文档库 最新最全的文档下载
当前位置:文档库 › 抽气器的原理

抽气器的原理

抽气器的原理
抽气器的原理

一、凝汽设备的作用

凝汽设备的作用是增大蒸汽在汽轮机中的理想焓降△h,提高机组的循环热效率。另一个作用是将排汽凝结成水,以回收工质,重新送回锅炉作为给水使用。

增大汽轮机的理想焓降,可通过提高蒸汽的初参数和降低排汽参数来获得。

二、凝汽器内真空的形成

凝汽器内真空的形成可分为两种情况来讨论。在启动或停机过程中,凝汽器内的真空是由抽气器将其内部空气抽出而形成的。而在正常情况下,凝汽器内的真空是由汽轮机排汽在凝汽器内骤然凝结成水时,其比容急剧缩小而形成的,抽气器将不凝结的气体和空气连续不断地抽出,起到维持真空的作用,此时真空的形成主要靠蒸汽的凝结。

发电机组在夏季高温季节,由于受环境温度升高影响,冷却水温度上升,凝汽器内冷凝蒸汽效果下降,换热效率下降,导致凝汽器内排汽压力上升,真空下降,从而使汽轮机排汽焓升高,汽轮机做功能力下降,效率降低,发电机输出功率下降。这就是真空低影响发电负荷的原因。

但真空度也不是越高越好,有一个控制范围,如一线余热电站真空度控制范围为-92.0kPa~-98.0kPa。从汽轮机末级叶片出口截面来分析,在每台汽轮机末级叶片出口截面处,都有一个确定的极限背压,若汽轮机背压降至低于其极限背压时,则蒸汽在汽轮机中的可用焓降

增值再也不会提高,因此,凝汽器内的真空是根据汽轮机设备和当地的气候条件来选定的,称为最有利真空,如一线电站最有利真空为-95.6kPa。

三、凝汽器射水、射汽抽气器的工作原理

抽气器的任务是将漏入凝汽器的空气和不凝结的气体连续不断地抽出,保持凝汽器始终在较高真空下运行。抽气器可分为射水、射汽抽气器两种,区别主要是工作介质的不同。

抽气器的工作原理:抽气器是由喷嘴、混合室、扩压管等组成,见附图。工作介质通过喷嘴,由压力能转变为速度能,在混合室中形成了高于凝汽器内的真空,达到把气、汽混合物从凝汽器内抽出的目的。在扩压管内,工质的速度能再转变为压力能,以略高于大气压力将混合物排入大气。

射汽抽气器的工作原理:

射汽抽气器所使用的工质是过热蒸汽,故称之为射汽抽气器。新线热力设计将射汽抽气器用于汽封蒸汽凝汽器,减少了汽轮机轴封漏汽损失,并利用漏汽的热量加热凝结水,回收热量和工质,提高了机组热经济性,防止了由于轴封漏汽过大时漏汽进入轴承润滑油,导致油中进水和轴承高温事故。工作原理:工作蒸汽进入喷嘴,膨胀加速进入混合室,在混合室内形成了高度真空,从而把凝汽器内的气、汽混合物抽了出来,混合后进入扩压管,升压至比大气压略高,经冷却器冷凝后,大部分蒸汽冷凝成疏水回到凝汽器,少量汽、气混合物排入大气。

射水抽气器的工作原理:

射水抽气器工作原理基本与射汽抽气器相同,不同的是它以水代替蒸汽作为工作介质。

工作水压保持在0.2~0.4MPa,由专用的射水泵供给,压力水由水室进入喷嘴,喷嘴将压力水的压力能转变为速度能以高速射出,在混合室内形成高度真空,使凝汽器内的气、汽混合物被吸入混合室进入扩压管,流速逐渐下降,最后在扩压管出口其压力升至略高于大气压力而排出进入冷却池。

压缩机用汽轮机抽气器应用中的能耗分析

龙源期刊网 https://www.wendangku.net/doc/8d7956221.html, 压缩机用汽轮机抽气器应用中的能耗分析 作者:段雅丽 来源:《硅谷》2013年第08期 摘要抽气器作为压缩机凝气系统的重要组成部分,用来抽除系统内的不能凝结的气体,以维持凝汽器真空,改善传热效果,从而提高机组的热经济性。在氨合成项目中,对不同型式的抽气器在同种工况时的运行时,射水抽气器要比射汽抽气器耗能少,运行成本低,节能效果显著。 关键词抽气器;射汽抽气器;射水抽气器;能耗 中图分类号:TK263 文献标识码:A 文章编号:1671—7597(2013)042-113-01 在以煤为原料的合成氨装置中,为提高能效水平,空分及合成气压缩等大功率转动设备大多采用凝汽式汽轮机代替电机拖动。而凝汽系统中抽气器的工作状况直接影响到机组运行的经济性和安全性。因此,由抽气器、动力泵和冷却器等组成的抽气设备是凝气设备的重要组成部分,其中抽气器是除气系统的核心设备。现用于合成氨工程的抽气设备主要有以下两种形式:射水抽气器和射汽抽气器。 本文通过对两种抽气设备在运行过程中的能耗进行比较,结合工程实际情况,对抽气设备在运行过程中的能耗进行了分析。 1 抽气器工作原理 抽气器是由喷嘴、混合室、扩压管等组成。工作介质通过喷嘴,由压力能转变为速度能,在混合室中形成了高于凝汽器内的真空,达到把气、汽混合物从凝汽器内抽出的目的。在扩压管内,工质的速度能再转变为压力能,以略高于大气压力将混合物排入大气。 1.1 射汽抽气器的工作原理 射汽抽气器所使用的工质是过热蒸汽,故称之为射汽抽气器。工作蒸汽进入喷嘴,膨胀加速进入混合室,在混合室内形成了高度真空,从而把凝汽器内的气、汽混合物抽了出来,混合后进入扩压管,升压至比大气压略高,经冷却器冷凝后,大部分蒸汽冷凝成疏水回到凝汽器,少量汽、气混合物排入大。 射汽抽气器的结构简单,被广泛的应用在高、中压参数汽轮机中。早期设计的射汽抽气器的工作蒸汽多来自新蒸汽,经节流减压到所需工作压力,先在应用较广的多级射汽抽气器则利用低品位蒸汽进行驱动,不仅减少了蒸汽的节流损失,而且提高了循环热效率。 1.2 射水抽气器的工作原理

射水抽气器

1 概述 由《汽轮机原理》知道,汽轮机设备在启动和正常运行过程中,都需要将设备(特别是凝汽器)和汽水管路中的不凝结气体及时抽出,以维持凝汽器的真空,改善传热效果,提高汽轮机设备的热经济性。因此,由抽气器,动力泵或冷却器,汽水管道,阀门等组成的抽气设备就成了凝汽设备中必不可少的一个重要组成部分。 抽气器的型式很多,按其工作原理可分为容积式(或称机械式)和射流式两大类。容积式抽气器是利用运动部件在泵壳内的连续回转或往复运动,使泵壳内工作室的容积变化而产生抽气作用,用于电站凝汽设备的有滑阀式真空泵,机械增压泵和液环泵。这些机械式抽气器,有点结构比较复杂,有的建立真空所需时间太长,有的工作不够可靠,因此,国内目前主要采用的是射流式抽气器。射流式抽气器按其工作介质又可分为射汽抽气器和射水抽气器两种。它们均是利用具有一定压力的流体,在喷嘴中膨胀加速,以很高速度将吸入室内的低压气流吸走。射流式抽气器没有运动部件,制造成本低,运行稳定可靠,占地面积小,能在较短时间内(通常5-6min)建立起所需要的真空,且可回收凝结水。 2 工作过程的具体描述与分析 射汽抽气器主要由工作喷嘴、混合室及扩压管三部分组成,其基本结构如图1所示。在结构上,工作喷嘴采用了缩放喷嘴的结构形式,这种结构可以在其出口获得超音速汽流。在混合室与扩压管之间还设有一段等截面的喉管,其作用是使工作蒸汽和被抽吸气体充分混合,以减少突然压缩损失和余速动能的损失。为突出射汽抽气器工作过程中的主要特点,将抽气器内流动的工质当作理想气体处理,并假设工质在抽气器内的流动是一维稳态绝热流动。射汽抽气器内工质的压力、速度变化曲线如图1所示。

电气原理图线号

1、电气控制线路回路标号分直流回路和交流回路. 2、回路标号的原则: (1)回路标号按照“等电位”的原则进行标注。等电位指回路中接在一点上的所有导线具有同一电位而标注相同的回路标号。 (2)回路标号由三位或三位以下的数字组成。以个位代表相别,如三相交流电路的相别分别用1、2、3;以个位奇偶数区别回路极性,如直流回路的正极侧用奇数,负极侧用偶数。以标号中的十位数字的顺序区分回路中的不同线段。以标号中的百位数字的顺序区分不同供电电源的回路。如直流回路中A电源的正、负极回路标号用“101”和“102”表示,B电源的正、负极回路标号用“201”和“202”表示。电路中若共用同一个电源,则百位数可以省略。当要表明回路中的相别或主要特征时,可在数字标号的前面或后面增注文字符号,文字符号用大写字母,并与数字标号并列。 3、直流回路标号 正极回路的线段按奇数顺序标号,如1、3、5。。。。等;负极回路的线段按偶数顺序标号,如2、4、6。。。。等。在同一回路中,经过压降元件(如电阻、电容等)时,要改变标号的极性,对不能明确标明极性的线段,可任意标奇偶数。在直流一次回路中,用个位数字的奇偶数区分回路的极性;用十位的顺序区分回路中不同线段,如正极回路用1、11、21、31。。。顺序标注,负极回路用2、12、22、32。。。顺序标注,用百位数字的顺序区分不同供电电源的回路,如A电源的正、负极回路标号用101、111、121。。。和102、112、122。。。表示,B电源的正、负极回路标号用201、211、221。。。和202、212、222。。。等表示。 4、交流回路标号 交流二次回路的标号与直流二次回路标号相似。经过压降元件时的不同线段分别按奇数和偶数的顺序标号。如一侧按1、3、5。。。等标号,另一侧按2、4、6。。。标号。一次回路中,用个位数字的顺序区分回路的相别,用十位数字的顺序区分回路中的不同线段。如第一相回路按1、11、21、。。。顺序标号,如第二相回路按2、12、22、。。。顺序标号,如第三相回路按3、13、23、。。。顺序标号,对于不同供电电源的回路,也可用百位数字的顺序标号进行区分。如第一相回路按101、111、121、。。。顺序标号,如第二相回路按102、112、122、。。。顺序标号,如第三相回路按103、113、123、。。。顺序标号,

射水射汽抽气器工作原理介绍

射水、射汽抽气器结构组成、工作原理介绍 一、凝汽设备的作用 凝汽设备的作用是增大蒸汽在汽轮机中的理想焓降△h,提高机组的循环热效率。另一个作用是将排汽凝结成水,以回收工质,重新送回锅炉作为给水使用。 增大汽轮机的理想焓降,可通过提高蒸汽的初参数和降低排汽参数来获得。 二、凝汽器内真空的形成 凝汽器内真空的形成可分为两种情况来讨论。在启动或停机过程中,凝汽器内的真空是由抽气器将其内部空气抽出而形成的。而在正常情况下,凝汽器内的真空是由汽轮机排汽在凝汽器内骤然凝结成水时,其比容急剧缩小而形成的,抽气器将不凝结的气体和空气连续不断地抽出,起到维持真空的作用,此时真空的形成主要靠蒸汽的凝结。 发电机组在夏季高温季节,由于受环境温度升高影响,冷却水温度上升,凝汽器内冷凝蒸汽效果下降,换热效率下降,导致凝汽器内排汽压力上升,真空下降,从而使汽轮机排汽焓升高,汽轮机做功能力下降,效率降低,发电机输出功率下降。这就是真空低影响发电负荷的原因。 但真空度也不是越高越好,有一个控制范围,如一线余热电站真空度控制范围为-92.0kPa~-98.0kPa。从汽轮机末级叶片出口截面来分析,在每台汽轮机末级叶片出口截面处,都有一个确定的极限背压,若汽轮机背压降至低于其极限背压时,则蒸汽在汽轮机中的可用焓降增值再也不会提高,因此,凝汽器内的真空是根据汽轮机设备和当地的气候条件来选定的,称为最有利真空,如一线电站最有利真空为-95.6kPa。 三、凝汽器射水、射汽抽气器的工作原理 抽气器的任务是将漏入凝汽器的空气和不凝结的气体连续不断地抽出,保持凝汽器始终在较高真空下运行。抽气器可分为射水、射汽抽气器两种,区别主要是工作介质的不同。 抽气器的工作原理:抽气器是由喷嘴、混合室、扩压管等组成,见附图。工作介质通过喷嘴,由压力能转变为速度能,在混合室中形成了高于凝汽器内的真空,达到把气、汽混合物从凝汽器内抽出的目的。在扩压管内,工质的速度能再转变为压力能,以略高于大气压力将混合物排入大气。 射汽抽气器的工作原理: 射汽抽气器所使用的工质是过热蒸汽,故称之为射汽抽气器。新线热力设计将射汽抽气器用于汽封蒸汽凝汽器,减少了汽轮机轴封漏汽损失,并利用漏汽的热量加热凝结水,回收热量和工质,提高了机组热经济性,防止了由于轴封漏汽过大时漏汽进入轴承润滑油,导致油中进水和轴承高温事故。工作原理:工作蒸汽进入喷嘴,膨胀加速进入混合室,在混合室内形成了高度真空,从而把凝汽器内的气、汽混合物抽了出来,混合后进入扩压管,升压至比大气压略高,经冷却器冷凝后,大部分蒸汽冷凝成疏水回到凝汽器,少量汽、气混合物排入大气。 尽管射汽式抽气器抽气效率较低,但其结构简单,能回收工作蒸汽的热量和凝结水,仍被广泛应用。 射水抽气器的工作原理: 射水抽气器工作原理基本与射汽抽气器相同,不同的是它以水代替蒸汽作为工作介质。 工作水压保持在0.2~0.4MPa,由专用的射水泵供给,压力水由水室进入喷嘴,喷嘴将压力水的压力能转变为速度能以高速射出,在混合室内形成高度真空,使凝汽器内的气、汽混合物被吸入混合室进入扩压管,流速逐渐下降,最后在扩压管出口其压力升至略高于大气压力而排出进入冷却池。

大罐抽气装置

H-SONG型大罐抽气装置 青岛汇森能源设备有限公司 原油在集输处理、储存过程中,原油中的较轻组份大量挥发,在造成天然气资源的浪费的同时,还对大气环境造成污染。如果对这些组份加以回收,不仅增加了油田的天然气产量,又节约了资源防止了油罐顶挥发出天然气对大气的污染,保护了环境,同时又减少了油罐火险因素,增加了油气集输的安全。 早期大罐回收装置采用皮囊控制系统,通过气包的位置变化信号来控制压缩机的运行,这种控制系统自动化程度低,受气象环境干扰,刮风、下雨等会直接影响到行程开关的正常运行,导致压缩机不正常启停。 后来在实际运营过程中不断积累经验,对控制系统进行自动化改进,撤掉气包,控制系统采用差压变送器,接触器和电接点压力表等组成。这种控制方式,压缩机启动频繁,压力波动大。由于频繁启动,压缩机与油泵的磨损都很大,大大减少了设备的使用寿命;压力波动大,经常造成差压变送器的损害,而且管网出口压力波动也很大。 为了改善这些缺点我们针对以上问题,采用PID自整定调节仪、八路报警仪及变频器组成的集成控制系统,有效的改善了系统运行工况。 一. 系统原理 系统采用模拟人工智能调节技术,变频器控制压缩机的排量,使之随油罐挥发气的脉动变化而变化,使密闭油罐始终保持在微正压下安全运行。 通过油罐烃蒸汽回收工艺密闭处理原油,在大罐顶部呼吸阀上引出收气管路,用螺杆压缩机对大罐进行抽气,收集的天然气、轻组分经冷却、分离、压缩后外输。 为了安全生产,油罐气由引压管进入一次仪表微差压变送器,输出4-20mA信号,随着油罐气的变化软启停压缩机,根据气量变化调节压缩机转速。当第一台压缩机变频运行,气量增加时,压缩机运转频率达到50Hz,不能达到控制要求时,自动切换到电网工频运行,第二台压缩机软启动变频运行。当油罐压力到500Pa时,自动报警,压力为1000Pa 时,罐顶微压安全阀放空;压力达到2000Pa时,罐顶上原有的液压安全阀放空。当油罐气量减少,第一台工频运行的压缩机停运,保留第二台压缩机变频运行;当油罐气量继续减少,油罐压力下降到150Pa时,自动报警,自力式补气调节阀自动打开,进行补气;当气量继续下降到100Pa时,自动报警,停机;当压力回升到450Pa时,自动起机收气,始终稳定油罐压力在300~350Pa确保油罐安全。 该系统具有造价成本低,无需编程。根据罐顶挥发天然气量的多少,随意调节压力,控制压缩机的运行,具有运行平稳,控制精确,自动化程度高,维护方便等特点。 整套自动控制系统以PID自整定调节仪和变频器为核心,附以其它的保护电路和报警电路,见图1 控制系统组成框图。 (一) 保护装置 保护系统主要由三部分组成,当其中的任何一部分达不到要求时,系统都不会工作。 1. 来气压力的低压保护系统:此保护采用双重保护装置,由差压开关保护和差压变送器与PID自整定调节仪构成的保护系统,以差压变送器与PID自整定调节仪构成的保护系统为主,其工作原理如下:PID自整定调节仪为下下限报警,将两个下下限报警分别设置为停止压力和启动压力,启动压力大于停止压力,此两个压力由PID自整定调节仪设定好,差压变送器接收到的压力信号转变为电信号,传输到PID自整定调节仪,当压力大于启动压力时,设备启动;当压力低于停止压力时,设备停止工作。差压开关的压力动作点略低于停

凝汽器工作原理

凝汽器工作原理 凝汽器:使驱动汽轮机做功后排出的蒸汽变成凝结水的热交换设备。蒸汽在汽轮机内完成一个膨胀过程后,在凝结过程中,排汽体积急剧缩小,原来被 蒸汽充满的空间形成了高度真空。凝结水则通过凝结水泵经给水加热 器、给水泵等输送进锅炉,从而保证整个热力循环的连续进行。为防止 凝结水中含氧量增加而引起管道腐蚀,现代大容量汽轮机的凝汽器内还 设有真空除氧器。 凝汽器的主要作用: 1)在汽轮机排汽口造成较高真空,使蒸汽在汽轮机中膨胀到最低压力,增大蒸汽在汽轮机中的可用焓降,提高循环热效率; 2)将汽轮机的低压缸排出的蒸汽凝结成水,重新送回锅炉进行循环; 3)汇集各种疏水,减少汽水损失。 4)凝汽器也用于增加除盐水(正常补水) 表面式凝汽器的工作原理:凝汽器中装有大量的铜管,并通以循环冷却水。当汽轮机的排汽与凝汽器铜管外表面接触时,因受到铜管内水流的冷却,放出汽化潜热变成凝结水,所放潜热通过铜管管壁不断的传给循环冷却水并被带走。 这样排汽就通过凝汽器不断的被凝结下来。排汽被冷却时,其比容急剧缩小,因此,在汽轮机排汽口下凝汽器内部造成较高的真空。 凝汽器是火力发电厂的大型换热设备。图1为表面式凝汽器的结构示意图。

凝汽器运行时,冷却水从前水室的下半部分进来,通过冷却水管(换热管)进入后水室,向上折转,再经上半部分冷却水管流向前水室,最后排出。低温蒸汽则由进汽口进来,经过冷却水管之间的缝隙往下流动,向管壁放热后凝结为水。真空度定义: 从真空表所读得的数值称真空度。真空度数值是表示出系统压强实际数值低于大气压强的数值,即: 真空度=大气压强—绝对压强 凝汽器中真空的形成主要原因 在启动过程中凝汽器真空是由主、辅抽汽器将汽轮机和凝汽器内大量空气抽出而形成的。 在正常运行中,凝汽器真空的形成是由于汽轮机排汽在凝汽器内骤然凝结成水时其比容急剧缩小而形成的。如蒸汽在绝对压力4kpa时蒸汽的体积比水的体积大3万倍,当排汽凝结成水后,体积就大为缩小,使凝汽器内形成高度真空。凝结器的真空形成和维持必须具备三个条件: 1)凝汽器铜管必须通过一定的冷却水量; 2)凝结水泵必须不断地把凝结水抽走,避免水位升高,影响蒸汽的凝结; 3)抽汽器必须把漏入的空气和排汽中的其它气体抽走。 真空降低的原因: (1)循环水量减少或中断: ①循环水泵跳闸、循进阀门误关、循环水泵出口蝶阀阀芯落、循进滤网堵:水量中断,进水压力下降,出水真空至零,循泵电流至零或升高,须不破坏真空停机;若未关死,立即减负荷恢复;

两级射汽抽气器

作者:admin 来源:本站发表时间:2011-9-28 10:06:15 点击:27 凝汽器多级射汽抽气器,汽轮机两级射汽抽气器,射汽抽气器生产厂家具有效率高,耗能低的优点,该产品系国内的射水抽气器最新型式,用于火力发电厂汽轮机组抽吸凝汽器真空和其它需要抽真空的设备之用,用于新机组设计的中的辅机配套及现有机组的节能改造均为适宜。同时可根据需要设计出任何抽气量的抽气设备,亦可对汽抽实施改造,适用范围3MW-600MW机组。 凝汽器多级射汽抽气器,汽轮机两级射汽抽气器,射汽抽气器生产厂家优点为: 1、抽吸能力强,安全裕量大,电机耗功低。 2、寿命长,抽吸内效率不受运行时间影响,检修间隔期长。 3、启动性好,无需另配辅抽。对工作水所含杂质的质量浓度及体积浓度要求低。 4、该射水抽汽器喉管出口设置余速抽气器,可同时供汽机抽吸轴封加热器之不凝结气体。 5、因无气相偏流,所以射水抽气器运行中震动磨损极小。 凝汽器多级射汽抽气器,汽轮机两级射汽抽气器,射汽抽气器生产厂家结构原理:新一代射水抽气器结构原理打破了传统的水、气垂直交错流动的设计模式,大家知道气相运动所需能量全来自水束,那么要让水质点裹胁更多的气体来提高凝汽器真空,保证安全运行就必须: 1、在吸入室中选取水的最佳流速及单股水束的最佳截面,以期水束能实现最佳分散度,同时分散后的水质点又具最佳动量,以最小的水量裹胁最多的气体,这是达到低耗高效的起码条件。 2、吸入室内水质点与空气的接触达到最均匀。且使水束所裹胁的气体能全部压入喉管。 3、制止初始段的气相返流偏流,以免造成冲击四壁而发生震动磨损。这一点单靠加长喉管是难以实现的。这是吸入室几何结构,喉口形状,喉径喷咀面积比,喉长喉咀径比,进水参数(水量水压)等实现的。 4、喉管的结构分气体压入段,旋涡强化段及增压段三部份。能实现两相流的均匀混合,降低气阻,消除气相偏流,增加两相质点能量交换,又能利用余速使排出的能量损失达到最少。

抽汽逆止门工作原理

抽汽逆止门的电磁阀工作 原理 shunqing345 助理工程 师 认清自己 TA的每日 心情 擦汗 2011-12 -21 19:04:4 签到天 数: 4 天 []偶尔看 看I 星币 3 元 贡献 583 点 具体工作过程基本如下: 阀碟的开启及关闭:当压缩空气从操纵座下方管道进入气缸时,活塞在空气压力作用下向上运动,压缩 弹簧,杠杆转过一定角度,使杠杆上凸台同摇臂凸台 脱开,使阀碟处于可开启状态。此时,当阀门进口压

精华 帖子 456 串个门 加好友 打招呼 发消息禁 止帖 子力超过出口压力时,阀碟开启,当阀门进口压力低于出口压力时或发生反向流动时,阀碟关闭。在正常运行情况下,阀碟将在汽流力作用下打开,并最终维持在全开位置上。当操纵座气缸内空气被泄去时,在弹簧作用下,杠杆回转,通过端面凸台带动摇臂转动,使阀碟强制闭。抽汽阀控制气管路上.所装的电磁阀与汽轮机的危急遮断、发电机的跳闸信号联动。当主汽阀关闭或甩负荷时,空气引导阀闭,抽汽阀控制气管路被切断。同时电磁阀线圈断电,电磁阀动作,切断气源,将抽汽阀操纵座内的空气排空,抽汽逆止阀的阀碟在操纵座弹簧作用下关闭。 汽轮机抽汽管路上的逆止门具有十分重要意义。因为当汽轮机甩负荷时,它们保护汽轮机不致因蒸汽的回流而超速,并防止加热器及管路带水进入汽轮机。 二、结构介绍 抽汽逆止门有两种形式。一种为回热抽汽管路上的逆止门;另一种是通过

大流量的高压汽缸排汽管路上的摇板式逆止门。它们都靠压力水来作为控制动力。为了实现远距离和自动关闭的闭锁作用设有一套控制水系统,简称逆止门压力传送装置。 回热抽汽管路上的逆止门及其操纵座的结构如图所示。在正常工作情况,逆止门操纵杆座的强制门杆8在弹簧力的作用下,处于上部位置,此时逆止门门碟1在蒸汽顺流时,能自由开启,当汽轮机甩负荷时,逆止门上部操纵座5的水压及门碟上部蒸汽的作用下,一起将逆止门门碟压向门座7。蒸汽的作用力系由抽汽管路中残存的蒸汽压力与汽轮机抽汽室中的压力 差产生的。 这种形式的逆止门只能装在管路的水平部分上。在逆止门蒸汽进入一侧,即汽轮机抽汽室侧外壳的底部有疏水孔。各段去抽汽逆止门疏水是加装 直径5毫米的节流孔板逐级至下一级抽汽。气轮机抽气管路采用这种疏水方式,对于机组的经济性来说,是要损失一点,但抽气管路中不易积水,

高效环保型多通道真空射水抽气系统

Mechanical Engineering and Technology 机械工程与技术, 2020, 9(2), 125-130 Published Online April 2020 in Hans. https://www.wendangku.net/doc/8d7956221.html,/journal/met https://https://www.wendangku.net/doc/8d7956221.html,/10.12677/met.2020.92013 Vacuum Ejector System of Efficient and Environment-Friendly Qizhi Xie Lianyungang Jiusheng Auxiliary Power Co. Ltd., Lianyungang Jiangsu Received: Mar. 26th, 2020; accepted: Apr. 2nd, 2020; published: Apr. 10th, 2020 Abstract The new type of high efficient and environment-protecting multi-channel water-jet air ejector is a key equipment for condenser vacuum system in thermal power plants and other vacuuming uses. In this paper, a high efficient environment-protecting multi-channel water-jet air ejector system is successfully established in order to realize the functions reliably, ensure quality, and meet new va-cuuming requirements. Based on mature technology, the system is established by innovating processing technology and improving the designing idea. During the establishment of the system, anti-noise structure, monitoring terminal, gas filling controlling system, malfunction prediction and health management based on cloud computing and APP in the user's mobile phones have been re-searched and designed, thus the system is highly reliable, intelligent and energy-saving. Keywords Vacuum Ejector Suction Device, Efficient and Environmental Protection, Multichannel 高效环保型多通道真空射水抽气系统 谢其志 连云港久盛电力辅机有限公司,江苏连云港 收稿日期:2020年3月26日;录用日期:2020年4月2日;发布日期:2020年4月10日 摘要 新型高效环保型多通道射水抽气器是火力发电厂汽轮机组抽吸凝气器真空和其它需要抽真空的一种关键设备。为了可靠的实现其功能、保证装置设备质量,以适应新型抽吸真空任务的要求,本文以成熟技术为基础,通过创新加工工艺、改进设计思想,对防噪音结构设计、监控终端设计、气体充装控制系统设计、基于云计算的故障预测与健康管理、用户手机客户端APP设计等模块进行研究,成功建立高效环保型多通道真空射水抽气系统,该系统高度安全可靠、智能、节能。

!射水抽气器

射水抽气器原理及故障处理 原理:从射水泵来的具有一定压力的工作水经水室进入喷嘴。喷嘴将压力水的压力能转变为速度能,水流高速从喷嘴射出,使空气吸入室内产生高度真空,抽出凝汽器内的汽、气混合物,一起进入扩散管,水流速度减慢,压力逐渐升高,最后以略高于大气压的压力排出扩散管。在空气吸入室进口装有逆止门,可防止抽气器发生故障时,工作水被吸入凝汽器中。 我厂射水抽气器结构非传统的水、气垂直交错流动的设计模式,气相运动所需能量全来自水束,那么要让水质点裹协更多的气体来提高凝汽器真空,保证安全运行就必须: 1、在吸入室中选取水的最佳流速及单股水束的最佳截面,以期水束能实现最佳分散度,同时分散后的水质点又具最佳动量,以最小的水量裹胁最多的气体,这是达到低耗高效的起码条件。 2、吸入室内水质点与空气的接触达到最均匀。且使水束所裹协的气体能全部压入喉管。 3、制止初始段的气相返流偏流,以免造成冲击四壁而发生震动磨损。这一点单靠加长喉管是难以实现的。这是吸入室几何结构,喉口形状,喉径喷咀面积比,喉长喉咀径比,进水参数(水量水压)等实现的。 4、喉管的结构分气体压入段,旋涡强化段及增压段三部份。能实现两相流的均匀混合,降低气阻,消除气相偏流,增加两相质点能量交换,又能利用余速使排出的能量损失达到最少。 事件:10月3 日,我厂二期2#射泵因电气故障跳停,当值人员在启动备用泵后真 空仍持续下降,现场检查工作射水抽气器(1#)部有异音后安排人员对2#射水抽气器进行隔离,但真空仍然不能维持。再后来隔离1#射水抽气器,恢复2#射水抽气器运行后,真空

恢复正常。 分析: 2#射泵电气故障跳停,启动1#射泵后真空仍然下降原因。 1、1#射水抽气器空气侧逆止门不严,2#射泵跳停后抽气器处于倒吸状态,即便启动2#射泵,但射泵出口的水流在喷嘴处射出遇阻,速度能不能最大发挥,空气吸入室内产生的真空量不及凝汽器内真空度,抽气器仍处于倒吸状态,甚至有部分喷口出水被倒吸如凝汽器,加速凝汽器真空下降速度。此类现象最直观的表现为射泵出口压力和电机电流波动较大,凝汽器热井水位迅速上升,真空加速降低,并且凝结水水质受影响。 2、1#射水抽气器空气侧逆止门未能顺利打开。2#射泵跳停后,1#射水抽气器迅速关闭关严。启动1#射泵后,因启动时间较短,1#射水抽气器空气吸入室内真空度较低,不足以克服凝汽器真空将气侧逆止门打开。即使抽气未能起到预期作用,因凝汽器真空系统自身严密性以及快速降低了汽机负荷,真空有下降,但速度应较慢。 根据当班运行日志以及实时相关运行曲线,凝汽器热井水位在汽机快速降低负荷前无大幅异常升高,在整个故障处理过程中一直处于可控范围;凝汽器真空从故障发生至2#射水抽气器投运成功前后36分钟内无明显加速降低过程;凝结水质在事后经化验无异常。可以分析出启动1#射泵后真空仍然下降原因为以上第二种。 处理方法:遇到以上类似设备故障时,处理时应沉着,冷静分析各参数变化情况和现 场设备的运行状况,快速降低汽机负荷,终止汽轮机组其他相关工作,为故障排除争取时间。 1、当运行中射泵故障跳停,启动备用泵后真空不能恢复,判断为逆止门未能顺利打开时,在降低汽机负荷的同时可考虑迅速关闭运行抽气器空气门稍候再缓慢开启,观察真空变化情况,如真空停止下降,则说明逆止门开启,射水抽气器运投运正常。若判断为气侧逆止门不严时,备用射水抽气器无法投运时也可考虑该方法,但在再次缓慢开启空气门前必须确认射泵出口压力和电机电流稳定在额定范围内。 2、如在关闭运行抽气器气侧门再开启过程中,真空仍然不能维持(通常不会出现该现象),则应迅速关严该空气门,投运备用抽气器。 3、出现气侧逆止门不严时,在关闭故障抽气器气侧逆止门前不得启动备用射水泵。 4、故障处理中,不得出现一台设备带两台抽气器工作情况,不得在隔离或投运抽气器时出现气水侧门次序颠倒现象。操作时果断快速,不得拖泥带水犹豫不决。

抽气逆止阀工作原理

抽气逆止阀的作用W 汽轮机抽汽管路上的逆止门具有十分重要的意义。因为当汽轮机甩负荷时,它们保护汽轮机不致因蒸汽的回流而超速,并防止加热器及管路带水进入汽轮机。\" _0 J/ g 抽气逆止阀结构介绍 1 w' N1 x|* `k, x: @5 A 抽汽逆止门有两种形式。一种为回热抽汽管路上的逆止门;另一种是通过大流量的高压汽缸排汽管路上的摇板式逆止门。它们都靠压力水来作为控制动力。为了实现远距离和自动关闭的闭锁作用设有一套控制水系统,简称逆止门压力传送装置。" T- p( i5 {& I4 n4 R 回热抽汽管路上的逆止门及其操纵座的结构如图所示。在正常工作情况下,逆止门操纵杆座的强制门杆8在弹簧力的作用下,处于上部位置,此时逆止门门碟1在蒸汽顺流时,能自由开启,当汽轮机甩负荷时,逆止门上部操纵座5的水压及门碟上部蒸汽的作用下,一起将逆止门门碟1压向门座7。蒸汽的作用力系由抽汽管路中残存的蒸汽压力与汽轮机抽汽室中的压力差产生的。 @% {4 D$ c5 j: n/ ~这种形式的逆止门只能装在管路的水平部分上。在逆

止门蒸汽进入的一侧,即汽轮机抽汽室侧外壳的底部有疏水孔。各段去抽汽逆止门疏水是加装直径5毫米的节流孔板逐级至下一级抽汽。气轮机抽气管路采用这种疏水方式,对于机组的经济性来说,是要损失一点,但抽气管路中不易积水,对机组运行的安全性是比较可靠的。O7 J 逆止门门碟固定在蒸汽缓冲活塞2上,在逆止门门盖4上设有缓冲汽室13,在逆止门前后壳体上接有平衡汽管14,通入缓冲汽室。为了防止蒸汽短路及保持缓冲汽室中有一定的压力,在平衡汽管上设有球形逆止门6。f5 R8 H7 _当逆止门开启时,气轮机抽汽室的蒸汽首先通入缓冲汽室13,起缓冲作用。逆止门在汽流的作用下逐步开足时,缓冲汽室内整齐通过强制门杆的气封流出;在逆止门动作关闭时,抽气管路中的残存蒸汽通过平衡汽管14倒入缓冲汽室13,以减少缓冲活塞2上、下部的压力差,达到迅速关闭的目的。缓冲汽室同时也用来作为门碟上下移动的导向作用。x3 { 5 q" J e9 l) m5 `* t

配气机构常见故障诊断与排除

配气机构常见故障诊断与排除 摘要本论文阐述配气机构的作用、组成、主要构造、工作原理、故障的检测步骤和排除方法,同时论述了各类配气机构的优缺点,以及配气机构运用的最新技术及配气机构的发展趋势。 关键词:配气机构配气相位各类配气机构特点

1 绪论 发动机的配气机构就好比人体的呼吸系统,进排气的机械动作就有 如人体的呼吸气。尽管配气机构的作用相当于人体的呼吸器官,但是它 的作动原理以及构造却相对要复杂许多 人体呼吸作用是指让氧气通过呼吸道进入到体内,使细胞在氧气的参与下经过体内酶的催化转换,将糖类、脂肪类以及蛋白质等有机物彻底氧化分解产生出二氧化碳和水,同时释放出大量能量供肌体活动的过程。通常我们所提到的呼吸都是指有氧呼吸,而有氧呼吸也是大多数生物体的主要呼吸形式。实际上,除了生物需要做有氧呼吸外,汽车也同样如此。表面看来,汽车虽然是一台冰冷的钢铁机器,但是通过将各种电子设备以及功能零部件进行叠加,汽车已俨然具有了生物所特有的灵性。 汽车的构成部件中,发动机的配气机构是非常重要的一个组成部分,它的作用和人体的呼吸器官一样掌控着氧气的进入,对于能否做功拥有决定权,不过它的工作环境可比呼吸器官严酷多了——油污、高温、高压,毫不夸张的说简直有如炼狱。配气机构的主要功能是按照一定时限自动开启和关闭各气缸的进、排气门。它的作用则是空气及时通过进气门向气缸内供给可燃混合气(汽油机)或新鲜空气(柴油机)。并且及时将燃烧做功后形成的废气从排气门排出,实现发动机气缸换气补给的整个过程。 2配气机构的概述 2.1配气机构的作用 配气机构的功用是按照发动机每一气缸内所进行的工作循环和发火次序的要求,定时开启和关闭各气缸的进、排气门,使新鲜充量得以及时进入气缸,废气得以及时从气缸排出;在压缩与膨胀行程中,保证燃烧室的密封。新鲜充量对于汽油机而言是汽油和空气的棍合气,对于柴油机而言是纯空气。

射水、射汽抽气器工作原理介绍

射水、射汽抽气器工作原理介绍 余热发电新线建设培训教材 射水、射汽抽气器结构组成、工作原理介绍 一、凝汽设备的作用 凝汽设备的作用是增大蒸汽在汽轮机中的理想焓降?h,提高机组的循环热效率。另一个作用是将排汽凝结成水,以回收工质,重新送回锅炉作为给水使用。 增大汽轮机的理想焓降,可通过提高蒸汽的初参数和降低排汽参数来获得。 二、凝汽器内真空的形成 凝汽器内真空的形成可分为两种情况来讨论。在启动或停机过程中,凝汽器内的真空是由抽气器将其内部空气抽出而形成的。而在正常情况下,凝汽器内的真空是由汽轮机排汽在凝汽器内骤然凝结成水时,其比容急剧缩小而形成的,抽气器将不凝结的气体和空气连续不断地抽出,起到维持真空的作用,此时真空的形成主要靠蒸汽的凝结。 发电机组在夏季高温季节,由于受环境温度升高影响,冷却水温度上升,凝汽器内冷凝蒸汽效果下降,换热效率下降,导致凝汽器内排汽压力上升,真空下降,从而使汽轮机排汽焓升高,汽轮机做功能力下降,效率降低,发电机输出功率下降。这就是真空低影响发电负荷的原因。 但真空度也不是越高越好,有一个控制范围,如一线余热电站真空度控制范围为-92.0kPa,-98.0kPa。从汽轮机末级叶片出口截面来 分析,在每台汽轮机末级叶片出口截面处,都有一个确定的极限背压,若汽轮机背压降至低于其极限背压时,则蒸汽在汽轮机中的可用焓降增值再也不会提高,因此,凝汽器内的真空是根据汽轮机设备和当地的气候条件来选定的,称为最有利真空,如一线电站最有利真空为-95.6kPa。

三、凝汽器射水、射汽抽气器的工作原理 抽气器的任务是将漏入凝汽器的空气和不凝结的气体连续不断地抽出,保持凝汽器始终在较高真空下运行。抽气器可分为射水、射汽抽气器两种,区别主要是工作介质的不同。 抽气器的工作原理:抽气器是由喷嘴、混合室、扩压管等组成,见附图。工作介质通过喷嘴,由压力能转变为速度能,在混合室中形成了高于凝汽器内的真空,达到把气、汽混合物从凝汽器内抽出的目的。在扩压管内,工质的速度能再转变为压力能,以略高于大气压力将混合物排入大气。 射汽抽气器的工作原理: 射汽抽气器所使用的工质是过热蒸汽,故称之为射汽抽气器。新线热力设计将射汽抽气器用于汽封蒸汽凝汽器,减少了汽轮机轴封漏汽损失,并利用漏汽的热量加热凝结水,回收热量和工质,提高了机组热经济性,防止了由于轴封漏汽过大时漏汽进入轴承润滑油,导致油中进水和轴承高温事故。工作原理:工作蒸汽进入喷嘴,膨胀加速进入混合室,在混合室内形成了高度真空,从而把凝汽器内的气、汽混合物抽了出来,混合后进入扩压管,升压至比大气压略高,经冷却器冷凝后,大部分蒸汽冷凝成疏水回到凝汽器,少量汽、气混合物排入大气。 尽管射汽式抽气器抽气效率较低,但其结构简单,能回收工作蒸汽的热量和凝结水,仍被广泛应用。 射水抽气器的工作原理: 射水抽气器工作原理基本与射汽抽气器相同,不同的是它以水代替蒸汽作为工作介质。 工作水压保持在0.2,0.4MPa,由专用的射水泵供给,压力水由水室进入喷嘴,喷嘴将压力水的压力能转变为速度能以高速射出,在混合室内形成高度真空,使凝

汽轮机表面式凝汽器抽气设备

附 录 C (资料性附录) 抽气设备 C.1 抽气设备能力的确定 C.1.1 凝汽器中需要抽出的不凝结气体的来源包括但不仅限于以下几项: ——低于大气压下运行的系统部件中漏进的空气; ——进入凝汽器的疏水和排汽释放的气体; ——进入凝汽器的补给水释放的气体; ——循环冷却中所使用的凝结水平衡箱内所产生的气体; ——在某些形式的核燃料的循环中,从给水中解析出来的氧气、氢气及其他不凝结气体。 C.1.2 除不凝结气体外,还应抽出一定量的附带蒸汽,以确保凝汽器的正常性能,并产生合理的气流速度,使凝汽器汽侧的腐蚀减少到最小程度。 C.2 设计吸入压力 抽气设备的吸入压力应符合下列要求: ——电站汽轮机凝汽器的设计吸入压力为3.386 kPa (a )或凝汽器设计压力,取二者中的较小值。最终选择还应考虑到在整个预期的运行压力内的凝汽器与其抽气设备的协调运行。此外,当选择设计吸入压力时,还应考虑抽气设备的实际位置。 ——工业和船用汽轮机或泵等其他机械动力设备用凝汽器的设计吸入压力为凝汽器设计压力减去 3.386 kPa 或为运行所要求的最低压力,取二者中的较小值,但不得低于3.386 kPa (a )。 C.3 设计吸入温度 设计吸入温度(即抽吸的汽-气混合物温度),应为抽气设备设计压力相对应的饱和蒸汽温度t vs (℃)减去0.25(t s -t w1)或4.16 ℃中的较大值(t s 为蒸汽凝结温度,t w1为冷却水进口温度)。 运行中抽气口的蒸汽实际温度受到运行特性、不凝结气体负荷和抽气设备容量特性的影响,不一定等于设计吸入温度。 C.4 水蒸汽量的计算 混合气体中饱和水蒸汽量与不凝结气体的比值按公式(C.1)计算: w VS w g g w 18 P P P M W W -? = .................................. (C.1) 式中: W w ——混合气体中的饱和水蒸汽质量,单位为千克(kg ); W g ——混合气体中的不凝结气体质量,单位为千克(kg ); P w ——与凝汽器抽气口处温度相对应的水蒸汽的饱和压力,单位为千帕[kPa (a )]; M g ——不凝结气体的平均分子量。不凝结气体为干空气时其分子量为29;

真空发生器的工作原理

真空发生器的工作原理 【气动元件】2009-12-15 19:01:50 阅读763 评论0 字号:大中小订阅 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便.真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域.真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体.在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作.笔者认为对真空发生器的抽吸机理和影响其工作性能因素的分析研究,对正负压气路的设计和选用有着不可忽视的实际意义. 上图所示为真空发生器的工作原理图,它由喷嘴、接收室、混合室和扩散室组成。压缩空气通过收缩的喷射后,从喷嘴内喷射出来的一束流体的流动称为射流。射流能卷吸周围的静止流体和它一起向前流动,这称为射流的卷吸作用。而自由射流在接收室内的流动,将限制了射流与外界的接触,但从喷嘴流出的主射流还是要卷吸一部分周围的流体向前运动,于是在射流的周围形成一个低压区,接收室内的流体便被吸进来,与主射流混合后,经接收室另一端流出。这种利用一束高速流体将另一束流体(静止或低速流)吸进来,想互混合后一超流出的现象称为引射现象。若在喷嘴两端的压差达到一定值时,气流达声速或亚声速流动,于是在喷嘴出口处,即接收室内可获得一定的负压。

由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大. 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2.当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力.

射汽式抽气器的工作原理及故障分析

发电机抽汽器工作原理及真空低故障分析 摘要:本文以低压发电射汽式抽气器为例阐述了发电机真空低故障的分析及处理办法。 关键词:凝结器、膨胀节、空气管道、抽气器等。 1、真空低的危害:蒸汽在气轮机中膨胀较大,减小了焓降和循环热的效率,汽轮机做功少等。 2、影响真空的部位:冷却器冷却效果差、膨胀结及相关的阀门管道泄漏、抽气器工作效率差等。 3、射汽式抽气器的工作过程具体描述与分析: 射汽式抽气器主要由工作喷嘴、混合室及扩压管三部分组成,其基本结构如图所示。在结构上,工作喷嘴采用了缩放喷嘴的结构形式,这种结构可以在其出口处获得超音速汽流,在混合室与扩压管之间还设有一段等截面的喉管,其作用是使工作蒸汽和被抽吸气体充分混合,以减少突然压缩损失和余速动能的损失。为突出射汽抽气器工作过程中的主要特点,将抽气器流动的工质当作理想气体处理,并假设工质在抽气器内的流动是一维稳态绝热流动。射汽抽气器内工质的压力、速度变化曲线如图所示。 ***********************************************************************

在上述假设的前提下,射汽抽气器的整个工作过程可以为三个阶段,具体描述如下: (1)、P点截面→2点截面为工作蒸汽在工作喷嘴内的膨胀增速阶段。 较高压力的工作蒸汽在工作喷嘴入口处(P点)以低于声速的汽流速度进入射汽抽气的工作喷嘴。在工作喷嘴的渐缩段流动时,其压力不断减少,速度不断增加。在工作喷嘴的喉部(最小截面处1点),汽流速度达到音速,即马赫数等于1。工作蒸汽在进入喷嘴的渐扩段后,压力进一步下降,汽流速度进一步增加,达到超音状态,在工作喷嘴出口截面处,工作蒸汽的汽流速度可达到900-1200m/s. (2)、2点截面→3点截面为工作蒸汽与被吸入气体的混合阶段。 工作蒸汽在工作喷嘴出口截面处所形成的高速汽流会在工作喷嘴出口附近形成真空区域,这样压力相对较高的被抽吸气体就会在压力差的作用下,被吸入到混合室内,被吸气体在e点被吸入抽气器,从e点流动到3点的过程中,速度不断增加,压力在e点→2点不断下降到工作蒸汽在工作喷嘴出口截面处(2点)的压力,此后在混合室段和喉管前段(2→ ***********************************************************************

Y△降压起动电气原理图及讲解

Y—△降压起动也称为星形—三角形降压起动,简称星三角降压起动。这一线路的设计思想仍是按时间原则控制起动过程。所不同的是,在起动时将电动机定子绕组接成星形,每相绕组承受的电压为电源的相电压(220V),减小了起动电流对电网的影响。而在其起动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压(380V),电动机进入正常运行。凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可采用这种线路。 2.典型线路介绍 定子绕组接成Y—△降压起动的自动控制线路如图所示。 图Y—△降压起动控制线路 工作原理: 按下起动按钮SB2,接触器KM1线圈得电,电动机M接入电源。同时,时间继电器KT及接触器KM2线圈得电。 接触器KM2线圈得电,其常开主触点闭合,电动机M定子绕组在星形连接下运行。KM2的常闭辅助触点断开,保证了接触器KM3不得电。 时间继电器KT的常开触点延时闭合;常闭触点延时继开,切断KM2线圈电源,其主触点断开而常闭辅助触点闭合。 接触器KM3线圈得电,其主触点闭合,使电动机M由星形起动切换为三角形运行。 停车

按SB1 辅助电路断电各接触器释放` 电动机断电停车 线路在KM2与KM3之间设有辅助触点联锁,防止它们同时动作造成短路;此外,线路转入三角接运行后,KM3的常闭触点分断,切除时间继电器KT、接触器KM2,避免KT、KM2线圈长时间运行而空耗电能,并延长其寿命。 三相鼠笼式异步电动机采用Y—△降压起动的优点在于:定子绕组星形接法时,起动电压为直接采用三角形接法时的1/3,起动电流为三角形接法时的1/3,因而起动电流特性好,线路较简单,投资少。其缺点是起动转矩也相应下降为三角形接法的1/3,转矩特性差。所以该线路适用于轻载或空载起动的场合。另外应注意,Y—△联接时要注意其旋转方向的一致性。

相关文档