文档库 最新最全的文档下载
当前位置:文档库 › 第5、6、7个优美不等式(三角代换or内切圆代换)

第5、6、7个优美不等式(三角代换or内切圆代换)

第5、6、7个优美不等式(三角代换or内切圆代换)
第5、6、7个优美不等式(三角代换or内切圆代换)

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

1.2 不等式的基本性质-

§1.2 不等式的基本性质 ●教学目标 (一)教学知识点 1.探索并掌握不等式的基本性质; 2.理解不等式与等式性质的联系与区别. (二)能力训练要求 通过对比不等式的性质和等式的性质,培养学生的求异思维,提高大家的辨别能力. (三)情感与价值观要求 通过大家对不等式性质的探索,培养大家的钻研精神,同时还加强了同学间的合作与 交流. ●教学重点 探索不等式的基本性质,并能灵活地掌握和应用. ●教学难点 能根据不等式的基本性质进行化简. ●教学方法 类推探究法 即与等式的基本性质类似地探究不等式的基本性质. ●教具准备 投影片两张 第一张:(记作§1.2 A) 第二张:(记作§1.2 B) ●教学过程 Ⅰ.创设问题情境,引入新课 [师]我们学习了等式,并掌握了等式的基本性质,大家还记得等式的基本性质吗? [生]记得. 等式的基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式. 基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式. [师]不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证. Ⅱ.新课讲授 1.不等式基本性质的推导 [师]等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法. [生]∵3<5 ∴3+2<5+2 3-2<5-2 3+a<5+a 3-a<5-a 所以,在不等式的两边都加上(或减去)同一个整式,不等号的方向不变. [师]很好.不等式的这一条性质和等式的性质相似.下面继续进行探究.

[生]∵3<5 ∴3×2<5×2 3× 21<5×2 1. 所以,在不等式的两边都乘以同一个数,不等号的方向不变. [生]不对. 如3<5 3×(-2)>5×(-2) 所以上面的总结是错的. [师]看来大家有不同意见,请互相讨论后举例说明. [生]如3<4 3×3<4×3 3× 31<4×3 1 3×(-3)>4×(-3) 3×(-31)>4×(-3 1 ) 3×(-5)>4×(-5) 由此看来,在不等式的两边同乘以一个正数时,不等号的方向不变;在不等式的两边同乘以一个负数时,不等号的方向改变. [师]非常棒,那么在不等式的两边同时除以某一个数时(除数不为0),情况会怎样呢?请大家用类似的方法进行推导. [生]当不等式的两边同时除以一个正数时,不等号的方向不变;当不等式的两边同时除以一个负数时,不等号的方向改变. [师]因此,大家可以总结得出性质2和性质3,并且要学会灵活运用. 2.用不等式的基本性质解释π42l >16 2 l 的正确性 [师]在上节课中,我们知道周长为l 的圆和正方形,它们的面积分别为π 42 l 和 162l ,且有π42l >16 2 l 存在,你能用不等式的基本性质来解释吗? [生]∵4π<16 ∴ π41>16 1 根据不等式的基本性质2,两边都乘以l 2 得 π42l >16 2 l 3.例题讲解 将下列不等式化成“x >a ”或“x <a ”的形式: (1)x -5>-1; (2)-2x >3; (3)3x <-9. [生](1)根据不等式的基本性质1,两边都加上5,得

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

浅谈用换元法证明不等式

浅谈用换元法证明不等式 刘景 (茂名学院高州师范分院数学与计算机系 307数学1班) [摘要]换元法是数学中的一个基本方法。在不等式的证明过程中,按照所证不等式的结构特点,将不等式中的变量作适当的代换,可使不等式的结构明朗,从而使不等式变得容易证明,这种方法称为换元法。换元的目的是把合命题化简、化熟,把复杂的、不熟悉的命题化为简单的、熟悉的命题。换元法在许多实际问题的解决中可以起到化难为易、化繁为简的作用,有些问题直接证明较为困难,但若通过换元的思想与方法来解就很方便,换元法多用于条件不等式的证明中。 [关键词]换元;不等式;化繁为简 不等式的概念:作为表达同类量之间的大小关系的一种数学形式,不等式必须在定义了大小关系的有序集合上研究.由于复数域没有定义大小,所以不等式中的数或字母表示的数都是实数.用符号>或<联结两个解析式所成的式子,称为不等式.不等式的证明问题,由于题型多变、方法多样、技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。要处理好不等式的证明,必须注意: 1、熟练地掌握不等式的基本性质、重要不等式。 2、扎实的掌握不等式证明的常规方法。 3、注意和其他知识联系和综合运用。 4、不断地总结证明不等式的规律和技巧,不断地从正反两方面汲取解题经验。 我们知道,无论在中学,还是在大学,不等式的证明都是一个难点。人们在证明不等式时创造了许多方法(比较法、综合法、分析法、辨别式法、构造函数法、反证法、放缩法等等),其中有换元法。

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 不等式的证明有三难:证明入口难,条件使用难,变形方向难.如果用换元法,引进恰当的新元素,可将题目中分散的条件联系起来,或把隐含的条件显示出来,或把条件与结论联系起来,或变形为熟悉的问题.因此,换元法常常可以攻破三道难关。 下面我们探索怎样用换元法证明不等式的几种方法。 一、几何换元法 例1、在△ABC 中,b CA a BC c AB ===,,,内切圆交AB 、BC 、CA 分别于D 、E 、F ,如图1,则可设x z c z y b y x a +=+=+=,,,其中0,0,0>>>z y x 。几何换元法能达到利用等式反映出三角形任意两边之和大于第三边的不等关系的功效。 设c b a ,,为三角形三边,求证:3≥-++-++-+c b a c b c a b a c b a 图1 证明:设,,,x z c z y b y x a +=+=+=,其中0,,>z y x 则c b a c b c a b a c b a -++-++-+=y x z x z y z y x 222+++++ =?????????? ??++???? ??++??? ??+y x x y y z x y x z z x 21322221=??? ? ???+?+?≥y x x y y z z y x z z x 原不等式得证。

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

用“放缩法”证明不等式的基本方法

2 3、先放缩,后裂项(或先裂项再放 缩) n a =n ,求证:k=1 例3、已知 a k n 证明:苕 1 V (k — 1)k(k + 1) _________ 二[+£莖壬匹 ^/(k — 1)(k + 1) ( >/k + 1 +寸 k — 1 ) k z2 (二 学习必备 欢迎下载 用放缩法”证明不等式的基本方法 近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生 逻辑思维能力以及分析问题和解决问题的能力。特别值得一提 的是,高考中可以用 放缩法”证明不等式的频率很高, ,对它的运用往往能体现出创造性。 放缩法”它可以和很 而且要恰到好处,目标往往要从证明的结论考察, 例谈 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的 需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩 k 时就舍去了 2 -2,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例 2、函数 f (x )= 一,求证:f (1) +f (2) + …+f (n ) 1 +4x f(n)=二=1--^A 1-丄 1 +4n 1+4 2 *2 1 1 1 +f (2) + …+f (n ) >1—+1屮"+1— 2 21 2 22 2 2n +1 +1 +…=n + 丄一1 (n 迂 N *). 2 4 2n 2n '1 2 此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数, 再对分母进行放缩,从而对左边可以进行 求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。女口 它是思考不等关系的朴素思想和基本出发点 ,有极大的迁移性 多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标, 放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题, 1、添加或舍弃一些正项(或负项) 放缩”的基本策略,期望对读者能有所帮助。 例1、已知 a n =2“ -1(n 亡 N ).求证: n 1 2—3 a 2 a 3 + a n 证明:,— a k + 2k -1 =2^ 1 2 "2(22-1) _ 1 "2"3.2k +2k -2 >1-1.l^,k=1,2,..., n, 2 3 2k 玉+更+ +旦 a 2 a 3 「-1(1 +-+...+丄)」-丄(1二)「-1 , 2 3 2 22 2n 2 3 2n 2 3 2 3 a 2 a 3 + <-(n 迂 N *). a n + 2 证明:由 需放大,则只要把分子放大或分母缩小即可; 如需缩小,则只要把分子缩小或分母放大即可。

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

(完整word版)《不等式的基本性质》练习题

2.2 《不等式的基本性质》练习题 一、选择题(每题4分,共32分) 1、如果m <n <0,那么下列结论中错误的是( ) A 、m -9<n -9 B 、-m >-n C 、1 1 n m > D 、1m n > 2、若a -b <0,则下列各式中一定正确的是( ) A 、a >b B 、ab >0 C 、0a b < D 、-a >-b 3、由不等式ax >b 可以推出x <b a ,那么a 的取值范围是( ) A 、a≤0 B 、a <0 C 、a≥0 D 、a >0 4、如果t >0,那么a +t 与a 的大小关系是( ) A 、a +t >a B 、a +t <a C 、a +t≥a D 、不能确定 5、如果34a a <--,则a 必须满足( ) A 、a≠0 B 、a <0 C 、a >0 D 、a 为任意数 6、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是( ) a 0b c A 、cb >ab B 、ac >ab C 、cb <ab D 、c +b >a +b 7、有下列说法: (1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0; (3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ; (5)若a <b ,则11a b >; (6)若1122x y --<, 则x >y 。 其中正确的说法有( ) A 、2个 B 、3个 C 、4个 D 、5个 8、2a 与3a 的大小关系( ) A 、2a <3a B 、2a >3a C 、2a =3a D 、不能确定 二、填空题(每题4分,共32分) 9、若m <n ,比较下列各式的大小: (1)m -3______n -3 (2)-5m______-5n

不等式的证明方法及其推广

不等式的证明方法及其推广 摘要:在初等代数和高等代数中,不等式的证明都占有举足轻重的位置。初等代数中介绍了许多具体的而且相当有灵活性和技巧性的证明方法,例如换元法、放缩法等研究方法;而高等代数中,可以利用的方法更加灵活技巧。我们可以利用典型的柯西不等式的结论来证明类似的不等式;除此还可以利用导数,微分中值定理,泰勒公式,积分中值定理等有关的知识来证明不等式;在正定的情况下,也可以用判别式法;掌握了定积分化为重积分的内容之后,对于某类不等式,也可以将定积分化为重积分,再证明所求的不等式。由此我们可以看到,不等式的求解证明方法并不唯一,但是初等数学里的不等式,都可以用高等数学的知识来解决,解答更为简洁。所以,高等数学对初等数学的教学和学习具有重要的指导意义。本文归纳和总结了一些求解证明不等式的方法与技巧,突出了不等式的基本思想和基本方法,便于更好地了解各部分的内在联系,从总体上把握证明不等式的思想方法;注重对一些着名不等式的推广及应用的介绍。 关键词:不等式;证明方法 1引言 1.1研究的背景 首先,我们要从整个数学,特别是现代数学在21世纪变得更加重要来认识不等式的重要性。美国《数学评论》2000年新的分类中,一级分类已达到63个,主题分类已超过5600 多个,说明现代数学已形成庞大的科学体系,并且仍在不断向纵深化发展。它在自然科学、 工程技术、国防、国民经济(如金融、管理等)和人文社会科学(如语言学、心理学、历史、 文学艺术等)以至我们的日常生活中的应用都在不断深化和发展。它为我们提供了理解信 息世界的一种强有力的工具,它也是新世纪公民的文化和科学素质的重要组成部分。而不 等式在数学中又处于独特的地位。美国《数学评论》在为匡继昌的《常用不等式》第2版 写的长篇评论中指出:“不等式的重要性,无论怎么强调都不会过分。”这说明不等式仍 然是十分活跃又富有吸引力的研究领域。 再者不等式的求解和证明一直是高考的热点和难点。近年来高考虽然淡化了单纯的不等式证明的证明题。但是以能力立意的、与证明有关的综合题却频繁出现。常常与函数、 数列、三角等综合,考查逻辑推理能力。是高考考查的一项重要内容。而要解决这一点的 关键在于掌握常用方法,理解不等式证明中的数学思想,熟练地运用性质和基本不等式。 因此,本文归纳和总结了一些求解证明不等式的方法与技巧,突出了不等式的基本思想和基本方法,便于更好地了解各部分的内在联系,从总体上把握不等式的思想方法;注 重对一些着名不等式的推广及应用的介绍,以便更好地理解和运用。 1.2文献综述 数学问题(猜想)的重要性先哲们已有过精辟的阐述。的确,形式优美、新颖、内涵丰富的不等式问题,不仅丰富了我们的研究素材,而且孕育了新思想、新方法的胚芽。当

用换元法解不等式

.. .. . . . . 用换元法解不等式 【摘要】换元法是数学中的一个基本方法。在不等式的证明过程中,按照所证不等式的 结构特点,将不等式中的变量作适当的代换,可使不等式的结构明朗,从而使不等式变得容易证明,这种方法称为换元法。换元的目的是把合命题化简、化熟,把复杂的、不熟悉的命题化为简单的、熟悉的命题。 换元法在许多实际问题的解决中可以起到化难为易、化繁为简的作用,有些问题直接证明较为困难,但若通过换元的思想与方法来解就很方便,换元法多用于条件不等式的证明中,换元法一般有增量换元、三角换元、代数换元等几种方法。 【关键词】 换元法 三角换元 代数换元 做任何事情都要讲究方法。方法对头,事半功倍;方法不当,事倍功半。解答数学问题关键也在于掌握思考问题的方法,思维方确,问题就容易解决。波利亚说过:“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。” 换元法是数学中的一个基本方法之一。换元法又称辅助元素法、变量代换法。通过引进 新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量围的选取,一定要使新变量围对应于原变量的取值围,不能缩小也不能扩大。下面通过几个例题介绍几种换元的思想和方法。 一、增量换元 若一变量在某一常量附近变化时,可设这一变量为该常量加上另一变量。 例1 设()1,0,,∈z y x 并且它们的和为2 ,求证 3 4 1≤ ++≤zx yz xy . 分析与证明 由条件()1,0,,∈z y x 可令3211,1,1a z a y a x -=-=-=,且()1,0,,321∈a a a ,则

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

不等式的基本性质(1)

第二章一元一次不等式与一元一次不等式组 2.不等式的基本性质 一、学生知识状况分析 本章是在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。学生已经掌握等式的基本性质,同时经历了解一元一次方程、二元一次方程组的研究过程及方法,为进一步学习不等式的基本性质奠定了基础。学习时可以类比七年级上册学习的等式的基本性质。 二、教学任务分析 不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同,掌握不等式的基本性质。 本节课教学目标: (1)知识与技能目标: ①经历通过类比、猜测、验证发现不等式基本性质的探索过程,初步体会不等式与等式的异同。 ②掌握不等式的基本性质,并能初步运用不等式的基本性质将比较简单的不等式转化为“x>a”或“x<a”的形式。 (2)过程与方法目标: ①能说出不等式为什么可以从一种形式变形为另一种形式,发展其代数变形能力,养成步步有据、准确表达的良好学习习惯。 ②通过研究等式的基本性质过程类比研究不等式的基本性质过程,体会类比的数学方法。 ③进一步发展学生的符号表达能力,以及提出问题、分析问题、解决问题的能力。 (3)情感与态度目标: ①通过学生自我探索,发现不等式的基本性质,提高学生学习数学的兴趣和学好数学的自信心。

②尊重学生的个体差异,关注学生对问题的实质性认识与理解。 三、教学过程分析 本节课设计了五个教学环节:第一环节:情景引入,提出问题;第二环节:活动探究,验证明确结论;第三环节:例题讲解及运用巩固;第四环节:课堂小结;第五环节:布置作业。 第一环节:情景引入,提出问题 活动内容:利用班上同学站在不同的位置上比高矮。请最高的同学和最矮的同学“同时站在地面上”,“矮的同学站在桌子上”,“高的同学站到楼下一楼”三种不同的情况下比较高矮。问题1:怎样比才公平? 活动目的:让学生体会当两位同学同时增高相同的高度或同时减少相同的高度时,比较才是公平的,高的同学仍然高,矮的同学仍然矮,这是不可能改变的事实。 活动实际效果:学生对能自己参与的活动很感兴趣,体会到不相等的两个量的比较要在“公平”的情况下进行,即要加同时加,要减同时减。 第二环节:活动探究,验证明确结论 活动内容:参照教材与多媒体课件提出问题: (1)还记得等式的基本性质吗?请用字母表示它。不等式有类似的性质吗?先猜一猜。 (2)用等号或不等号完成下面的填空。 如果2 < 3;那么 2 × 5 3 × 5; 2 × 3 ×; 2 × (-1) 3 × (- 1); 2 × (- 5) 3 × (- 5); 2 × (-) 3 × (-). (3)验证你的结论,用字母表示你所发现的结论。 (4)与同伴交流你的结论,并展示。

【3-代数】10.调整法证明不等式【学生版】

自招竞赛秋季数学讲义 调整法证明不等式 学生姓名 授课日期 教师姓名 授课时长 量的项放在不等号的左侧,常数项放在右侧,通过严格求出左侧的最值来证明不等号的成立性。一般可以通俗地分为两种类型:往中间调整和往两侧调整。本章将深入介绍两种调整办法的适用场合和使用方法以及其他的调整法。 知识梳理与例题精讲 一、 对于 ()i f x ∑类的不等式的调整 如果()f x 在区间D 中二阶可导,12,,,n x x x D ∈,则我们有如下的方法求 ()i f x ∑的最大值、最小值: (1)()0f D ''≥,则有 121 ()( )n n i i x x x f x nf n =++ +≥∑ (琴生不等式) 设1122x x x x x x D -?≤≤≤+? ∈,0x ?≥,有 1212()()()()f x f x f x x f x x +≤-?++? (2)()0f D ''≤,则有 121 ()( )n n i i x x x f x nf n =++ +≤∑ (琴生不等式) 设1122x x x x x x D -?≤≤≤+? ∈,0x ?≥,有 1212()()()()f x f x f x x f x x +≥-?++? 通俗地讲,就是下凸函数往中间调函数值变小,往两侧调函数值变大;上凸函数往中间调函数值变大,往两侧调函数值变小。 对于往中间调的函数值变化由琴生不等式保证,而往两侧调的函数值变化我们以(1)为例给出证明:

证明:1 111()()()x x x f x f x x f x dx -?'--?= ? 21 2 12212()()()()x x x x x x f x x f x f x dx f x x x x dx +?-?''+?-= =-++?? ? 因为()0f D ''≥,所以12()()f x f x x x x ''≤-++?, 故 1 1 1112()()x x x x x x f x dx f x x x x dx -?-?''≤-++?? ? , 故1212()()()()f x f x f x x f x x +≤-?++?,得证。 事实上,在处理实际问题中,不一定能找到这样一个区间D 有这样的性质且包含所有的i x ,那就需要我们灵活运用其他如分类讨论等方法辅助处理。有时D 在不具有二阶导数恒不变号的性质,但仍然有上述调整法成立,所以我们在实际做题的过程中往往可以直接用具体的()f x 来证明这样调整的合理性而不依赖于其凹凸性。 在不等式中没有具体的()f x 存在但每个变量地位对称的时候,这种考虑往中间调整、往两侧调整的方法也是极为重要的,这就需要直接拿两项来看,究竟是往中间调整总体变大呢,还是往两侧调整总体变大呢,然后给出严格的证明,接着就能用两项的调整法逐步将n 项向两侧或中间调整,求得最值。 【例1】 【题目来源】 【题目】设,,a b c R + ∈,3a b c ++=9≤ 【知识点】调整法证明不等式 【适用场合】当堂例题 【难度系数】1 【例2】 【题目来源】 【题目】设,,0a b c ≥,3a b c ++=7≥ 【知识点】调整法证明不等式 【适用场合】当堂例题 【难度系数】2

用换元法解不等式

用换元法解不等式 【摘要】换元法是数学中的一个基本方法。在不等式的证明过程中,按照所证不等式的 结构特点,将不等式中的变量作适当的代换,可使不等式的结构明朗,从而使不等式变得容易证明,这种方法称为换元法。换元的目的是把合命题化简、化熟,把复杂的、不熟悉的命题化为简单的、熟悉的命题。 换元法在许多实际问题的解决中可以起到化难为易、化繁为简的作用,有些问题直接证明较为困难,但若通过换元的思想与方法来解就很方便,换元法多用于条件不等式的证明中,换元法一般有增量换元、三角换元、代数换元等几种方法。 【关键词】 换元法 三角换元 代数换元 做任何事情都要讲究方法。方法对头,事半功倍;方法不当,事倍功半。解答数学问题关键也在于掌握思考问题的方法,思维方法正确,问题就容易解决。波利亚说过:“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。” 换元法是数学中的一个基本方法之一。换元法又称辅助元素法、变量代换法。通过引进 新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。下面通过几个例题介绍几种换元的思想和方法。 一、增量换元 若一变量在某一常量附近变化时,可设这一变量为该常量加上另一变量。 例1 设()1,0,,∈z y x 并且它们的和为2 ,求证 3 4 1≤ ++≤zx yz xy .

分析与证明 由条件()1,0,,∈z y x 可令3211,1,1a z a y a x -=-=-=,且()1,0,,321∈a a a ,则 1321=++a a a . ()()()()()()133221111111a a a a a a zx yz xy --+--+--=++∴ ()()1332213212-3a a a a a a a a a +++++= 11133221>+++=a a a a a a 又 ()1332213-1a a a a a a ++()()1332212 3213a a a a a a a a a ++-++= =1332212 32221a a a a a a a a a ---++ ()()()[] 02 1 213223221≥++++-= a a a a a a , 3 1 133221≤++∴a a a a a a . 1332211a a a a a a zx yx xy +++=++Θ, 34 3111=+≤++<∴zx yz xy . 例 2 已知2,2>>b a ,求证 ab b a <+. 证 设n b m a +=+=2,2,显然0,0>>n m . 则()()n m n m ab b a ++-+++=-+2222 mn n m n m ----++=2244 0<---=mn n m 故ab b a <+. 注 增量换元的目的,在于从不等式b a ≥转化为x b a +=这个等式。再应用这个不等式往不等转化,以达到证题的目的。 二、三角换元 在解某些不等式,迭用适当的三角函数换元,把代数问题转化为三角问题,从而充分利用函数的性质解决问题。 例3 若1=++r q p ,且1,,0≤≤r q p ,求证:3≤++r q p .

向量法证明不等式(完整版)

向量法证明不等式 向量法证明不等式 第一篇: 向量法证明不等式 向量法证明不等式 高中新教材引入平面向量和空间向量,将其延伸到欧氏空间上的n维向量,向量的加、减、数乘运算都没有发生改变.若在欧式空间中规定一种涵盖平面向量和空间向量上的数量积的运算,则高中阶段的向量即为n= 2,3时的情况. 设a,b是欧氏空间的两向量,且a=。 因此,原不等式等价于证明a?b?a?b,其中a?b,向量 a和b不可能同向,不取等号。 二利用a?b?ab证明不等式 2222例2 、已知实数mnx满足m?n?a,x??b (a?b),求mx?n得最大值 ?解析: 构造向量a?0,求证: 4a0矛盾, 故a=0时,4a0, ∴存在m,当-1 第五篇: 不等式的证明.

3.在横线上填写恰当的符号 2x 2若x∈r,且x≠ 1,那么,1?x. 若0<a< 1,那么-a). 1413 若a>0,a≠ 1,那么loga_____loga. 当x≥1时,那么x5+x4+x32+x+ 1. 4.设p=a2b2+ 5,q=2ab-a2-4a,若p>q,则实数a,b满足的条件为________. 5.设a>0,b>0,则下面两式的大小关系为2lg_____lg+lg.提升你的能力!基础巩固题 1.设0<a< 2,下列不等式成立的是 1111?1?a2?1?a2?1?a21?a2?1?ab.1?a1?a a.1?a .1?a2?11111?a2?1?a21?a21?a1?a1?ad.1?a 2.若a<b<0,则下列不等式关系中不能成立的是 11?a.ab 11?b.a?ba .|a|>|b| d.a2>b2

不等式的概念和基本性质

不等式的概念和基本性质 重点:不等式的基本性质 难点:不等式基本性质的应用 主要内容: 1.不等式的基本性质 (1)a>b bb,b>c a>c (3)a+bb a+c>b+c (4)a>b 2.不等式的运算性质 (1)加法法则:a>b,c>d a+c>b+d (2)减法法则:a>b,c>d a-d>b-c (3)乘法法则:a>b>0,c>d>0ac>bd>0 (4)除法法则:a>b>0,c>d>0>>0 (5)乘方法则:a>b>0,a n>b n>0 (n∈N, n≥2) (6)开方法则:a>b>0,>>0(n∈N, n≥2) 3.基本不等式 (1)a∈R,a2≥0 (当且仅当a=0时取等号) (2)a,b∈R,a2+b2≥2ab(当且仅当a=b时取等号) (3)a,b∈R+,≥(当且仅当a=b时取等号) (4)a,b,c∈R+,a3+b3+c3≥3abc(当且仅当a=b=c时取等号) (5)a,b,c∈R+,≥(当且仅当a=b=c时取等号) (6)|a|-|b|≤|a±b|≤|a|+|b| 4.不等式的概念和性质是进行不等式的变换,证明不等式和解不等式的依据,应正确理解和运用不等式的性质,弄清每条性质的条件与结论,注意条件与结论之间的关系。基本不等式可以在解题时直接应用。 例1.对于实数a,b,c判断以下命题的真假 (1)若a>b, 则acbc2, 则a>b;

(3)若aab>b2; (4)若a|b|; (5)若a>b, >, 则a>0, b<0. 解:(1)因为c的符号不定,所以无法判定ac和bc的大小,故原命题为假命题。 (2)因为ac2>bc2, 所以c≠0, 从而c2>0,故原命题为真命题。 (3)因为所以a2>ab① 又所以ab>b2② 综合①②得a2>ab>b2 故原命题为真命题. (4)两个负实数,绝对值大的反而小.故原命题为真命题. (5)因为所以 所以从而ab<0 又因a>b所以a>0, b<0. 故原命题为真命题. 例2.已知f(x)=ax2-c且-4≤f(1)≤-1,-1≤f(2)≤5, 求f(3)的范围. 解:由题意可知:∴ ∴f(3)=9a-c=f(2)-f(1)∴运算可知-1≤f(3)≤20 错解:依题设有①消元,得② ∵f(3)=9a-c∴-7≤f(3)≤26 错因:根源在于不等式组①与不等式组②并不等价,不等式组②扩大了不等式组①的解的范围,同向不等式在多次相加时要谨慎,一定要检查其同解性.

相关文档