文档库 最新最全的文档下载
当前位置:文档库 › 数控机床电气控制与驱动系统的可靠性研究

数控机床电气控制与驱动系统的可靠性研究

数控机床电气控制与驱动系统的可靠性研究
数控机床电气控制与驱动系统的可靠性研究

蒙特卡洛法在电力系统可靠性评估中的应用

3 蒙特卡洛法在电力系统可靠性评估中的应用 3.1电力系统可靠性评估的内容与意义 可靠性指的是处于某种运行条件下的元件、设备或系统在规定时间内完成预定功能的概率。电力系统可靠性是指电网在各种运行条件下,向用户持续提供符合一定质量要求的电能的能力。电力系统可靠性包括充裕度(Adequacy)和安全性(seeurity)两个方面。充裕度是指在考虑电力元件计划与非计划停运以及负荷波动的静态条件下,电力系统维持连续供应电能的能力,因此又被称为静态可靠性。安全性指的是电力系统能够承受如突然短路或未预料的失去元件等事件引起的扰动并不间断供应电能的能力,安全性又被称为动态可靠性。目前国内外学者对充裕度评估的算法和应用关注较多,且在理论和实践中取得了大量的研究成果,但随着研究的深入也出现了很多函待解决的新课题。电力系统的安全性评估以系统暂态稳定性的概率分析为基础,在原理、建模、算法和应用等方面都处于起步和探索阶段。由于电力系统的规模很大,通常根据功能特点将其分为不同层次的子系统,如发电、输电、发输电组合、配电等子系统,对电力系统的可靠性评估通常也是对上述子系统单独进行。不同层次的子系统的可靠性评估的任务、模型、算法都有较大区别。电力系统在正常运行情况下,系统能够正常供电,不会出现切负荷的事件。如果系统受到某些偶发事件的扰动,如元件停运(包括机组、线路、变压器等电力元件的计划停运与故障停运)、负荷水平变化等,可能会引起系统功率失衡、线路潮流越限和节点电压越限等故障状态,进而导致切负荷。电力系统可靠性研究的主要内容是基于系统偶发故障的概率分布及其后果分析,对系统持续供电能力进行快速和准确的评价,并找出影响系统可靠性水平的薄弱环节以寻求改善可靠性水平的措施,为电力系统规划和运行提供决策支持。 3.2电力系统可靠性评估的基本方法 电力系统可靠性评估方法可分为确定性方法和概率性方法两类。确定性方法主要是对几种确定的运行方式和故障状态进行分析,校验系统的可靠性水平。在电源规划中,典型的确定性的可靠性判据有百分备用指标和最大机组备用指标;电网规划

LED灯具驱动电源设计经验.pdf

LED灯具驱动电源设计经验 深圳赛德利认为LED灯具要普及,不但需要大幅度降低成本,更需要解决能效和可靠 性的难题,如何解决这些难题,PowerIntegrations市场营销副总裁DougBailey分享了高效高可靠LED灯具设计的五点忠告。 一、不要使用双极型功率器件 DougBailey指出由于双极型功率器件比MOSFET便宜,一般是2美分左右一个,所以 一些设计师为了降低LED驱动成本而使用双极型功率器件,这样会严重影响电路的可靠性, 因为随着LED驱动电路板温度的提升,双极型器件的有效工作范围会迅速缩小,这样会导 致器件在温度上升时故障从而影响LED灯具的可靠性,正确的做法是要选用MOSFET器件,MOSFET器件的使用寿命要远远长于双极型器件。 二、MOSFET的耐压不要低于700V 耐压600V的MOSFET比较便宜,很多认为LED灯具的输入电压一般是220V,所以耐压600V足够了,但是很多时候电路电压会到340V,在有浪涌的时候,600V的MOSFET很容易被击穿,从而影响了LED灯具的寿命,实际上选用600VMOSFET可能节省了一些成本但是付出的却是整个电路板的代价,所以,“不要选用600V耐压的MOSFET,最好选用耐压超过700V的MOSFET.”他强调。 三、尽量不要使用电解电容 LED驱动电路中到底要不要使用电解电容?目前有支持者也有反对者,支持者认为如 果可以将电路板温度控制好,依次达成延长电解电容寿命的目的,例如选用105度寿命为8000小时的高温电解电容,根据通行的电解电容寿命估算公式“温度每降低10度,寿命增加一倍”,那么它在95度环境下工作寿命为16000小时,在85度环境下工作寿命为32000小时,在75度环境下工作寿命为64000小时,假如实际工作温度更低,那么寿命会更长! 由此看来,只要选用高品质的电解电容对驱动电源的寿命是没有什么影响的! 还有的支持者认为由无电解电容带来的高纹波电流而导致的低频闪烁会对某些人眼造 成生理上的不适,幅度大的低频纹波也会导致一些数码像机设备出现差频闪烁的亮暗栅格。 所以,高品质光源灯具还是需要电解电容的。不过反对者则认为电解电容会自然老化,另外,LED灯具的温度极难控制,所以电解电容的寿命必然会减少,从而影响LED灯具的寿命。 对此,DougBailey认为,在LED驱动电路输入部分可以考虑不用电解电容,实际上使 用PI的LinkSwitch-PH就可以省去电解电容,PI的单级PFC/恒流设计可以让设计师省去大 容量电容,在输出电路中,可以用高耐压陶瓷电容来代替电解电容从而提升可靠性,“有的人在设计两级电路的时候,在输出采用了一个400V的电解电容,这会严重影响电路的可靠性,建议采用单级电路用陶瓷电容就可以了。”他强调。“对于不太关注调光功能、高温环 境及需要高可靠性的工业应用来说,我强烈建议不采用电解电容进行设计。” 四、尽量使用MOSFET器件

电力系统可靠性复习v1.0

电力系统可靠性复习 1可靠性是指一个元件、设备或系统在预定的时间内、规定的条件下完成规定功能的能力。【P2】 2、量度可靠性特性的指标则称为可靠度。【P2】 活动进行规划、组织、协调、控制与监督,以求实现既定的可靠性目标,并保持全寿命周期费用最省。【P3】 5、可靠性工程具有三大特点,即实用性、科学性和时间性。【P3】 6、实用性是指可靠性工程从诞生之日开始就和工程实践紧密联系和结合,具有强大的生命力。【P3】 7、科学性是指可靠性工程有一套独特的科学的理论和方法。【P3】 8、时间性是指可靠性存在于产品或系统整个开发过程之中,不论设计、研究、制造、应用等各阶段都起作用,其中任何一个阶段对可靠性问题考虑不周,都将对其整个的各个阶段及过程产生影响。【P3】 9、电力系统可靠性的实质就是用最科学、最经济的方式,充分发挥发、供电设备的潜力, 性及配电系统可靠性。【P7/P8】 10P7】 (1)研究和建立适当的可靠性指标及其获取和计算的方法; (2)寻求提高元件和系统可靠性水平的途径; (3)研究可靠性与经济性的协调配合; (4)对各元件和系统进行可靠性的控制、监督和综合评价。 1141】 1)防止故障发生 (1)加强设备(①防雷措施;②防盐害措施;③防雪害措施;④防他物接触措施;⑤防风雨水害措施;⑥其他); (2)尽早发现故障原因; (3)防止自备电源用户扩大故障。 2)故障时尽快送电 (1)尽快减少停电区段(①缩小停电范围;②完好区段快送电); (2)迅速恢复供电(①尽早发现故障点;②加强修复体制)。 1242】 1)避免作业停电 (1)缩小停电范围(①改善设备;②改善施工方法); (2)实施不停电作业(改善施工方法); (3)减少作业停电次数(充实工程管理)。 2)缩短停电时间 (1)改善设备; (2)改良器材; (3)改善工作方法; (4)调整工序。

企业电力供配电系统运行可靠性与安全性分析

企业电力供配电系统运行可靠性与安全性分析 摘要:电力系统是由发、供、配、用四大部分构成,而供配电系统涉及电力系 统的供和配两大部分。要想电能在电力系统中正常输配,供配电系统可靠性是基 本保证。通过供配电系统不仅能实现电能在发电厂与用户之间的传输、配送,还 能实现对该过程进行控制和计量,并通过在线监测方式对在系统中随时可能出现 的各种故障进行快速且有效的检测和保护,供配电系统可靠运行能基本保证电力 系统正常运行。 关键词:供配电系统;运行;可靠性;安全性 1企业电力供配电系统运行可靠性与安全性现状 1.1管理不规范 管理不规范会出现混乱局面,由于大多数人缺乏对电路分布情况的全面了解,导致在这 个过程中存在大量的安全隐患。而管理层也没有起到有效作用,管理人员的整体素质不高, 没有肩负起身上的责任,没有发挥出实际效果。随着城市经济的飞速发展以及不断加快的城 市化进程,为了更好地建设城市,常常会出现大量的施工活动,这些大规模的施工活动对配 电线路容易造成严重破坏,例如很多时候地面施工时,就会出现地下电缆被挖断、地上电缆 被折断等问题。其次在电力线路基础设施建设上面,有些城市没有设置专用架设杆线,这样 造成的后果是多种线路共架,不仅安全性受到影响,还增加了日常维护的难度,并且这样的 设置使得外界因素的不利影响也有所增加。部分用户肆意用电,私自增大使用负荷,给线路 增加了负担,影响到稳定运行。 1.2设备落后 设备是供配电网运行当中的重要组成部分,其中所存在的问题有:第一,在供配电网中 对部分质量没有达标的套管材料以及绝缘子进行应用。该情况的存在,在高压高负荷以及雷 击状态下,则有较大的几率出现线路短路跳闸故障问题,因此将导致严重永久性故障的发生,不仅会导致发生经济方面的损失,且有可能导致大面积停电事故的发生;第二,在供配电网 设置中,在柱上断路器安置质量方面存在不达标问题,对于工作人员来说,如果没有对其进 行及时的维修,则可能导致安全事故的发生。对于断路器来说,其具有较为特殊的连接方式,在具体操作中,如存在不可靠操作情况,则将对安全运行带来非常大的隐患,而需要通过远 程操作方式对人员安全进行保证。可以说,供配电设备的滞后性以及陈旧性都将直接影响到 系统维护调试工作的进行。 1.3后期的防范保护工作不到位 后期的防范保护具体涉及三点:自然环境问题、人为因素、一些飞鸟等小动物。此类问 题基本上都属于意外情况,需要配电人员对电路情况掌握熟悉,能够及时找出问题的出现点 并及时修理。 2企业电力供配电系统运行可靠性与安全性的提升策略 2.1完善供配电系统功能 科学技术的快速发展要求各个行业与时俱进,当前,自动化技术逐渐融入各个行业中, 实现了对传统生产模式和管理模式的调整。供配电系统运行中经常会出现停电现象,归根究

LED驱动电源可靠性和能效关键测试项目(精)

LED驱动电源可靠性和能效关键测试项目 近几年LED作为新型节能光源在全球和中国都赢得得了很高的投资热情和极大关注,并由户外向室内照明应用市场渗透,中国也涌现出大大小小上万家LED照明企业。让LED照明大放异彩的最主要原因正是其宣扬的具有节能、环保、长寿命、易控制、免维护等特点。 然而颇具讽刺意味的是,我们常常听闻由于LED驱动电源本身的寿命直接拖累LED 照明灯具变得并不“长寿”,极大地增加了维护/使用成本;或者驱动电源的效率不高导致LED照明灯具的能效转换比并不是想象中那么高,或者由于输出电流纹波没有得到很好的控制影响了发光品质,使得LED照明的绿色节能优势大打折扣,甚至影响了市场普及。 因此,LED产业链的完善和成熟,驱动电源也是其中重要的一环。但现状是LED驱动电源的设计和品质局限却日益成为LED产业发展的“后腿”,因此电源模块厂商、灯具制造商都越来越重视采用先进的测试测量技术和方案。针对这一现状,泰克公司独树一帜,深入到客户中间,深入了解现场的实际需求,制定出针对LED垂直应用的各种解决方案组合,旨在帮助更多的中国LED照明厂商、驱动电源供应商和相关质检/认证机构获得更精确的测试结果,保证LED驱动电源的品质,从而促进中国LED照明产业的健康繁荣发展。

图1:泰克专门针对LED照明应用提供各种测试解决方案组合供客户选择。 LED驱动电源的可靠性和能效是测试关键 那么,真正高品质的LED驱动电源应该具备什么样的特点或者说应该满足那些要求呢?泰克公司总结出以下主要的几个方面: 1.高可靠性和寿命:驱动电源的寿命要与LED的寿命相适配,特别对像LED路灯的驱动电源,因为装在高空,维修不方便,维修的花费也大; 2.高效率:对于电源安装在LED灯具内的结构,这一点尤为重要。因为LED的发光效率随着LED温度的升高而下降,所以LED的散热非常重要。电源的效率高,它的耗损功率小,在灯具内发热量就小,也就降低了灯具的温升,对延缓LED的光衰有利。 3.高功率因数:随着社会对供电质量的要求不断提高,人们越来越关注用电设备带来的电能质量和谐波问题。如欧盟已经发布标准,规定功率大于25W的电源设备必须具备功率因数校正电路。而其他很多国家对于30 ~40W的LED驱动电源,据说不久也将可能会对功率因数方面有一定的指标要求。 4. 恒流驱动:现在通行的有两种:一种是一个恒压源供多个恒流源,每个恒流源单独给每路LED供电。这种方式组合灵活,一路LED故障,不影响其他LED的工作,但成本会略高一点。另一种是直接恒流供电,LED串联或并联运行。它的优点是成本低一点,但灵活性差,还要解决某个LED故障不影响其他LED运行的问题。 5.适当的输出纹波:输出纹波会影响LED的光输出效果。但减小纹波需要使用更高品质和容量的电容。为提高电源整体的使用寿命,设计师往往倾向于采用无电容方案。工程师必须在输出纹波指标上确定折中方案。 6.浪涌保护:LED抗浪涌的能力是比较差的,特别是抗反向电压能力。有些LED灯装在户外,由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。因此LED驱动电源要有抑制浪涌的侵入,保护LED不被损坏的能力。 7.保护功能:电源除了常规的保护功能外,最好在恒流输出中增加LED温度负反馈,防止LED温度过高。 8.防护方面:对灯具外安装型结构,电源结构要防水、防潮,外壳要耐晒。 9.要符合安规和电磁兼容的要求。

电力系统继电保护作业答案

第一次作业 1.什么是电力系统的一次设备和二次设备? 答:一次设备:一般将电能通过的设备称为电力系统的一次设备。 二次设备:对一次设备的运行状态进行监视、测量、控制和保护的设备,称为电力系统的二次设备。 2.什么是电力系统的运行状态和故障状态? 答:电力系统运行态指电力系统在不同运行条件(如负荷水平、出力配置、系统接线、故障等)下的系统与设备的工作状配。 电力系统的故障状态是指所有一次设备在运行过程中由于外力、绝靠老化、过电压、误操作、设计制造缺陷等原因而发生例如短路、断线等故障。 3.什么是继电保护装置? 答:继电保护装置就是指能反应电力系统中电气设备发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自功装置。 4.什么是主保护和后备保护? 答:主保护是指反应整个被保护元件上的故障,并能以最短的时限有选择地切除故障的保护称为主保护。 后备保护是指在实际运行中,由于各种原因可能存在保护或断路器拒动的情况,所以,必须要考虑后备保护(替代功能)的配备。其目的是不允许长期存在短路的情况。于是出现了近后备保护、远后备保护、断路器失灵保护等。

5.试说明什么是继电器的继电特性? 答:继电器的继电特性是指继电器的输入量和输出量在整个变化过程中的相互关系。无论是动作还是返回,继电器都是从起始位置到最终位置,它不可能停留在某一个中间位置上。这种特性就称之为继电器的“继电特性”。 6.什么是系统最大运行方式和系统最小运行方式? 答:系统最大运行方式: 总可以找到这样的系统运行方式,在相同地点发生相同类型的短路时流过保护安装处的电流最大,对继电保护而言称为系统最大运行方式,对应的系统等值阻抗最小,Zs=Zs.min。 系统最小运行方式: 也可以找到这样的系统运行方式,在相同地点发生相同类型的短路时流过保护安装处的电流最小,对继电保护而言称为系统最小运行方式,对应的系统等值阻抗最大,Zs=Zs.max 。 7.什么是电流速断保护和限时电流速断保护? 答:电流速断保护:反应于短路电流的幅值增大而瞬时动作的电流保护(电流大于某个数值时,立即动作)。 限时电流速断保护:由于有选择性的电流速断保护不能保护本线路的全长,因此考虑增加一段带时限动作的保护,用来切除本线路上速断保护范回以外的故障,同时也能作为速断保护的后备。

配电系统的可靠性评估方法探讨

配电系统的可靠性评估方法探讨 所谓配电系统的可靠性评估,就是采用现代分析工具对配电系统参数进行设置,包括停电频率以及停电时间等,如果参数设置的比较合理,系统就可以按照预期规划运行,实现系统可靠性的控制。文章简述了配电系统可靠性分析的思路,分析了具体评估方法。 标签:配电系统;可靠性;评估方法 前言 当前我国在规划配电系统的过程中,一般都不设置具体的可靠性目标,而是采用隐性处理的方式,这样配电系统在投入使用时,就需要花费大量资金维护供电的可靠性。为了避免这种规划方式的弊端,需要采用科学的手段对配电系统可靠性进行评估,按照实际需求对电力资源进行合理分配,减低供电费用,提升配电系统运行的可靠性。 1 配电系统可靠性分析思路 配电系统可靠性分析的主要目标就是可以准确评价出系统运行时的可靠性,并将评估结果作为依据,对设计中存在的问题进行修正。具体评估思路如下:首先,对系统数据进行分析,评估历史的可靠性,就是根据历史数据判断系统运行能力。一般都是由系统运行部门负责这项工作,分析系统没有大大预期可靠性的原因,判断系统的薄弱环节在哪。如果问题出在设计方案上,需要与工程规划部门共同合作解决问题。其次是制作预测模型,就是根据备选设计方案预测系统未来一段时间内运行的可靠性,主要是针对配电系统中的某一个部分,预见其在运行时有可能出现的问题,提出提升系统运行可靠性的方法。最后是校正预测模型,预测模型建立以后,需要将历史数据作为依据对其进行校正,使其与历史情况相符,这样才能保证预测模型不脱离实际。值得注意的是,模型校正是一个非常复杂的过程,需要配电系统运行部门提供真实、完整的历史数据,并考虑到系统运行的外界环境因素,用电需求变化因素等,将所有因素都考虑到,然后对参数进行谨慎调整,这样才能对系统未来运行状态进行准确预测,判断其可靠性是否可以达到预期要求[1]。 2 配电系统可靠性评估方法 2.1 计算流程 第一,需要设置一个可靠性限值,主要包括两项内容,一是基本目标值,二是所允许的偏差范围;第二,在计算程序中输入模型和相关数据,数据可以来源于现有系统,也可以来源于拟建的配电系统;第三,启动计算程序,开始计算,得出预期可靠性。这种评估性的计算主要包括两项内容,一是预期停电频率,二是预期停电时间,一般都是采用图形的方式显示计算结果,这种方法比较直观,

配电系统供电可靠性统计方法

配电系统供电可靠性统计方法 (试行) SD 137-85 第一章总则 第一条配电系统供电可靠性统计,可以直接反映配电系统对用户供电能力,是配电系统可靠性管理的基础,也是电力工业可靠性管理的一个重要组成部分。其统计对象是以对用户是否停电为标准。 第二条为了统一配电系统供电可靠性统计方法及评价指标,特制定本办法,其目的在于: 1.收集配电系统运行方面的可靠性资料,建立供电可靠性的数据系统和指标; 2.为编制配电系统运行方式,维护检修计划提供可靠的数据及资料; 3.为配电系统设计和规划提供必需的可靠性数据; 4.制定统一的、明确的供电可靠性标准和准则; 5.为提高配电系统对用户的连续供电能力提供最佳可靠性的决策依据。 第三条本暂行办法适用于10(6)kV配电系统的可靠性数据统计和分析。 第四条各供电部门均应按本办法要求进行可靠性统计、计算及填报,并设专职人员负责此项工作。 第二章定义及分类 第五条配电系统供电可靠性的定义 配电系统供电可靠性——配电系统对用户连续供电能力的程度。 第六条配电系统及用户设备 1.配电系统——由各变电站(发电厂)10(6)kV出线母线侧刀闸开始至公用配电

分界点为止范围内所构成的配电网络。 2.配电系统设备 (1)配电系统变电站设备——包括从变电站(发电厂)10(6)kV母线侧出线刀闸算起,至下述各连接点为止的所有中间设备。即: 当以架空线路出线时,至出线终端杆塔引连线为止; 当以电缆线路出线的架空线路时,至出线终端杆塔电缆头搭头为止; 当以电缆出线的长距离电缆线路时,至变电站(发电厂)开关柜下部出线隔离开关与电缆头连接点为止。 (2)线路设备——由变电站(发电厂)10(6)kV出线杆塔或出线电缆头搭头至用户用电配电变压器二次侧出线套管或用户高压设备引连线搭头为止所连接的中间设备。 3.用户设备——固定资产属于用户的设备。 第七条配电系统的状态 1.供电状态——配电系统处于对用户预定供应电能的状态。 2.停电状态——配电系统不能对用户供应电能的状态。 但是对于配电系统来说,由于系统结构的不同,某些设备的停运和动作,不一定会影响配电系统对用户的供电(即不一定造成对用户的停电或限电)。 在下述情况下,不应视为对用户停电: (1)自动重合闸动作,重合成功,或备用电源自动投入。 (2)经批准停用自动重合闸装置,但在开关跳闸后3min内试送成功。 (3)小于3min的调电操作。 (4)并列运行的设备停止运行超过3min而未对用户供电产生影响。 第八条配电系统设备的状态及停运时间

电力系统可靠性作业二

电力系统可靠性第二次作业 电卓1501 杨萌201554080101 1.什么是电力系统可靠性 电力系统可靠性是对电力系统按可接受的质量标准和所需数量不间断地向电力用户供应电力和电能能力的度量。包括充裕度和安全性两个方面。 2.什么是充裕性 充裕度( adequancy,也称静态可靠性),是指电力系统维持连续供给用户总的电力需求和总的电能量的能力,同时考虑系统元件的计划停运及合理的期望非计划停运 3.什么是安全性 安全性( security,也称动态可靠性),是指电力系统承受突然发生的扰动的能力。 4.电力系统可靠性包括哪几大类 发电系统可靠性,发输电系统可靠性,输电系统可靠性,配电系统可靠性及发电厂变电所电气主接线可靠性。 5.可靠性的经典定义 指一个元件或一个系统在预定时间内和规定条件下完成其规定功能的能力。 6.元件 是构成系统的基本单位 7.系统 是由元件组成的整体,有时,如果系统太大,又可分为若干子系统。 8.电力系统可靠性的评价 通过一套定量指标来量度电力供应企业向用户提供连续不断的、质量合格的电能的能力,包括对系统充裕性和安全性两方面的衡量。 9.不可修复元件的寿命 不可修复元件的寿命是指从使用起到失效为止所经历的时间。 10.故障率 假设元件已工作到t时刻,则把元件在t以后的△t微小时间内发生故障的条件概率密度定义为该元件的故障率。 11.可靠度与不可靠度

可靠度:表示元件能执行规定功能的概率,通常用可靠度函数R(t)表示,在给定环境条件下时刻t前元件不失效的概率:R(t)=P[T>t],R(t)=1-F(t) 不可靠度:F(t)只元件的损坏程度,称为元件的故障函数或不可靠函数。 R(t)=e^(-λt) F(t)=1- e^(-λt) 12.什么是可修复元件 指投入运行后,如损坏,能够通过修复恢复到原有功能而得以再投入使用。 13.元件描述修复特性指标有哪些? 修复率、未修复率、修复度、平均修复时间 14.元件修复率 表明可修复元件故障后修复的难易程度及效果的量成为修复率。 通常用表示,其定义是:元件在t时刻以前未被修复,而在t时刻后的△t 微小时间内被修复的条件概率密度: 15.元件未修复率 元件为修复率定义式: 即实际修复时间大于预定修复时间的概率。 16.元件平均修复时间与修复率之间的关系 元件修复度: 元件平均修复时间MTTR:当元件的修复时间Tu呈指数分布时,其平均修复时间MMTR=

电力系统可靠性评估指标

电力系统可靠性评估指标 1.1 大电网可靠性的测度指标 1. (电力系统的)缺电概率 LOLP loss of load probability 给定时间区间内系统不能满足负荷需求的概率,即 ∑∈=s i i P LOLP 式中:i P 为系统处于状态i 的概率;S 为给定时间区间内不能满足负荷需求的系统状态全集。 2. 缺电时间期望 LOLE loss of load expectation 给定时间区间内系统不能满足负荷需求的小时或天数的期望值。即 ∑∈=s i i T P LOLE 式中:i P 、S 含义同上; T 为给定的时间区间的小时数或天数。缺电时间期望LOLE 通常用h/a 或d/a 表示。 3. 缺电频率 LOLF loss of load frequency 给定时间区间内系统不能满足负荷需求的次数,其近似计算公式为 ∑∈=S i i F LOLF 式中:i F 为系统处于状态i 的频率;S 含义同上。LOLF 通常用次/年表示。 4. 缺电持续时间 LOLD loss of load duration 给定时间区间内系统不能满足负荷需求的平均每次持续时间,即 LOLF LOLE LOLD = LOLD 通常用小时/次表示。 5. 期望缺供电力 EDNS expected demand not supplied 系统在给定时间区间内因发电容量短缺或电网约束造成负荷需求电力削减的期望数。即 ∑∈=S i i i P C EDNS 式中:i P 为系统处于状态i 的概率;i C 为状态i 条件下削减的负荷功率;S 含义同上。期望缺供电力EDNS 通常用MW 表示。

LED驱动电源的特点及要求

LED光源驱动电路分析 LED光源就是发光二极管(LED)为发光体的光源。发光二极管发明于20世纪60年代,在随后的数十年中,其基本用途是作为收录机等电子设备的指示灯。这种灯泡具有效率高、寿命长的特点,可连续使用10万小时,比普通白炽灯泡长100倍,LED光源的能量转化效率非常高,理论上可以达到白炽灯10%的能耗,LED相比荧光灯也可以达到50%的节能效果。节能效果显著,科学家预测,在未来5年,这种灯泡很可能成为下一代照明的主流产品。 LED光源与传统灯具的电源是完全不一样的,首先LED不能直接使用常规的电网电压,从LED的伏安特性可知,只能给LED两端加上一定的直流电压或通上一定的直流电流才能使LED发亮,LED驱动电源就是把交流电源转换为特定的电压电流以驱动LED发光的电压转换器。通常情况下,LED驱动电源的输入包括市电,低压电流,高压电流,低压高品交流等。而LED驱动电源的输出则大多数为可随LED正向压降值变化而改变电压的恒定电流源。 另外,在选择和设计LED驱动电源时还要考虑到以下几点要求。 (1)高可靠性 特别像LED路灯的驱动电源,装在高空,维修不方便,维修成本高。 (2)高效率 LED是节能产品,驱动电源的效率要高,否则就无法凸显LED节能的特性。电源的效率高,它的耗损功率就小,在灯具内发热量也小,就降低了灯具的温升,有利于延缓LED的光衰。 (3)高功率因素 功率因素是电网对负载的要求,提高功率因素能使电源的利用率提高。 (4)驱动方式 对于恒流式的驱动电源,现在通行的有两种:一种是一个恒压源供多个恒流源,每一个恒流源单独给每路LED供电;另一种是直接恒流供电,LED串联或并联运行。 (5)海涌保护 LED抗浪涌的能力是比较差的,特别是抗反向电压能力。加强这方面的保护也很重要,因此LED驱动电源要有抑制浪涌的侵入,保护LED不被损坏的能

配电系统可靠性评估方法

浅谈配电系统可靠性评估方法 刘旭军 (大唐石门发电有限责任公司,湖南常德415300) 摘要:随着社会的发展,电力系统正在处于一个飞速发展的阶段,作为电力系统中最重要的组成部分配电系统,其可靠性直接关系着整个电力系统的正常运行,配电系统如果不稳定将会给电力系统带来巨大的经济损失。本文首先从配电系统常见的可靠性指标出发,探讨了当前配电系统可靠性评估的常见方法。 关键词:配电系统;电力系统;可靠性,评估方法 中图分类号:TM76 文献标识码:A 文章编号:1003-5168(2012)24-0001-01 1 常见配电系统可靠性指标 配电系统是用户与电力系统联系最重要的基础,它对整个用户的用电质量有着重要的影响,因此,对配电系统的可靠性进行有效的研究就显得非常重要。对配电系统可靠性的评价指标一般可以分为用户侧和系统侧两个方面。 1.1 用户侧可靠性指标 用户侧可靠性指标是对用户侧可靠性进行评估的基本指标,它是配电系统故障对某一区域产生影响大小的重要反应,同时也是下一级配电系统可靠性评估的重要依据和指标。通常用户侧可靠性指标有:用户侧故障率、用户侧故障导致的平均停电时间、用户侧年平均停电时间等。 1.2 系统侧可靠性指标 系统侧可靠性指标是评价配电系统向用户供应和分配电能以及供电质量的重要依据,系统侧可靠性指标更加注重从全局的角度对配电系统对整个电力系统的影响。系统侧可靠性指标一般包括:电力系统平均停电频率、电力系统平均停电持续时间、用户平均停电频率、用户平均停电时间、平均供电可用率等等。 2 配电系统可靠性评估的常见方法及改进 一般在实际的应用中,配电系统的拓扑结构较为复杂,对整个电网运行的影响因素较多,因此,如果直接利用相关的可靠性指标公式进行计算将会非常复杂。近几年,一些相关的研究工作取得了一定的进展,一些相关的学者和研究人员经过研究发现和总结了一些操作方便和方法和改进技术,这些方式方法通过大量的实践验证,证明其具有一定的实用性和有效性。当前较为常见的配电系统可靠性评估方法有故障式后果分析法、最小路法、网络等值法等等。 2.1 故障式后果分析法 这种评估方法又被称之为FMEA,它是用来评估电力系统可靠性最为传统的一种方法。这种方法主要是利用科学的故障判别准则来将配电系统的状态分为故障状态和正常状态两种,并对配电系统中所有可能出现故障的设备进行充分的分析,从而得到一个所有故障类型的列表,然后利用计算的方式获得配电系统可靠性的相关指标。一般这种方法只能在由主线和馈线组成的辐射式简单配电系统中进行应用,在一些多故障模式的复杂分支系统中很少使用。这种方法在实际应用过程中,并没有充分考虑线路的传输容量问题,所以,利用这种方法获得的相关评估指标会与真实的数值之间存在一定的差异,使评估结果出现一定的偏差。 随着现实中研究工作的不断深入,相关学者通过对故障后的潮流和电压约束的考虑,总结出了一种结合最小割集法的FMEA法。这种方法可以在一些大型的配电系统可靠性评估中进行应用。后来一些研究人员有总结出了应用于带子馈线的复杂配电系统可靠性评估方法。这种方法主要是利用了馈线分区思想,以馈线为基本单位进行馈线分区,然后建立起一个网络模型,这一网络模型主要由区域节点和开关弧组成,然后利用前面所说的FMEA方

北交《电力系统分析》在线作业二答案

北交《电力系统分析》在线作业二-0002 试卷总分:100 得分:100 一、单选题(共15 道试题,共30 分) 1.为减小系统负荷变化所引起的频率波动,应采取的措施是()。 A.设置足够的无功电源 B.设置足够的旋转备用(热备用)容量,并使尽可能多的机组参与频率的一次调整 C.设置足够的旋转备用(热备用)容量,但应尽量较少参与一次调整的机组的数量 D.设置足够的冷备用容量,并装设自动按频率减负荷装置 答案:B 2.关于节点导纳矩阵,描述不正确的有() A.阶数等于网络中的节点数 B.是稀疏矩阵 C.是对称矩阵 D.与节点编号无关 答案:D 3.PV节点要求已知节点的() A.电压模值U B.有功功率P和电压模值U C.有功功率P D.无功功率Q 答案:B 4.装有无功补偿装置,运行中可以维持电压恒定的变电所母线属于()。 A.平衡结点 B.不能确定 C.PV节点 D.PQ节点 答案:C 5.在标幺制中,只需选定两个基准,常选的是() A.电流、电抗 B.电压、电路 C.电压、电流 D.电压、功率 答案:D 6.电力网中,任意两点之间电压的代数差,称为() A.电压降落 B.电压损耗 C.电压差 D.电压偏移 答案:B

7.在多电压等级电磁环网中,改变变压器的变比()。 A.改变有功功率分布和无功功率分布 B.功率分布不变 C.主要改变有功功率分布 D.主要改变无功功率分布 答案:D 8.对于供电可靠性,下述说法中正确的是()。 A.除一级负荷不允许中断供电外,其它负荷随时可以中断供电 B.所有负荷都应当做到在任何情况下不中断供电 C.一级负荷在任何情况下都不允许中断供电、二级负荷应尽可能不停电、三级负荷可以根据系统运行情况随时停电 D.一级和二级负荷应当在任何情况下不中断供电 答案:C 9.将三个不对称相量分解为三组对称相量的方法是() A.龙格-库塔法 B.牛顿-拉夫逊法 C.小干扰法 D.对称分量法 答案:D 10.关于电力系统等值电路参数计算时,变压器变比的选择,下述说法中正确的是()。 A.近似计算时,采用实际变比;精确计算时采用平均额定变比 B.精确计算时采用实际变比,近似计算时采用平均额定变比 C.不管是精确计算还是近似计算均应采用额定变比 D.不管是精确计算还是近似计算均应采用平均额定变比 答案:B 11.架空输电线路采用分裂导线的目的是()。 A.改善输电线路的电晕条件 B.增大线路电纳 C.减小线路电阻 D.减小线路电抗 答案:D 12.电力系统频率调整的基本原理是()。 A.根据负荷的变化调整系统中变压器的分接头,将电力系统频率限制在允许范围 B.根据负荷的变化,调整电力系统中无功电源的出力,将系统频率限制在允许范围 C.根据负荷的变化,调整发电机的有功出力,将系统频率限制在允许范围 D.根据系统频率的变化,切除或投入负荷,将电力系统频率限制在允许范围 答案:C

配电系统电力电子变压器的研究

配电系统电力电子变压器的研究 作者:佚名转贴自:电力安全论坛点击数:35 更新时间:2008-7-28 配电系统电力电子变压器的研究 方华亮,黄贻煜,范澍,陆继明,毛承雄 (华中科技大学电气与电子工程学院,武汉430074) 摘要: 供电可靠性及电能质量一直是用户和供电部门密切关注的问题。在电网中,变压器是电能转换的最基本的元件,但常规变压器难以对供电可靠性的提高和电能质量的改善作出贡献。本文介绍了一种全新的产品-电力电子变压器,它具有提高供电可靠性、改善电能质量并且体积小、重量轻、环保效果好等一系列优点,可以较好地解决这些问题。在对电力电子变压器现有方案进行分析的基础上,本文提出了一种新的实现方案,计算机仿真结果表明:变压器原方可以实现输入电流波形为正弦和功率因数接近于1,变压器副方可以获得良好的输出电压、电流。 关键词: 电力电子变压器; 高频变压器; 供电可靠性; 电能质量; 脉宽调制 1引言 当今社会经济的快速发展,使得人们对供电可靠性以及改善电能质量提出了越来越高的要求。如果一个供电系统的可靠性不能保证,停电不只是给供电企业带来损失,给用户将造成更大的经济损失。就电能质量而言,一种频率、电压、波形的电能已远远不能满足用户要求,经过变换处理后再供用户使用的电能占全国总发电量的百分比比值的高低,已成为衡量一个国家技术进步的主要标志之一。如在美国,2000年末,发电厂生产的40%以上的电能都是经变换和处理后再供负载使用,预计到21世纪二、三十年代,美国发电站生产的全部电能都将经变换和处理后再供负载使用。 如何更进一步提高供电可靠性和改善电能质量已成为供电部门十分重视和不断努力解决的问题,在供电系统中,变压器是实现电能转换的最基本、最重要的元件之一,对供电可靠性和电能质量有着重大的影响。目前广泛使用的配电系统变压器通常是采用铁芯油浸式,其运行可靠和效率较高;但同时,也存在以下一些不足之处[1]:·不能维持副方电压恒定; ·铁芯饱和时,会造成电压电流的波形畸变,产生谐波; ·原副方电压、电流紧密耦合,负荷侧的波动会影响到电网侧; ·需装备继电保护装置; ·体积大,笨重; ·矿物油会带来环境问题,且不易维护; 基于以上常规变压器的一些不足之处,如何进一步提高变压器的功能、改善其运行特性以更好的发挥其在供电系统中的作用,从而实现进一步提高供电可靠性、改善电能质量的愿望,是一个十分值得我们深入研究的课题。目前随着电力电子变流技术和大功率电力电子器件的迅速发展,以及在电力系统中的应用日益广泛,所有的这些为我们研制新型变压器奠定了很好的基础。我们要研制的新型变压器主要是采用电力电子技术实现的,我们称之为电力电子变压器。 对电力电子变压器的研究,国内在这方面还基本上未开展,国外在十多年前就已提出了这个概念。首先是美国海军的一个研究计划,提出了一种“交流-交流”的降压变换器构成的电力电子变压器;在这之后,由美国电力科学研究院(EPRI)赞助的一个研究项目也

浅谈电力系统可靠性

浅谈电力系统可靠性 随着电力工业引入市场机制,市场条件下的电力系统可靠性和系统运营经济性之间的矛盾便逐渐显现出来,如何在电力市场的运营过程中保证系统运行的可靠性已成为研究的热点。本文简单论述了电力系统的可靠性以及在电力市场环境下电力系统可靠性的发展、所面临的问题、挑战等。 标签:电力系统可靠性发展挑战 1 基本概念 1.1 可靠性可靠性是指元件、设备、系统等在规定的条件下和预定的时间内完成其额定功能的概率。 1.2 电力系统可靠性电力系统可靠性包括两方面的内容:即充裕度和安全性。前者是指电力系统有足够的发电容量和足够的输电容量,在任何时候都能满足用户的峰荷要求,表征了电网的稳态性能,后者是指电力系统在事故状态下的安全性和避免连锁反应而不会引起失控和大面积停电的能力,表征了电力系统的动态性能。 2 电力系统可靠性的重要性 向用户提供源源不断、质量合格的电能是电力系统的主要任务。因为电力系统设备很复杂,包括发电机、变压器、输电线路、断路器等一次设备及与之配套的二次设备,这些设备都可能发生不同类型的故障,从而影响电力系统正常运行和对用户的正常供电。如果电力系统发生故障,将对电力企业、用户和国民经济,都会造成不同程度的经济损失。社会现代化速度越来越快,生产和生活对电源的依赖性也越来越强,停电造成的损失以及给人们带来的不便也将日益显现。因此,要求电力系统应有很高的可靠性。 3 电力市场环境下的可靠性 现如今人们普遍思索的问题是怎样揭示电力系统可靠性背后所隐含的经济意义。一些新的研究成果有:怎样将客户的可靠性需求货币化、如何评价发输电系统的可靠性以及新的适应电力市场需求的可靠性指标怎样设定等。这些研究仍面临一个普遍问题:即使人们已经认识到可靠性是一种稀缺的资源,并感觉到其背后所蕴涵的经济意义,但在对可靠性的价值研究时,却往往摆脱不了对可靠性进行“收费”的思想。我们应当在市场的环境中使电力系统的可靠性发挥作用。为此就要去探索如何利用市场的供给需求机制实现统一可靠性和经济性的目的。有些资料中提到了可靠性价值的概念,但并没有就在市场条件下的可靠性的供给和需求关系以及这种关系对系统可靠性带来的影响展开讨论,而这些也正是电力市场环境下可靠性研究面临的新挑战。

配电系统可靠性准则及规定

配电系统可靠性准则及规定 一、电力系统可靠性准则的一般概念 所谓电力系统可靠性准则,就是在电力系统规划、设计或运行中,为使发电和输配电系统达到所要求的可靠度满足的指标、条件或规定,它是电力系统进行可靠性评估所依据的行为原则和标准。 电力系统可靠性准则的应用范围为发电系统、输电系统、发输电合成系统和配电系统的规划、设计、运行和维修工作。 电力系统可靠性准则考虑的因素一般有:①电力系统发、输、变、配设备容量的大小;②承担突然失去设备元件的能力和预想系统故障的能力;③对系统的控制、运行及维护;④系统各元件的可靠运行;⑤用户对供电质量和连续性的要求;⑥能源的充足程度,包括燃料的供应和水库的调度;⑦天气对系统、设备和用户电能需求的影响等。其中①、②、⑥等因素可由规划、设计来控制,其余各因素则反映在生产运行过程之中。 电力系统可靠性准则按其所要求的可靠度获取的方法、考虑的系统状态过程及研究问题的性质不同,有以下几种不同的分类方法: 1.1. 概率性准则和确定性准则 电力系统可靠性准则按其要求的可靠度获取的方法,分为概率性准则和确定性准则。 (1)概率性准则。它是以概率法求得数字或参量来表示提供或规定可靠度的目标水平或不可靠度的上限值,如电力(电量)不足期望值或事故次数期望值。因此,概率性准则又称为指标或参数准则。此类准则又被构成概率性或可靠性评价的基础。 (2)确定性准则。它采取一组系统应能承受的事件如发电或输电系统的某些事故情况为考核条件,采用的考核或检验条件往往选择运行中最严重的情况。考虑的前提是如果电力系统能承受这些情况并保证可靠运行,则在其余较不严重的情况下也能够保证系统的可靠运行。因此,确定性准则又称为性质或性能的检验准则。此类准则是构成确定性偶发事件评价的基础。

提高LED路灯驱动电源可靠性的几个方法-200908(照明工程学报)

2009年8月第20卷增刊 照明工程学报 ZHAOMING GONGCHENG XUEBAO Aug.2009 Vol.20Supplement 提高LED路灯驱动电源可靠性的几个方法 朱俊高张志华 (深圳晶辰电子科技股份有限公司,深圳518105) 摘要:近年来,LED在路灯照明方面得到广泛应用。但制约路灯寿命的关键并非LED,而是驱动电源,本文通过多年电源设计经验积累结合量产数据阐述了提高驱动电源可靠性的几个方法。 关键词:驱动电源;可靠性;方法 LED Street Lamp Drive to Improve the Reliability of Several Methods Zhu Jungao Zhang Zhihua (Shenzhen JEWEL electronic&technology co.,LTD,Shenzhen518105) Abstract In recent years,LED lighting in the street lamps are widely used.However,the key factor of street lamp’s life is the led driver,not LED,the paper Give several ways to improve the reliability of led driver,through the years of designing experience combined with mass production. Key words:LED driver;reliability;method 1引言 近年来,LED以其环保发光高效得到了广泛的应用,尤其在路灯照明方面更是风起云涌,异常火爆。就目前的发展来看,大家最为关心的是路灯的寿命问题,而现在无论是路灯还是模组厂都有一个共识,即路灯的寿命取决于驱动电源,99%以上的路灯故障都是由于驱动电源引起的。所以,本文旨在通过介绍提高可靠性的方法达到提高驱动电源寿命的目的。本公司长期从事大功率LED驱动电源、LCD电源、通讯电源研发和生产,7年以来,累计生产电源超过600万台以上,积累了丰富的经验。本文提出提高可靠性的几个方法是在通讯电源的高可靠性要求下和LCD电源的批量化,结合LED驱动电源实际验证的基础上提出的,具有应用价值。 2正文:提高LED路灯驱动电源可靠性的几种方法 2.1防水处理及导热胶的选择 路灯一般安装在室外,风吹雨淋自然难免,所以,做好防水工作是关键所在。目前大家通用的方式是灌胶,而胶导热系数的差异直接影响电源的散热效果,最终影响寿命。 选择导热胶的几个关键参数: 2.1.1耐寒及耐高温 一定要选择符合高耐寒要求的胶,否则可能因为在超低温下胶体开裂等失效现象。还需要考虑灌注胶温度对器件性能的影响,不能选用灌注温度过高的胶,建议灌注温度不超过150度。综合考虑,建议选用-40 +150?的高品质胶。 2.1.2电气绝缘性能 胶体的绝缘等级需要符合要求。 2.1.3导热性能 灌胶导热系数的高低对电源散热影响很大,以下是几种不同导热系数胶的实测温度参数:(以某品牌的导热胶为例) 导热系数内部关键器件温度平均值外壳温度 1.08047 1.27644 1.57141 输入电压:100VAC,输出48V@3A,环境温度:25度

相关文档
相关文档 最新文档