文档库 最新最全的文档下载
当前位置:文档库 › 复合材料加工研究进展

复合材料加工研究进展

复合材料加工研究进展
复合材料加工研究进展

复合材料加工技术的最新研究进展

摘要:本主要综述了陶瓷基、树脂基这两种主要的非金属基复合材料的加工技术。通过对传统加工和新型加工技术的比较,认为今后研究非金属基复合材料加工工艺参数的优化,工艺过程中关键步骤的改进,新技术的研究,生产设备自动化、智能化程度的提高,生产线的规模化、专业化、可控制化,是其加工技术发展的关键。

关键词:陶瓷基、树脂基、复合材料加工

复合材料是由两种或两种以上不同化学性能或不同组织结构的材料,通过不同的工艺方法组成的多相材料,主要包括两相:基体相和增强相。20世纪40年代,因航空工业需要而发展了玻璃纤维增强塑料,是最早出现的复合材料,从此以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成了格局特色的复合材料。复合材料由于其具有各方面独特的性质,广泛应用与军事工业,汽车工业、医疗卫生、航空、航海以及日常生活的各个方面。对于复合材料的加工技术的研究,将是扩大其适用范围的关键之一[1]。

1 陶瓷基复合材料的加工

由于陶瓷材料同时具有高硬度、高脆性和低断裂韧性等特点,使得其加工、特别是成形加工,至今仍非常困难。在陶瓷材料加工中,使用金刚石工具的磨削加工仍然是目前最常用的加工方法,占所有加工工艺的80%。而陶瓷材料磨削加工不仅效率低,而且在加工中很容易产生变形层、表面/亚表面微裂纹、材料粉末化、模糊表面、相变区域、残余应力等缺陷,这对于航空、航天、电子等高可靠性、高质量要求的产品是决不允许的。陶瓷精密元件的加工费用一般占总成本的30%~60%,有的甚至高达90%。因此,通过新的陶瓷加工制造技术的探索,能够很好的提高产品制造精度和降低生产成本[2]。

1.1新型加工技术

1.1.1 放电加工

放电加工(EDM)是一种无接触式精细热加工技术,当单相或陶瓷/陶瓷、陶瓷/金属复合材料的电阻小于100Ω.m时,陶瓷材料可以进行放电加工。首先将形模(刻丝)和加工元件分别作为电路的阴、阳极,液态绝缘电介质将两极分开,通过悬浮于电介质中的高能等离子体的刻蚀作用,表层材料发生熔化、蒸发或热剥离而达到加工

材料的目的。由于加工过程模具未与工件直接接触,故无机械应力作用于材料表面,因此放电加工是理想的加工高脆、超硬陶瓷材料的方法[3]。

1.1.2 ELID精密磨削加工技术

ELID精密磨削技术一金属基超硬磨料砂轮在线电解修整(简称ELID)磨削技术是国外近年发展起来的一种适应于工程陶瓷等硬脆材料的精密和超精密加工新技术。在对硬脆陶瓷进行磨削时,砂轮将因磨损和堵塞而很快钝化,这将增加脆性断裂比例。为了使砂轮在磨削全过程保持锋利,必须对砂轮进行在线修整。应用ELID磨削技术,可对工程陶瓷等硬脆材料实现高效率磨削和精密镜面磨削。国内外研究结果表明,ELID磨削过程中磨削力明显小于普通磨削,因为砂轮保持在良好的修整状态。由于磨轮表面绝缘层处于形成、破裂循环之中,导致磨削力周期变化,提高脉冲电源占空比可以提高磨削力的稳定性和降低表面粗糙度,但是增加了砂轮磨损率。ELID磨削应使用弱电解质水溶液,既具有电解性能又可做为磨削液,且对机床无腐蚀性。金属结合荆也会影响ELID磨削过程中的适应性、磨削效率和表面质量,铸铁基砂轮磨削效果及稳定性好,且砂轮寿命高[4]。

1.1.3 激光加工

激光加工是利用高能量密度(108~1010w/m2)的均匀激光束作为热源,在加工陶瓷材料表面局部点产生瞬时高温,局部点熔融或汽化而去除材料。激光加工是一种无接触、无摩擦式加工技术,加工过程中不需模具,通过控制激光束在陶瓷材料表面的聚焦位置,实现三维复杂形状材料的加工。一般激光钻孔和切割所需激光功率为150w~15kW。但同放电加工一样,由于陶瓷材料热导率低,高能束可能会在材料表面产生热应力集中,形成微裂纹、大的碎屑、甚至材料断裂。

1.1.4 超声波加工

1927年,美国物理学家伍德和卢米斯最早做了超声加工试验,利用强烈的超声振动对玻璃板进行雕刻和快速钻孔,但当时并未应用在工业上。l951年,美国的科恩制成了第一台实用的超声打孔机,并引起广泛关注,为超声加工技术的发展奠定了基础。上世纪五六十年代,利用超声波钻孔已经开始应用,八十年代末,前苏联已经生产系列超声振动钻削装置。九十年代以后,旋转超声加工开始应用于这类材料加工上,同时加工设备已经开始向自动化、智能化、集成化、附件化方向发展。如德国DMG 公司生产出旋转超声加工机床,开发出旋转超声专用磨头附件,机床采用智能控制算法ADC/自适应控制和ACC/Acoustic控制以及APC/压力自动控制,可以在无人值守的条件下完成加工[5]。

2 树脂基复合材料的加工

树脂基复合材料于1932年在美国出现,1940年以手糊成型的方法制成了玻璃纤维增强聚酯的军用飞机雷达罩。其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特一帕特空军基地试飞成功。从此纤维增强复合材料开始受到军界和工程界的关注。第二次世界大战以后这种材料迅速扩展到民用领域,风靡一时,发展很快[1]。

2.1 传统加工方法

树脂基复合材料的加工已经有多年的研究历史了。传统的加工方式时主要有接触挤压加工成型、拉挤成型、模压成型、缠绕成型这几种。以下将做简单介绍。

2.1.1 接触低压成型加工

接触低压成型工艺的过程是,先将材料在阴模、阳模或对模上制成设计形状,通过加热或常温固化,脱模后再经过辅助加工获得制品。1963年前后在美、法、日等国先后开发了高产量、大幅宽、连续生产的玻璃纤维复合材料板材生产线,使复合材料制品形成了规模化生产。这一举措使复合材料成型工艺走向了自动化、高效化、专业化的方向,对复合材料工业的发展起到了决定性的作用。接触成型工艺的最大优点是设备简单,适应性广,投资少,见效快。但其同时存在着生产效率低、劳动强度大、产品重复性差等显著缺点。于是改进这种工艺成为先进复合材料的成型工艺下一步发展的关键[6]。

2.1.2 拉挤成型加工

树脂基复合材料拉挤成型工艺的研究始于20世纪50年代。到60年代中期,拉挤成型工艺已投入到连续化生产中。70年代,拉挤技术又有了重大的突破。该工艺将已润湿的树脂胶液的连续纤维束或带在牵引结构拉力的作用下,通过成型模成型,并在模中或固化炉中固化,连续生产出长度不受限制的复合型材。由于在成型过程中需经过成型模的挤压和外牵引拉拔,而且生产过程和制品长度是连续的,故又称为拉挤连续成型工艺。该工艺具有生产效率高,易于控制,产品质量稳定和制造成本较低等优点;而且纤维按纵向排列,使制品具有高的拉伸强度和弯曲强度。现在,拉挤工艺主要用于生产各种玻璃钢型材,如玻璃钢棒,工字型、角型、槽型、方型、空腹型及异形断面型材等。目前最大的拉挤成型机,可以生产断面为800×800(mm)的空腹玻璃钢型材[6]。

2.1.3 模压成型加工

模压成型工艺是复合材料生产中最古老而又富有无限活力的一种成型方法。它是将一定量的预混料或预浸料加入金属对模内,经加热、加压来固化成型的一种方法。模压成型工艺的主要优点是生产效率高,便于实现专业化和自动化生产,可有效降低制造成本;产品尺寸精度高,重复性好;表面光洁,无需二次修饰;能一次成型结构复杂的制品。另外,模压法制备基体试件可以有效地避免分子取向,能较客观地反映非晶态高聚物的性能。近几年来,以长短纤维为增强材料,以热塑性、热固性树脂为基体材料的各类复合材料模压成型工艺发展很快,产品性能价格比高,对环境污染小,生产率高,正在不断适应汽车、航空航天、通讯等工业发展[6]。

2.1.4 缠绕成型加工

纤维缠绕成型技术1946年在美国出现至今,缠绕成型工艺已历经半个世纪的发展,经过了从纤维缠绕和带缠绕的发展过程,成为聚合物基复合材料制造的重要手段之一。缠绕成型工艺是将浸过树脂胶液的连续纤维(或布带、预浸纱)按照一定规律缠绕到芯模上,然后经固化、脱模,最终获得制品。目前,缠绕技术的发展关键在缠绕设备的发展方面,主要在计算机控制,设备的精度、浸刮胶方式、立体多轴缠绕及张力控制,正向着高自动化、高集成化、高产量化的方向发展。高性能的树脂基体及高强纤维都在逐步应用到缠绕领域,这促使缠绕工艺有更大的应用领域和发展前景[7]。

2.2 先进加工技术

2.2.1 铺放成型加工[7]

纤维铺放成型技术是自动铺丝束成型技术和自动窄带铺放成型技术的统称,是在已有缠绕和自动铺放技术基础上发展起来的一种全自动制造技术。纤维铺放技术最早是作为缠绕技术的改革(新型缠绕技术)提出的,主要用于生产航空航天的大型的、特殊结构的构件。

自动铺放技术源于20世纪60年代,在美国空军实验室支持下起步,后经ACT、CAI(计算机辅助设计)等计划支持,迅速发展。该技术于20世纪70年代由Boeing、Cincinnati Milacron、Hercules等公司联合开发,已经经历近40年的发展。1982年Boeing公司的机械工程师提出了“A VSD铺放头”设想,解决了纤维束压实、切断和重送的问题,1985年Hercules公司研制出第一台原理样机,1989年,Cincinnati Milacron公司设计出第一台纤维铺放系统并于1990年投入使用,1995年Ingersoll公司研制出其第一台铺放成型机。

随着自动铺放技术的不断发展,控制系统从模拟控制升级到全数字控制。20世

纪90年代还开发了专用的CAD/CAM软件与硬件配套,使其功能日臻完善。设备制造商和飞机部件制造商也不断开发出自动铺放新技术,包括双向铺放头技术、丝束重定向控制技术、张力控制技术、预浸丝束整形技术、Fi.ber Steer技术、柔性压辊技术、热塑性自动铺放技术、超声固接成型技术和CAD/CAM软件技术等。

2.2.2 RTM成型加工

RTM(Resin Transfer Molding 树脂传递模塑)技术是模压成型技术的一种,是为适应飞机雷达罩成型发展起来的。从20世纪50年代起,英、美国家开始采用此技术。经过多年的发展,现已成功地用于各种纤维增强复合材料的生产中。复合材料RTM 工艺技术是目前欧美树脂基复合材料低成本技术发展的两大主要方向之一。RTM是将树脂注入到闭合模具中浸润增强材料并固化的工艺方法,是近年来发展迅速的适宜多品种、中批量、高质量先进复合材料制品生产的成型工。RTM成型虽然有很多优点,但是也有不足之处:树脂纤维的浸渍不够理想,制品里存在空隙率较高、制品的纤维含量较低、,模塑过程中树脂的流动不均衡,不能进行预测和控制、,模具成本高,脱模困难等[8]。

针对RTM存在的这些不足,国内外开展了大量颇有成效的研究,使得RTM技术渐趋成熟。真空辅助RTM(V ARTM)成型工艺就是RTM技术的改进。该工艺是在树脂注入过程中同时从闭合模具出口处抽真空。模具抽真空不仅提高了模具充模的压力,而且排除了模具和预成型体中,尤其是纤维束中的气体,因此同时提高了预成型体中的宏观流动和树脂在纤维束间的微观流动速度,有利于纤维的完全浸润,从而减少制品的缺陷。

RTM现在还在进一步发展中,发展有增强材料自动预成型的技术与设备、低成本模具设计与制造技术、自动控制的树脂注入系统以及RTM与其它成型工艺的复合成型技术是关键。例如树脂传递模型机组、树脂注射成型技术等先进工艺和设备就是杰出的研究成果,很大程度上促进了RTM规模化、自动化的发展。九十年代初开始,掀起了对RTM工艺及理论研究的高潮,RTM设备、树脂和模具技术日趋完善。在美国,RTM 以每年20%~25%的增长率向上增长,并且增长率还在继续增大[9]。

3 结语

非金属基复合材料的应用越来越广泛,但是目前我国对这类材料的先进加工技术发展还不完善。未来发展的关键方向是工艺参数的优化、工艺过程中关键技术的改进、新技术的研究、,生产设备自动化、智能化,生产线的规模化、专业化等方面[6][8]。

参考文献

[1] 汪周斌,付晓阳.复合材料加工技术研究[J].科技资讯,2011.10.21

[2] 侯向辉,李贺军,等. 先进陶瓷基复合材料制备技术-CVI法现状及进展[J].硅酸盐通报,1999,2

[3] 荆君涛. 陶瓷基复合材料零部件的复杂曲面加工技术研究[D]. 哈尔滨: 哈尔滨工程大学,2009

[4] 李要锋,刘传绍,赵波等.工程陶瓷叶轮的研究现状和发展趋势[J].水利电力机械,2006,6

[5] 于思远,赵艳红,刘殿通.超声波振动加工工程陶瓷小孔的实验研究[J].电加工与模具,2001,4

[6] 叶长青,杨青芳.树脂基复合材料成型工艺的发展[J].粘接,2009,(5)

[7] 富宏亚,韩振宇,路华.纤维缠绕/辅带/铺丝成型设备的发展状况[J].航空制造技术,2009(22)

[8] 乔东,胡红.树脂基复合材料成型工艺研究进展[J].塑料工业,2008,36(z1)

[9] 戴洪福,杜善义.复合材料RTM制造工艺数值模拟研究进展[J].宇航材料工艺,2002,32(6)

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

智能材料及其发展

智能材料及其发展 1.材料的发展 材料是人类用于制造物品、器件、构件、机器或者其他产品的物质,是人类生活、生产的基础,是人类认识自然和改造自然的工具,与信息、能源并列为人类赖以生存、现代文明赖以发展的三大支柱。材料也是人类进化的标志之一,一种新材料的出现必将促进人类文明的发展和科技的进步,从人类出现,经历旧石器时代、新石器时代、青铜时代……,一直到21世纪,材料及材料科学的发展一直伴随着人类的文明的进步。在人类文明的进程中,材料大致经历了一下五个发展阶段。 1)利用纯天然材料的初级阶段:在远古时代人类只能利用纯天然材料(如石头、草木、野兽毛皮、甲骨、泥土等),也就是通常所说的旧石器时代。这一阶段人类只能对纯天然材料进行简单加工。 2)单纯利用火制造材料阶段:这一阶段跨越了新石器时代、青铜时代和铁器时代,它们风别已三大人造材料为象征,即陶、铜、铁。这一时期人类利用火来进行烧结、冶炼和加工,如利用天然陶土烧制陶、瓷、砖、瓦以及后来的玻璃、水泥等,从天然矿石中提炼铜、铁等金属。 3)利用物理和化学原理合成材料阶段:20世纪初,随着科学的发展和各种检测手段及仪器的出现,人类开始研究材料的化学组成、化学键、结构及合成方法,并以凝聚态物理、晶体物理、固体物理为基础研究材料组成、结构和性能之间的关系,并出现了材料科学。这一时期,人类利用一系列物理、化学原理、现象来创造新材料,这一时期出现的合成高分子材料与已有的金属材料、陶瓷材料(无机非金属材料)构成了现代材料的三大支柱。除此之外,人类还合成了一系列的合金材料和无机非金属材料,如超导材料、光纤材料、半导体材料等。 4)材料的复合化阶段:这一阶段以20世纪50年代金属陶瓷的出现为开端,人类开始使用新的物理、化学技术,根据需要制备出性能独特的材料。玻璃钢、铝塑薄膜、梯度功能材料以及抗菌材料都是这一阶段的杰出代表,它们都是为了适应高科技的发展和提高人类文明进步而产生的。 5)材料的智能化阶段:自然界的材料都具有自适应、自诊断、自修复的功能。如所有的动物和植物都能在没有受到毁灭性打击的情况下进行自诊断和修复。受大自然的启发,近三四十年的研发,一些人工材料已经具备了其中的部分功能,即我们所说的智能材料,如形状记忆合金、光致变色玻璃等。但是从严格意义上将,目前研制成功的智能材料离理想的智能材料还有一定的距离。 材料科学的发展主要集中在以下几个方面:超纯化(从天然材料到复合材料)、量子化

智能材料的研究现状与未来发展趋势

龙源期刊网 https://www.wendangku.net/doc/8b7487545.html, 智能材料的研究现状与未来发展趋势 作者:邓焕 来源:《科学与财富》2017年第36期 摘要:智能材料这一概念在上世纪80年代首次被提出,近年来,关于智能材料在航空航天领域的研究与应用被频繁提及。由于智能材料具备着结构整体性强、可塑性高、功能多样化等优点,因此在航空航天领域得到了广泛的研究与使用,首先根据功能性的不同对智能材料进行了系统的分类与概述,然后对当前智能材料在航空航天领域的主要应用进行了系统性的分析与总结,最后对智能材料在未来的航空航天的应用前景中进行了进一步地展望。 关键词:智能材料;复合材料;航空航天;功能多样化 1 引言 进入二十一世纪以来,全球各大航空航天强国在航天航空领域投入了大量的研发资金,而作为航空航天领域重要环节的航天材料,近年来也不断有着新的突破,而其中被提及最多的就是智能材料在航空航天领域的应用。在智能材料的范畴中,智能复合材料最具有代表性,智能复合材料主要具备着:外界环境感知功能;判断决策功能;自我反馈功能;执行功能等。此外,由于当前智能复合材料都向着轻量化、低成本化的方向发展,因此在航天领域复合材料的设计结构以及使用用途上都有着不同的侧重发展方向。而近年来国内外各国也均加快了各自在该领域的研发使用发展进度,主要的研究大方向还是集中在了智能检测、结构稳定性、低成本化等方向上,本文着重对相关部分进行系统性的概述与总结。 2 航空航天领域智能复合材料的功能介绍 在航空航天领域中,国内外普遍利用智能复合材料以实现在降低航空航天飞行器的自身重量的前提下保证系统结构的稳定性,其次根据复合智能材料具备智能检测自身系统内部工作状态和自愈合等功能实现航空航天材料在微电子与智能应用方向的交叉发展。 2.1 智能复合材料在航天结构检测方向的应用 智能复合材料在航空航天器中的应用,主要是通过将传感器以嵌入的方式与原始预浸料铺层以及湿片铺层等智能复合材料紧密键合,最终集成在控制芯片控制器上实现对整个系统的实时监控诊测、自我修复等供能,值得注意的是,在这一过程中,智能化不仅仅是符合材料的必要功能,复合材料在很大程度上可以有效承受比传统应用材料更大外界机械压力[1]。 除此之外,由于智能复合材料作为传感器的铺放衬底,因此智能复合材料还可以实现对整个材料内部结构的状况进行收集并且将出现的诸如温度异常、结构异常、表面裂痕等隐患及时反馈至中央处理器,这在一定程度上可以有效实现整个系统内部的检测与寿命预测,在这方面的技术上,美国的Acellent公司研发的缠绕型复合材料以压力感应的形式,按照矩形布线形式

磁性材料研究进展

磁性材料 引言 磁性材料作为重要的基础功能材料,已广泛用于信息、能源、交通运输、工业、农业及人们日常生活的各个领域,对社会进步和经济发展起着至关重要的推动作用。人们习惯按矫顽力的高低,对磁性材料进行分类:矫顽力大于1000A/m则称为硬磁材料,当硬磁材料受到外磁场磁化后,去掉外磁场仍能保留较高的剩磁,因此又称之为永磁材料或恒磁材料;矫顽力小于lOOA/m则称为软磁材料;矫顽力100A/m

磁电复合材料研究进展.

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.wendangku.net/doc/8b7487545.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.wendangku.net/doc/8b7487545.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

智能材料

智能材料及其在医学领域的应用 目录 1、智能材料的概述 1.1智能材料的定义和基本特征........................................................ 1.2智能材料的构成............................................................................ 1.3智能材料的分类............................................................................ 1.4智能材料的制备............................................................................ 2、智能材料的应用领域 2.1智能材料的研究方向................................................................... 2.2智能材料在医学上的应用............................................................ 2.3智能材料在医疗方法中的应用....................................................

2.4智能材料在医学器械方面的应用................................................. 3、结束语.................................................................... 4、参考文献................................................................ 摘要本文综合评述了智能材料的研究、应用和进展。对智能材料与结构的概念进行了描述,全面总结了智能材料智能材料生物医药方面的应用, 探讨了智能材料光明的应用前景和发展趋势。 关键词智能材料;医学应用;发展 1智能材料的概述 1.1定义:智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。 基本特征:因为设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征: (1)传感功能(Sensor)

复合材料的研究与进展

复合材料的研究与进展 摘要:所谓复合材料,指的是由两种或两种以上的材料经过复合而制备的多相材料,是一种混合物。复合材料可以由金属材料、陶瓷材料或高分子材料等复合而成,各种材料的性能之间相互补充或增强,取长补短,产生协同效应,从而使复合材料的整体性能优于原组成材料。复合材料具有许多优点,如:质量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀性好等。被广泛应用于航空航天,汽车工业,化工纺织和医疗等领域。 关键词:复合材料碳纤维复合材料 一.复合材料的发展历史 早在五千年年以前,在中东地区就有用芦苇混合沥青来造船的技术了,在古埃及,修建金字塔时用石灰、火山灰等作粘合剂,混和砂石等作砌料,这是最早最原始的颗粒增强复合材料。而在古代中国,复合材料的应用则更为瑰丽广泛,如:从西安东郊半坡村仰韶文化遗址,发现早在公元前2000年以前,古代人已经用草茎增强土坯作住房墙体材料;中国沿用至今的漆器是用漆作基体,麻绒或丝绢织物作增强体的复合材料;1957年江苏吴江梅堰遗址出土有油漆彩绘陶器,1978年浙江余姚河姆渡遗址出土的朱漆木碗,就是两件最早的漆器实物;汉墓出土的漆器鼎壶、盆具和茶几等,用漆作胶粘剂,丝麻作增强体。在湖北随县出土的2000多年前曾侯乙墓葬中,发现有用于车战的长达3米多的戈戟,用木芯外包纵向竹丝,以漆作胶粘剂,丝线环向缠绕,其设计思想与近代复合材料相仿;1000多年以前,中国已用木料和牛角制弓,可在战车上放射;至元代,蒙古弓用木材芯子,受拉面贴单向纤维,受压面粘牛角片,丝线缠绕,漆作胶粘,弓轻巧有力,是古代复合材料中制造水平高超的夹层结构;在金属基复合材料方面,如越王剑,是金属包层复合材料制品,不仅光亮锋利,而且韧性和耐蚀性优异,埋藏在潮湿环境中几千年,出土后依然寒光夺目,锋利无比。【1】 到了近现代,随着高技术发展的需要,在复合材料的基础上又发展出性能高的先进复合材料。例如在第一次世界大战前,用胶粘剂将云母片热压制成人造云母板,在20世纪初市场上有虫胶漆片与纸复合制成的层压板出售,但真正的纤维增强塑料工业,是在用合成树脂代替天然树脂、用人造纤维代替天然纤维以后才发展起来的。第一次世界大战期间,德国人拖动脚踏车轮拉拔玻璃纤维丝。20世纪30年代,美国发明用铂柑涡生产连续玻璃纤维的技术,从此在世界范围内领域开始取代金属材料。【2】 到了现代,随着航空航天工业汽车工业对于具有质量轻,强度高,耐腐蚀等优越性能的材料的需求,发展了比强度、比模量、韧性、耐热、抗环境能力和加工性能都好的先进复合材料。二.复合材料对于国民经济发展、工业技术变革的作用 复合材料的主要应用领域有:航空航天领域、汽车工业、化工纺织领域还有医学领域。 1.航空航天领域 运用于航天航空领域的复合材料具有热稳定性好,比强度、比刚度高的特性,可用于制造飞机机翼和前机身、卫星天线及其支撑结构、太阳能电池翼和外壳、大型运载火箭的verton 复合材料壳体、发动机壳体、航天飞机结构件等。【3】由于复合材料的出现,可以有效降低航天航空业的研究发展成本,而由于先进复合材料本身的优越性能,也使得航天飞机飞行器等的性能有了极大改善。例如高性能碳(石墨)纤维复合材料在导弹、运载火箭和卫星飞行器上就发挥着不可替代的作用,它的应用水平和规模已关系到武器装备的跨越式提升和型号研制的成败。 碳纤维是一种力学性能优异的新材料,以树脂为基体,碳纤维为增强体的复合材料碳纤维具有碳材料的固有本征特性,又有纺织纤维的柔软可加工性,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为

复合材料加工工艺综述

复合材料加工工艺综述 前言: 复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。 复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。 复合材料是一种混合物。在很多领域都发挥了很大的作用,代替了很多传统的材料。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。 60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属

石墨烯复合材料在电磁领域的应用研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第43卷,第9期2015年9月 V ol.43,No.9Sept. 2015 143 doi:10.3969/j.issn.1001-3539.2015.09.029 石墨烯复合材料在电磁领域的应用研究进展 王雯1,黄成亮1,郭宇1,宋宇华1,张颖异1,刘玉凤1,杜汶泽2 (1.中国兵器工业集团第五三研究所,济南 250031; 2.总装备部装甲兵驻济南地区军代室,济南 250031) 摘要:石墨烯以其独特的二维结构和优异的力学、电学、光学、热学性能成为材料领域的研究热点,石墨烯复合材料是石墨烯应用领域中重要的研究方向。概括了国内外石墨烯复合材料在电磁波吸收及电磁屏蔽领域的应用研究进展,并展望了未来石墨烯复合材料在此领域的发展趋势。 关键词:石墨烯;石墨烯复合材料;微波吸收;电磁屏蔽;应用 中图分类号:TB332 文献标识码:A 文章编号:1001-3539(2015)09-0143-04 Application Research Progress of Graphene Composites in Electromagnetic Fields Wang Wen 1, Huang Chengliang 1, Guo Yu 1, Song Yuhua 1, Zhang Yingyi 1, Liu Yufeng 1, Du Wenze 2 (1. CNGC Institute , Jinan 250031, China ; 2. Jinan Regional Office of Armoured Force Military Representative Bureau , Jinan 250031, China) Abstract :Graphene has become a hot research spot at home and abroad in recent years due to its unique two-dimensional structure and excellent mechanical, electrical, optical and thermal properties. Graphene composites is an important research direction in the area of graphene application. The application research progress in the microwave absorption and electromagnetic interference shielding fields of graphene composites were summarized. The developmental trend of graphene composites in the fields was expected. Keywords :graphene ;graphene composite ;microwave absorption ;electromagnetic interference shielding ;application 石墨烯是单层碳原子紧密堆积而形成的一种超薄碳质新材料,厚度只有0.34 nm ,是目前世界上最薄的二维材料 [1–2] 。自2004年英国曼彻斯特大学的物理学教授A. Geim 和 K. Novoselov 等用机械剥离方法观测到单层石墨烯,其独特的物理性能和在电子领域的潜在应用成为国际研究的热点,并引起科学界新一轮“碳”热潮[3–6]。 碳材料是电磁屏蔽和吸波材料研究的重要内容,对于石墨、碳纤维、碳纳米管等材料的电磁屏蔽和吸收性能的研究已经相当广泛。然而,作为一种新型碳材料的石墨烯具有纵横比、电导率和热导率高、比表面积大、密度低等特点,其本征强度高达130 GPa ,常温下的电子迁移率可达到15 000 cm 2/(V ·s),是目前电阻率最小的材料。并且石墨烯具有室温量子霍尔效应和良好的铁磁性[7–10],与石墨、碳纤维、碳纳米管等材料相比,拥有独特性能的石墨烯可以突破碳材料原有的局限,成为一种新型有效的电磁屏蔽和微波吸收材料[11–14]。因此,以石墨烯为研究方向,结合金属纳米材料或聚合物材料,通过结构设计研制性能优异的石墨烯复合材料,有望广泛应用于电磁波吸收及电磁屏蔽等民用及军事领域。笔者根据国内外学者的研究情况,重点介绍石墨烯复合材料在电磁波吸收以及电磁屏蔽领域中的研究进展,并对未来石墨烯复合材料的发展进行了展望。 1 石墨烯复合材料在电磁波吸收领域中的应用 随着无线电探测技术和探测手段的发展以及其它非可见光探测技术和各种反伪装技术的逐渐完善和应用,传统武器装备的生存受到严峻的挑战。因此,研制高效吸收雷达波的轻型材料是提高武器装备系统生存能力的有效途径之一,是现代战争中最具有价值、最有效的战术突防手段。可见,高性能轻型微波吸收材料研制及在武器装备中的应用至关重要。 二维片状的石墨烯具有高的比表面积(2 630 m 2/g)[9] 以及特异的热、电传导功能,对微波能产生较强的电损耗。与传统吸收剂相比,石墨烯材料以其优异的电磁性能成为一种有效的新型微波吸收材料。传统的铁磁类吸收剂,如Fe ,Ni ,Co ,Fe 3O 4,Co 3O 4等铁磁性纳米物质对电磁波具有较强的磁损耗。通过结构设计,将石墨烯与此类纳米粒子复合后,得到石墨烯片层中镶嵌强吸收电磁波纳米磁性粒子结构的复合材料,并且可实现对微波较强的介电损耗和磁损耗。此类复合材料将石墨烯与磁性纳米粒子的优异性能结合在一起,有效提高了石墨烯材料的磁损耗,并可显著提高我国吸 联系人:王雯,工程师,博士,主要从事新型碳材料的制备及应用方面的研究 收稿日期:2015-06-22

智能材料最新进展及展望

智能材料最新进展及展望 李洁能动管(硕)42班2140803011 摘要:本文综述了智能材料的概念、分类,重点介绍了智能材料的基础材料——压电材料、形状记忆材料的设计思路、特异性能和影响因素。智能材料的研究内容非常丰富,涉及了许多前沿学科和高新技术,应用领域十分广阔。智能材料结构系统的研究必将把人类社会文明推向一个新的高度。 关键词:智能材料;压电材料;形状记忆材料;前景 1.智能材料的基本概念及分类 1.1智能材料的基本概念 20世纪80年代中期,人们提出智能材料的概念。智能材料要求材料体系集感知、驱动和信息处理一体,形成类似生物材料那样的具有智能属性的材料,具有自感知、自诊断、自适应、自修复等功能。 对于智能的定义至今尚无统一的定论,我国科学家认为智能材料是模仿生命系统,能感知环境变化,并能实时地改变自身的一种或多种性能参数,做出所期望的、能与变化后的环境相适应的复合材料或材料的复合。 1.2智能材料的分类 智能材料按产生方式可分为天然智能材料和人工智能材料。前者主要指有机自然活体,比如肌肉、骨骼等,而后者是人为制造的具有智能功能的材料,因其中大部分受前者的启发而产生,故又称生物拟态材料。 智能材料按驱动方式可分为嵌入式智能材料(主动式智能材料)和本身具有一定智能的被动式智能材料。前者可以通过改变反馈系统,使其优化反应,能够随不同的条件做出不同的反应,还能够随时间发生变化,因而更加灵活机动,并为今后进一步发展成具有学习和预见能力的材料,促进智能材料向更高级阶段发展奠定了基础。【1】后者是某些材料结构本身具有随环境、时间改变的性能,例如变色太阳镜等。 2.智能材料的最新进展 2.1压电材料 压电材料是能够实现机械能与电能之间相互转换且具备压电效应的一类电

聚合物基纳米复合材料研究进展

聚合物基纳米复合材料研究进展 摘要: 针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料的研究状况和存在的问题;系统地评述了纳米纸复合材料、光电纳米功能复合材料以及纳米智能复合材料等以改善功能的纳米功能复合材料的研究动态。 关键词 : 复合材料;纳米材料;聚合物;功能材料 引言 复合材料作为材料大家族中的重要一员,已经深入到人类社会的各个领域,为社会经济与现代科技的发展作出了重要贡献。复合材料科学与技术的发展经历了从天然复合材料到人工复合材料的历程,而人工复合材料的诞生更是材料科学与技术发展中具有里程碑意义的成就。20 世纪 50 年代以玻璃纤维增强树脂的复合材料(玻璃钢)和 20 世纪 70 年代以碳纤维增强树脂的复合材料(先进复合材料) 是两代具有代表性的复合材料。这两代材料首先在航空航天和国防领域得到青睐和应用,后来逐渐扩大到体育休闲、土木建筑、基础设施、现代交通、海洋工程和能源等诸多领域,使得复合材料的需求越来越强烈,作用越来越显著,应用领域越来越广泛,用量也越来越多,而相应的复合材料科学与技术也在不断地丰富和发展。随着纳米技术的出现和不断发展,纳米复合材料已经凸显了很多优异的性能,从一定意义上有力地推进了新一代高性能复合材料的发展。纳米化与复合化已经成为新材料研发和推动新材料进步的重要手段和发展方向。 纳米复合材料是指以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的颗粒、纤维、纳米管等为分散相,通过合适和特殊的制备工艺将纳米相均匀地分散在基体材料中,具有特殊性能的新型复合材料。本研究的重点是讨论聚合物基纳米复合材料的研究概况,系统介绍利用碳纳米管、石墨烯、碳纳米纸、纳米界面改性等提升和改善复合材料力学性能及物理性能的机理与作用。 1 纳米增强复合材料 纳米复合材料的性能依据其基体材料和纳米增强相种类的不同而差异巨大,因此提高力学性能是纳米复合材料研究领域中最具代表性的研究工作之一。纳米相对聚合物基体的力学性能改性主要包括强度、模量、形变能力、疲劳、松弛、蠕变、动态热机械性能等。 1.1 碳纳米管纳米复合材料 碳纳米管是由碳原子形成的石墨片层卷成的无缝、中空管体,可依据石墨片层的数量分为单壁碳纳米管和多壁碳纳米管。由于纳米中空管及螺旋度共同作用,碳纳米管具有极高的强度和理想的弹性,其弹性模量甚至可达1.3 TPa,与金刚石

软磁复合材料研究进展

软磁复合材料研究进展 刘颖,Andrew Peter Baker,翁履谦 哈尔滨工业大学深圳研究生院材料科学与工程学科部,深圳(518055) E-mail:liuying05@https://www.wendangku.net/doc/8b7487545.html, 摘要:本文根据绝缘包覆材料的不同,综述了近年来开发的各种软磁复合材料及其生产工艺;介绍了软磁复合材料的主要性能特点及影响因素;最后简要介绍了软磁复合材料在电气设备中的应用情况,对将来研究方向提出看法。 关键词:软磁复合材料,高温绝缘包覆层,压坯 中图分类号:TB333 文献标识码:A 1.引言 随着电气设备小型化趋势,对各式微型粉芯[1]的需求日益显著。为了研制出能效更高,体积更小,重量更轻的粉芯,开发新型软磁复合材料(Soft Magnetic Composite, SMC)已成为当前一个热点。SMC材料不仅能有效降低高频涡流损耗,而且还结合了粉末冶金技术的生产优势,在未来几年它将在航空、汽车、家用电器以及其他领域得到广泛的应用。 本文从SMC材料生产工艺、研究进展、性能及影响因素、应用及前景等方面,综述了近几年来SMC材料的发展。 2.软磁复合材料 在生产铁粉基软磁材料时,为降低涡流损耗有两种常用方法[2]。 一种是利用合金添加剂来提高材料电阻率,降低涡流损耗,如铁-硅合金(通常含Si3%),铁-磷合金(一般含P0.45%-0.75%),铁-镍合金(含铁50%,含镍50%)等。但这样降低了饱和磁感应强度,而且合金含量在商业使用上还有一定限度。这种方法适合应用于直流或较低频率交流装置。 另一种方法则是对磁性颗粒进行绝缘包覆处理,这类就是SMC材料,其结构如图1[3]所示。SMC材料,有时也称“绝缘包覆铁粉”,是近来逐渐发展起来的一种新型铁基粉末软磁材料。它通常选用高纯铁粉为基材,经有机材料和无机材料绝缘包覆处理,利用粉末冶金技术使混合粉末成为各向同性的体材料[4,5]。 利用SMC材料生产各类铁芯具有许多突出的优点[6-8]: 1.各向同性:这大大增加了设计自由度,单位重量可获得更大转矩以及更大铜的填充率,实现重量更轻、体积更小的目的。 2.利用粉末冶金技术能压制成型为最终形状的产品,材料利用率提高,成本损耗降低,产品控制更精准,复杂形状加工能力更强。 此外,SMC电机还能采用模块式结构,装卸方便,这使材料回收和再利用容易,十分有利于环保。 叠层硅钢片和软磁铁氧体是两类传统的铁芯材料。硅钢片在直流和交流较低频率时,具有高磁通密度和磁导率;但随着频率增加,涡流损耗急剧增加。铁氧体铁芯虽然高频磁性能优良,电阻率大,铁损低;但存在磁通密度低的缺点。它们均在交流设备小型化过程中均遇到了困难。目前,利用粉末冶金技术生产SMC材料已成为当前研究和开发的热点。研究表

复合材料加工研究进展

复合材料加工技术的最新研究进展 摘要:本主要综述了陶瓷基、树脂基这两种主要的非金属基复合材料的加工技术。通过对传统加工和新型加工技术的比较,认为今后研究非金属基复合材料加工工艺参数的优化,工艺过程中关键步骤的改进,新技术的研究,生产设备自动化、智能化程度的提高,生产线的规模化、专业化、可控制化,是其加工技术发展的关键。 关键词:陶瓷基、树脂基、复合材料加工 复合材料是由两种或两种以上不同化学性能或不同组织结构的材料,通过不同的工艺方法组成的多相材料,主要包括两相:基体相和增强相。20世纪40年代,因航空工业需要而发展了玻璃纤维增强塑料,是最早出现的复合材料,从此以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成了格局特色的复合材料。复合材料由于其具有各方面独特的性质,广泛应用与军事工业,汽车工业、医疗卫生、航空、航海以及日常生活的各个方面。对于复合材料的加工技术的研究,将是扩大其适用范围的关键之一[1]。 1 陶瓷基复合材料的加工 由于陶瓷材料同时具有高硬度、高脆性和低断裂韧性等特点,使得其加工、特别是成形加工,至今仍非常困难。在陶瓷材料加工中,使用金刚石工具的磨削加工仍然是目前最常用的加工方法,占所有加工工艺的80%。而陶瓷材料磨削加工不仅效率低,而且在加工中很容易产生变形层、表面/亚表面微裂纹、材料粉末化、模糊表面、相变区域、残余应力等缺陷,这对于航空、航天、电子等高可靠性、高质量要求的产品是决不允许的。陶瓷精密元件的加工费用一般占总成本的30%~60%,有的甚至高达90%。因此,通过新的陶瓷加工制造技术的探索,能够很好的提高产品制造精度和降低生产成本[2]。 1.1新型加工技术 1.1.1 放电加工 放电加工(EDM)是一种无接触式精细热加工技术,当单相或陶瓷/陶瓷、陶瓷/金属复合材料的电阻小于100Ω.m时,陶瓷材料可以进行放电加工。首先将形模(刻丝)和加工元件分别作为电路的阴、阳极,液态绝缘电介质将两极分开,通过悬浮于电介质中的高能等离子体的刻蚀作用,表层材料发生熔化、蒸发或热剥离而达到加工

智能材料研究进展及应用

各专业全套优秀毕业设计图纸 目录 0 引言 (2) 1 智能材料结构的研究现状 (3) 1.1 智能传感技术 (3) 1.2智能驱动技术 (4) 1.3智能控制技术 (6) 1.4智能信息处理与传输 (6) 2 常用制备方法 (8) 2. 1 物理气相沉积法 (8) 2. 2 喷涂法 (8) 2. 3烧结法 (8) 2. 4 注射成型法 (8) 2.5创构智能材料的物理新技术 (8) 3智能材料的应用领域 (9) 3.1军事领域中的应用 (9) 3.2医学领域中的应用 (11) 3.3建筑领域的应用 (13) 3.4智能服装和纺织品领域的应用 (13) 3.5 未来热点应用 (14) 3 结束语 (15) 参考文献 (15)

智能材料研究进展及应用 侯博 材料与化工学院材料科学与工程 摘要:智能材料是广受瞩目的新兴材料科学门类,经过几十年的发展,已日趋成熟,必将逐渐深入到人类生活之中,且越来越多地影响乃至大范围地改变人们的生活方式。本文介绍了智能材料的基本构成和分类,对对智能材料结构的研究现状进行了阐述,并简单介绍了一些常用的制备方法,概述了其应用,探讨了其研究价值和广阔的发展应用前景。 关键词:智能材料智能传感技术智能驱动技术智能控制技术智能信息处理与传输 0 引言 材料是人类一切生产和生活水平提高的物质基础,是人类进步的里程碑。随着科技的发展,特别是20世纪80年代以来,现代航天、航空、电子、机械等高技术领域取得了飞速的发展,人们对所使用的材料提出了越来越高的要求,传统的结构材料或功能材料已不能满足这些技术的要求,材料科学的发展由传统单一的仅具有承载能力的结构材料或功能材料,向多功能化、智能化的结构材料发展。20世纪80年代末期,受到自然界生物具备的某些能力的启发,美国和日本科学家首先将智能概念引入材料和结构领域,提出了智能材料结构的新概念。 智能材料结构又称机敏结构(Smart/Intelligent Materials and Structures),泛指将传感元件、驱动元件以及有关的信号处理和控制电路集成在材料结构中,通过机、热、光、化、电、磁等激励和控制,不仅具有承受载荷的能力,而且具有识别、分析、处理及控制等多种功能,能进行自诊断、自适应、自学习、自修复的材料结构。智能材料结构是一门交叉的前沿学科,所涉及的专业领域非常广泛,如:力学、材料科学、物理学、生物学、电子学、控制科学、计算机科学与技术等,目前各国都有一大批各学科的专家和学者正积极致力于发展这一学科[1]。当

复合材料研究进展讲述

铝基复合材料的制备和增强技术的研究进展 摘要本文简单介绍了铝基复合材料的一些基本的制备方法。对于纳米相和碳化硅颗粒增强的铝基复合材料,它们也有不同的制备方法。 关键词铝基复合材料纳米相碳化硅颗粒 0前言 复合材料是应现代科学发展需求而涌现出的具有强大生命力的材料,它由两种或两种以上性质不同的材料通过各种工艺手段复合而成。金属基复合材料基体主要是铝、镍、镁、钛等。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。本文主要讲述铝基复合材料的制备方法以及增强技术的发展情况。 1 铝基复合材料的制备工艺 1.1 无压浸渗法 无压浸渗法是Aghaianian 等于1989 年在直接金属氧化工艺的基础上发展而来的一种制备复合材料的新工艺[1],将基体合金放在可

控气氛的加热炉中加热到基体合金液相线以上温度,在不加压力和没有助渗剂的参与下,液态铝或其合金借自身的重力作用自动浸渗到颗粒层或预制块中,最终形成所需的复合材料。 Aghajanian 等[2]撰文指出,要使自发渗透得以进行,需具备两个必要条件:①铝合金中一定含有Mg元素;②气氛为N2环境。影响该工艺的主要因素为:浸渗温度、颗粒大小和环境气氛种类。无压渗透工艺的本质是实现自润湿作用,通过适当控制工艺条件,如合金成分、温度、保温时间和助渗剂等,可取得良好的润湿,使自发浸渗得以进行。 1.2 粉末真空包套热挤压法 采用快速凝固技术与粉末冶金技术相结合制备高硅含量铝基复合材料。由于Al 活性很高,在快速凝固制粉时不可避免地会形成一层氧化膜,导致在致密化过程中合金元素的相互扩散受到阻碍,难以形成冶金粘结。因此,采用了粉末真空包套热挤压这一特殊的致密化工艺[3]。 1.3 喷射沉积法 喷射沉积技术是一种新的金属成形工艺,由Singer 教授于1968 年提出,后经发展逐步形成了Osprey工艺、液体动态压实技术和受控喷射沉积工艺等。 喷射沉积的基本原理是:熔融金属或合金经导流管流出,被雾化

相关文档