.35{} =?? ==??=?A A m A A A A A 14230.55{}()0.10{}0.35{}=??==??=?A A m A A A A A ,1230.00{} ()0.33{}0.67{} =?? ==??=? A A m A A A A A 。 5. 简述分布式融合检测系统二元假设检验问题,并分析二元假设检验结果可能出现的几种可能性。 答:在二元假设检验问题中,每个传感器的决策值ui 为二元值,定义如下: 010(1((1,2,,假设 判定为无目标) ,假设 判定为有目标) …,N)?==??i H H u i 设 P(H0)=P0 和 P(H1)=P1分别为H0和H1出现的先验概率,且P0 +P1=1

水下光学图像中目标探测关键技术研究综述

水下光学图像中目标探测关键技术研究综述 一、引言 近年来,海洋信息处理技术蓬勃发展,水下目标探测技术的应用也日益广泛,涉及海底光缆的铺设、水下石油平台的建立与维修、海底沉船的打捞、海洋生态系统的研究等领域。水下光学图像分辨率较高,信息量较为丰富,在短距离的水下目标探测任务中具有突出优势。然而,由于受水下特殊成像环境的限制,水下图像往往存在噪声干扰多、纹理特征模糊、对比度低及颜色失真等诸多问题。因此,水下目标探测任务面临诸多挑战,如何在图像可视性较差的情况下,精确、快速、稳定地检测识别和跟踪水下目标物体是亟待解决的问题。 根据水下目标探测任务的执行步骤,将基于光学图像的水下目标探测关键技术分为图像预处理和目标探测两部分。其中,水下目标探测特指水下目标检测、识别与跟踪。近年来,国内外研究人员对基于光学图像的水下目标探测关键技术进行了大量研究,水下目标探测技术取得了迅速发展,一些研究人员总结了关键技术的发展现状。Sahu等总结了一系列水下图像增强算法,Han等对水下图像智能去雾和色彩还原算法进行了综述,Kaeli等概述了一组用于水下图像颜色校正改进的算法,郭继昌等对水下图像增强和复原算法进行了

系统归纳并通过实验对比了不同算法,Moniruzzaman等梳理了近年来深度学习在水下图像分析中的应用。然而,这些综述仅总结了水下目标探测某一关键技术的研究成果,目前仍缺少对水下目标探测关键技术的系统概述。 本文从水下图像预处理和水下目标检测、识别、跟踪技术入手,详细归纳了水下目标探测关键技术的研究现状。根据是否需要构建模型,将水下图像预处理分为图像增强和图像复原,并重点分析了水下图像增强的各类方法(基于直方图处理、基于Retinex理论、基于图像融合和基于深度学习的方法)的优缺点。由于水下目标跟踪技术的相关研究论文较少,本文主要从传统方法和深度学习两个角度讨论了水下目标检测与识别相关算法,并简要介绍了常用的水下图像数据集。在上述基础上指出了水下光学图像中的目标探测技术亟待解决的问题,讨论了解决思路和进一步发展方向。 二、水下图像预处理 与大气光学成像技术相比,水下光学成像技术深受水体光吸收和散射的影响,可见光在水体中传播的波长依赖性使得水下图像呈现蓝绿色调,水体中的杂质微粒对光的散射导致图像细节模糊以及表面雾化。为解决上述问题,研究人员提出了大量水下图像预处理算法,分为基于非物理模型的图像增强方法和基于物理模型的复原方法。

水面舰船目标检测识别系统设计

水面舰船目标检测识别系统设计 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 在我国近海岸输油、气管道常常会因为不明船只在附近施工、作业或抛锚等危险行为而造成破坏,为了更好的保护海底管道,因而需要在沿管道附近的水域建立一套安防系统,检测过往船只航行状态,对危险目标进行实时预警,并把报警信息实时传送给上位机系统进行处理,以便安防管理人员快速响应报警情况,从而有效保护海底管道的安全。目前,国内外有许多使用图像和视频的方法来检测舰船,但在功耗、硬件实现等方面受到制约。 鉴于此,通过结合水声技术,提出了采用水声与雷达、视频联合自动监测方案,利用水声被动测量可长期工作的特点,实现对海管沿线水面、水下目标的前期声学预警,再利用岸基雷达的短期主动扫描,获取水面可疑目标的准确参数,而视频监测设备则用于雷达近端监测盲区的补充测量,以实现对海底管道附近水域进行全天候无死角的全方位监测。 文中主要论述水声监测分系统的信号处理软硬件设计,即基于浮标的海上舰船目标预警系统设计。其

主要功能包括:实现海上目标声学监测和自动识别,判断目标有无及目标状态;根据船只航行和作业等不同的频谱特性判断监测点附近是否有船只长时间停留或作业等危险存在;如有危险存在,通过北斗数据传输设备向指控中心机房传送报警信息。此外该预警系统还具有位置、电池电压等信息读取和发送功能以及对北斗模块的控制功能。舰船目标检测及识别分系统结合其它的监测系统,可有效降低海管被外部不明船只在附近施工、作业或抛锚等危险行为造成破坏的风险,具有明显的经济效益和社会意义。 1 系统总体设计 舰船目标检测及识别系统的设计思想是由浮标系统阵来完成对目标信号的初步监测,并将结果以无线通信的方式上传至岸基显控系统,岸基系统对结果进行评估,以决定是否开启雷达扫描。 系统工作原理为:首先在海上沿管道走向布放浮标阵,每个浮标上安装水听器,通过将水听器接收到的声信号传送到信号处理系统(模拟和数字)处理,实现对目标信号的检测和识别,当发现危险目标时通过北斗模块上传报警信息。整个系统由基阵、浮标系统、显控系统3 部分组成。 2 系统硬件设计

80热觉得信息融合和目标识别(实验2)

“机电装备设计”实验二 基于力觉、热觉的信息融合 和目标识别 实验指导书 实验班级______________ 实验者______________ 所学专业______________ 实验日期______________ 实验教师______________ 实验成绩______________ 内蒙古工业大学机械学院 先进制造实验室

1、实验目的 1、了解和实践多信息融合算法; 2、通过基于力觉、热觉的信息融合实现其目标物体的识别。 2、实验内容及要求: 1、用力觉和热觉信息实现目标物材分类; 2、位置材料特征提取; 3、特征提取实验; 4、多感觉信息融合。 3、实验装置 多感觉机械手实验装置 PCI6024E采集卡 计算机 4、实验原理 4.1、实验装置 1、实验装置简介 本实验装置是一种具有接近觉、接触觉、滑动觉、力觉、热觉等五种感觉的两自由度智能机械手,所有感觉集中于手爪部位,通过手爪对模拟工件的操作,实现感觉信息的测量。 作为实验装置,它使学生直接面对科学研究前沿,除多个实验可做生动的演示外,在信息处理部分可以融入自己的算法思想。在技术上,它具有控制方式灵活、人机界面友好、实验系统结构开放等特点。可作为“机械制造及其自动化”、“自动化”、“电子信息工程”等本科专业《机器人技术》课程的实验装置,也可用作相关专业研究生实践及研究开发平台。整个实验装置由机械手本体、控制器、计算机等三部分组成,系统组成示意图如图1所示。

机械手本体由多感觉手爪(其中力传感器装在腕部)、升降筒、支撑力柱和底座工作平台等组成,手爪的张开与闭合及手臂的升降均由步进电机驱动。手爪为丝杠螺母传动,带动一平移夹持机构实现手爪开合。升降是滚珠丝杠传动,螺母与升降筒固定在一起,由直线导轨保持其运动精度。 控制器由控制面板(含液晶显示)、传感器信号处理板、机械手控制板、电机驱动器、直流电源等组成。控制面板(含液晶显示)是人机界面,由按键输入,液晶输出。传感器信号处理板完成各种感觉信息的模拟信号处理,分别输出到PC机和机械手控制板。机械手控制板包括感觉信号的A/D转换、键盘输入处理和各种实验功能的实现(含手爪及升降电机的控制)。 计算机是各种感觉信息的演示界面,用LABVIEW软件开发,能用多个窗口观察各个感觉信息的实时变化,并进行多感觉信息融合算法的实践。

水下目标识别技术探究

Technology Analysis 技术分析DCW 111数字通信世界2019.04(接上页)视,并采取相应有力措施加以解决,以促进高速公路 机电通信新技术的应用,为高速公路的发展提供更多通信技术支 持。 参考文献[1] 黄冠群.高速公路机电系统的维护与管理[J].科技创新与应用,2014,15(06):199.[2] 王小利.高速公路机电工程通信系统技术浅述[J].工程技术,2017,4(下):977. 1 研究背景 一般来说,水下目标情况复杂,我们研究的方向主要包括包 括舰船、潜艇、水雷、鱼群、海底沉物、地貌底质等。水下目标识别是实现水声装备与武器系统智能化的关键技术,更是现代信 息化条件下克敌制胜的前提,一直是各国海防领域面临的技术难 题。在20世纪40年代,世界各主要国家就已开始重视水下目标 识别技术,鉴于水下目标识别领域具有复杂性和特殊性,导致 该技术研究进展一直较为缓慢。近年来,尤其是军事应用方面, 低噪声核潜艇的出现对水下目标特征分析和识别技术的需求愈 加强烈。同时,新兴的信息处理技术、微处理器技术、VLSI 和 VHSIC 技术也取得了重大进展。正是基于军事需求和新兴电子技术的推动下,数值计算和实验室仿真技术日趋成熟,水下目标 识别技术迅速发展起来。 2 识别技术的发展 水下目标识别根据回波信号符合大信噪比条件,一般分为瞬态回波信号识别和水声图像信号识别两种。前者主要用于识别航 行舰艇,直接对目标回波或噪声信号进行实时辨别;后者多用于 静态目标,如海底沉淀物、地质结构等识别。早期的目标识别技 术,目标判断主要依据目标噪声或回波的波形音调、节奏分布特 性进行识别。随着研究技术和设备的发展,上个世纪七十年代后,目标回波的亮点分布结构起伏和展宽特性以及目标噪声的线谱分 布特性均已作为目标的特征量。但由于目标本身以及声传输信道 的复杂性,目标特征量及其数量的选取问题还是没有得到有效解 决。八十年代以来,目标识别技术广泛引入了近代信号处理技术,仪器设备研制和测量水平得到大幅提升,这为水下目标特征量提 取和数据收集提供了便利条件,与此同时,人工神经网络分析将 目标识别过程进一步智能化。 在全球电子化、智能化手段的快速发展和广泛应用下,各国 在水下目标识别的多个领域实现了突破。一是日本东京大学和美 国RESON 公司从2010年起联合开发应用于浅海及沿岸港口的自 动声纳目标探测跟踪系统。此系统能在低信噪比情况下,有效跟 踪探测水下运动目标。并在此基础上,使用干涉仪测量法计算相 位差场,这样就能够有效抑制噪声混响及静止假目标的干扰,从而提高识别率。二是美国爱荷华大学2013年深入研究了非稳态干扰下主动声纳目标探测及分类,并提出自适应子空间跟踪算法,在时频区域对目标回波进行动态监测,结果表明此算法能够有效抑制杂波对目标回波的干扰。三是欧美各国均建立了蛙人散射模型,进行水下小目标探测识别研究。通过实验,仿真分析了蛙人的目标强度,并开展水池试验,测量了蛙人呼吸气瓶的目标强度, 海上试验测量了蛙人目标强度。据公开资料显示,蛙人探测声纳(DDS )的性能描述,几乎所有的蛙人探测声纳均称实现了目标 识别和预警。四是2013年,美国海洋SPAWAR 系统中心海洋系统太平洋分部,应用多普勒方位测定法对多基地连续主动声纳目标进行跟踪。在多收发装置情况下,以此方法对目标进行有效定位和跟踪,取得良好效果。在先进发达国家的推动下,目标特性试验数据资源建设较为完善。俄罗斯、美国、英国在多年前就建立了大西洋海上试验场、DERA 测试场、活动式试验场及靶场,收集并整理了大量本国和盟约国及世界各国的舰艇目标特征数据资源,并对这些数据资源进行了对比分析、深层次挖掘,形成以特征库数据为基准的探测、识别体系。据了解,美俄等军事大国,每艘潜艇上都具有相应数据库,库中记载着各种舰艇、水中兵器的数据库及特征知识库,从而为作战中指挥官的准确判断提供数据支撑。 3 未来发展趋势随着吸声和隔声材料工艺提高、发动机减振降噪技术提升、仿生技术发展、干扰器种类多样化以及安静级潜艇应用给复杂的水下目标探测提出更高要求,识别与反识别技术出现了激烈碰撞。同时,水下目标识别技术和途径也逐渐多样化,己从单一源目标 提高到系统综合识别。据研究发现,现代激光技术可以作为水下目标识别系统的补充,尤其是在浅水区域、环境复杂的海洋区域、不易接近的区域等,使用激光可以快速探测和识别。机载激光扫描系统可以快速部署,用于探测水下目标或水面浮动目标。如果 目标足够大,机载激光扫描还可识别不同类型的目标,在这种情况下,在水面平台或水下平台上部署激光门控视图(LGV )、水下激光扫描(ULS )系统,可以确认目标。可以预见,未来的发展方向主要是非声探测、多传感器信息融合和智能目标识别等。人工智能技术与水声目标识别有机结合将是今后水下目标识别研究的重要方向。 参考文献[1] 丁玉薇.被动声呐目标识别技术的现状与发展[J].声学技术,2004,23(4).[2] 强超超 王元斌.水声目标识别技术现状与发展[J].指挥信息系统与技术,2018,9(2). [3] 徐慧.水声目标被动识别相关技术研究[D].武汉:中国舰船研究院,2017[4] 柳革命,孙超,杨益新.基于特征融合的被动声呐目标识别[J].计算机仿真,2009,26(8).水下目标识别技术探究 刘梦琪 (哈尔滨工程大学水声学院,哈尔滨 150000) 摘要:水下目标识别就是从水声信号中提取水下目标特性并做出识别,确定出目标的本质属性,进而采取有效应对措施。在军事方面,水下目标识别是世界各国海防情报处理的重要组成,是武器分配、反潜和鱼雷防御的前提;在民用方面,水下目标识别是现代化海洋开发利用的重要基础。因此,开展水下目标识别研究在国家安全、海洋应用等方面意义重大。 关键词:水声目标;技术发展;综合识别 doi :10.3969/J.ISSN.1672-7274.2019.04.081 中图分类号:TP391.4 文献标示码:A 文章编码:1672-7274(2019)04-0111-01

相关文档