文档库 最新最全的文档下载
当前位置:文档库 › 大学物理实验-金属线膨胀系数的测量

大学物理实验-金属线膨胀系数的测量

大学物理实验-金属线膨胀系数的测量
大学物理实验-金属线膨胀系数的测量

(1314实验室)

金属线膨胀系数的测量

绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的损毁,仪表的失灵,以及加工焊接中的缺陷和失败等等。

一.实验目的

学习测量金属线膨胀系数的一种方法。

二.实验仪器

金属线膨胀系数测量实验装置、FT-RZT-I 数字智能化热学综合实验平台、

游标卡尺、千分表、待测金属杆

金属线膨胀系数测量的实验装置如图1所示

内有加热引线和温度传感器引线

图1

FT-RZT-I 数字智能化热学综合实验平台面板如图2所示

图2

三.实验原理

材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。

固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L的物体,受热后其伸长量?L与其温度的增加量?T近似成正比,与原长L亦成正比,即

?L = T L ?α (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔凝石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。

几种材料的线胀系数

实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。

为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出1T 时杆长L (一般,杆在1T 时的长度L 可以近似等于杆在常温时的长度)、受热后温度达2T 时的伸长量?L 和受热前后的温度1T 及2T ,则该材料在(1T ,2T )温区的线胀系数为:

α =

)

(12T T L L

-? (2)

其物理意义是固体材料在(1T ,2T )温区内,温度每升高一度时材料的相对伸长量,其单位为1)(-?C 。 测线胀系数的主要问题是如何测伸长量?L 。而?L 是很微小的,如当L ≈250mm,温度变化12T T -≈100℃,金属的a 数量级为10

5

-1)(-?C 时,可估算出?L ≈0.25mm 。对于这么微小的伸长量,用普通量具

如钢尺或游标卡尺是测不准的。可采用千分表(分度值为0.001mm )、读数显微镜、光杠杆放大法、光学干涉法。本实验中采用千分表测微小的线胀量。

千分表是一种通过齿轮的多极增速作用,把一微小的位移,转换为读数圆盘上指针的读数变化的微小长度测量工具,它的传动原理如图3所示,结构如图4所示,

千分表在使用前,都需要进行调零,调零方法是:在测头无伸缩时,松开“调零固定旋钮”,旋转表壳,使主表盘的零刻度对准主指针,然后固定“调零固定旋钮”。调零好后,毫米指针与主指针都应该对准相应的0刻度。

千分表的读数方法:本实验中使用的千分表,其测量范围是0-1mm 。当测杆伸缩0.1mm 时,主指针转动一周,且毫米指针转动一小格,而表盘被分成了100个小格,所以主指针可以精确到0.1mm 的1/100,即0.001mm ,可以估读到0.0001mm 。即:

千分表读数=毫米表盘读数+

?1000

1

主表盘读数 (单位:mm ) (毫米表盘读数不需要估读,主表盘读数需要估读) 例如:图5中千分表读数为:0.2+?1000

1

59.8=0.2598 mm

图4 图5

四、实验步骤

1、如图1所示,卸下三个下盘支撑螺钉,安装好实验装置,连接好电缆线。将铜杆插人加热盘的恒温腔,使其完全在恒温腔内部,将“可调顶紧螺旋”的尖端靠拢铜杆一端,千分表(已调零好)测头靠拢铜杆的另一端,锁紧“千分表固定螺钉”,旋动“可调顶紧螺旋”,直到千分表的指针微有旋转(约0.2—0.3mm )。打开电源开关,“测量选择”开关旋至“设定温度”档,调节“设定温度粗选”和“设定温度细选”钮,选择设定加热盘为所需的温度(如40.0℃)值。

2、将“测量选择”开关拨向“上盘温度”档,打开加热开关,观察加热盘温度的变化,直至温度稳定,此时加热盘可能达不到设定温度,可适当调节“设定温度细选”使其温度达到所需的温度(如40.0℃),这时给加热盘设定的温度要高于所需的温度(如40.0℃),把此时温度计为1T ,读出千分表数值L 1。

3、重复步骤2,将设定温度依次递增5C ,且递增9次(如依次为45℃、50℃、55.0℃、60.0℃、65.0

℃、

调零固定旋钮

表壳 测头

主表盘

主指针

毫米指针 毫米表盘

测杆 轴套

挡帽

P :带齿条的测杆; 1Z ~5Z :传动齿轮;

R :读数指针 图 3

70.0℃、75.0℃、80.0℃、85℃),随着温度的上升,千分表开始旋转,当温度达到某一设定值后,千分表停止动作,依次记下此时的温度值(2T 、3T 、4T 、5T 、6T 、7T 、8T 、9T 、10T )及千分表相应的读数(L 2、L 3、L 4、L 5、L 6、L 7、L 8、L 9、L 10)。

4、用逐差法求出温度每升高5℃时铜杆的平均伸长量,由(2)式即可求出铜杆在这个温区(如40.0℃,85.0℃)内的线胀系数。 五、数据记录及处理

1

5

5

1

5()

5

i i i i i L

L L L L +=+-?=-=

=∑ (mm )

5

5

1

5()()5

i i i i i L L L L L +=+??

?--?

?

?-=

=∑ (mm )

3、计算得到铜杆的线胀系数

铜杆在(=1T C ?,=10T C ?)温区的线胀系数为

α =

5()2525i i L L L L L

+?-?±

1

)(-?C 六、注意事项

1、千分表安装须适当固定 (以表头无转动为准)且与被测物体有良好的接触(读数在0.2—0.3mm 处较

为适宜);

2、因伸长量极小,故仪器不应有振动;

3、千分表测头需保持与实验样品在同一直线上。

七、思考题

1、试分析哪一个量是影响实验结果精度的主要因素?

2、试举出几个在日常生活和工程技术中应用线胀系数的实例。

3、若实验中加热时间过长,仪器支架受热膨胀,对实验结果有何影响?

物理金属线膨胀系数测量实验报告

实验 (七) 项目名称:金属线膨胀系数测量实验 一、实验目的 1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 二、实验原理 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L 的物体,受热后其伸长量L ?与其温度的增加量t ?近似成正比,与原长L 亦成正比,即: t L L ???α=? (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L ?和受热前后的温度升高量t ?(12t t t -=?),则该材料在) , (21t t 温度区域的线胀系数为:) t L (L ???= α(2) 其物理意义是固体材料在)t , t (21温度区域内,温度每升高一度时材料的相对伸长量,其单位为1 )C (-。 测量线胀系数的主要问题是如何测伸长量L ?。我们先粗估算一下L ?的大小,若 mm 250L =,温度变化C 100t t 0 12≈-,金属的α数量级为105)C (10--?,则估算出 mm 25.0t L L ≈???α=?。对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。可采用千分表(分度值为mm 001.0)、读数显微镜、光杠杆放大法、光学干涉法等方法。本实验用千分表(分度值为mm 001.0)测微小的线胀量。 三、实验主要仪器设备和材料

金属线胀系数的测定

《金属线胀系数的测定》实验报告 【实验目的】 1.学会用千分表法测量金属杆长度的微小变化。 2.学会用电热法测量金属杆的线胀系数。 3.学会用逐差法处理数据。 【实验原理】 一般固体的体积或长度,随温度的升高而膨胀,这就是固体的热膨胀绝大多数固体材料,其长度是随温度的升高而增加的,这一现象称为线膨胀。设物体的温度改变Δt 时其长度改变量是ΔL ,如果Δt 足够小,则Δt 与ΔL 成正比,并且也与物体原长成正比,因此有 ΔL=αL Δt ① 上式中比例系数α称为固体的线膨胀系数,其物理意义是温度每升高1℃时物体的伸长量与它在0℃时长度之比。设在我的为0℃时,固体的长度为L 0,当温度升高为t 时,其长度为L t ,则有(L t -L 0)/L 0=αt 即 α= ΔtL ΔL ② 【仪器介绍】 一、加热箱的结构和使用要求 1.结构如图5-1所示。

2.使用要求 (1)被测物体约为8mm×400mm; (2)整体要求平稳,因伸长量极小,故仪器不应有震动; (3)千分表安装需适当固定(以表头无转动为准)且与被测物体有良好的接触(为了保证接触良好,一般可使千分表初读数为 0.2mm左右(即使千分表副指针读数在0.2mm数值附近),把该数值作为初读数对待,不必调零。)(4)被测物体与千分表探头需保持在同一直线。 二、恒温控制仪使用说明 面板操作简图如图5-2所示 1.当电源接通时面板上数字显示为FdHc,然后即刻自动转向Axx.x表示当时传感器温度,即t1.再自动转为b==.=表示等待设定温度. 2.按升温键,数字即由零逐渐增大至所需的设定温度,最高可选80℃。 3.如果数字显示值高于所需要的温度,可按降温键,直至所需要的设定值。 4.当数字设定值达到所需的值时,即可按确定键,开始对样品加热,同时指示灯会闪亮,发光频率与加热速率成正比。 5.确定键的另一用途可做选择键,可以选择观察当时的温度值和先前设定值。 6.如果需要改变设定值可按复位键,重新设置。 【实验步骤】 1.接通电加热器与温控仪输入输出接口和温度传感器的航空插头。 (本实验使用的金属杆的长度为400mm),使其一端 2.测出金属杆的长度L 1 与隔热顶尖紧密接触。 3.调节千分表带绝热头的测量杆,使其刚好与金属杆的自由端接触,记下此 。 时千分表的读数n 1 4.接通恒温控制仪的电源,设定需要加热的值为30℃,40℃,50℃,60℃。

常用金属热膨胀系数部分汇总11

常用金属或合金的线胀系数 金属或合金温度T/℃线胀系数α /10E-6/℃ 金属或合金温度T/℃ 线胀系数α /10E-6/℃ 铝及铝合金 碳钢20-10010.6-12.2 106020-10020-30020-20011.3-13.0 110020-10020-40020-30012.1-13.5 201120-10020-60020-40012.9-13.9 201420-1002320-60013.5-14.3 202420-10022.820-70014.7-15.0 221820-10022.3 铬钢20-10011.2 300320-10023.220-20011.8 403220-10019.420-30012.4 500520-10023.820-40013 505020-10023.820-60013.6 505220-10023.8 铸铁20-1008.7-11.1 505620-10024.120-2008.5-11.6 508320-10023.420-30010.1-12.2 508620-10023.920-40011.5-12.7 515420-10023.920-60012.9-13.2 545620-10023.920-100017.6 606120-10023.4 1020-10011.53 606320-10023.420-20012.61 610120-1002320-30013 707520-10023.220-40013铜及铜合金20-50014.18纯铜2016.520-60014.6 磷脱氧铜20-30017.7 1520-10011.75 无氧铜20-30017.720-20012.41普通黄铜20-30020.320-30013.45低铅黄铜20-30020.220-40013.6中铅黄铜20-30020.320-50013.85高铅黄铜20-30020.320-60013.9 超高铅黄铜20-30020.5 2020-10011.16 铝青铜20-30016.420-20012.12铍青铜20-30017.8

线膨胀系数实验报告参考

线胀系数测量实验报告参考稿 【实验目的】 1.学习并掌握测量金属线膨胀系数的一种方法。 2.学会用千分表测量长度的微小增量。 【实验仪器】 FB712型金属线膨胀系数测量仪一台,千分表(1-0-0.001mm )一个,待测铜管一根。 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 如图所示,待测铜管的线胀系数为: () t L L ???= α 式中L 为温度为1t 摄氏度时的管长,L ?为管受热后温度从1t 升高到2t 时的伸长量,t ?为管受热前后的温度升高量 (12t t t -=?) 。 该式所定义的线胀系数的物理意义是固体材料在()21t , t 温度区域内,温度每升高一度时材料的相对伸长量,其单位为()1 C -?。 【实验内容和步骤】 1.把样品铜管安装在测试架上。连接好加热皮管,打开电源开关,以便从仪器面板水位显示器上观察水位情况。水箱容积大约为ml 750。 3.加水步骤:先打开机箱顶部的加水口和后面的溢水管口塑料盖,用漏斗从加水口往系统内加水,管路中的气体将从溢水管口跑出,直到系统的水位计仅有上方一个红灯亮,其余都转变为绿灯时,可以先关闭溢水管口塑料盖。接着可以按下强制冷却按钮,让循环水泵试运行,由于系统内可能存在大量气泡,造成水位计显示虚假水位,只有利用循环水泵试运行过程,把系统内气体排出,这时候水位下降,仪器自动保护停机。 4.设置好温度控制器加热温度:金属管加热温度设定值可根据金属管所需要的实际温度值设置。 5.将铜管(或铝管)对应的测温传感器信号输出插座与测试仪的介质温度传感器插座相连接。将千分尺装在被测介质铜管(或铝管)的自由伸缩端固定位置上,使千分表测试端与被测介质接触,为了保证接触良好,一般可使千分表初读数为mm 2.0左右,只要把该数值作为初读数对待,不必调零。(如认为有必要,可以通过转动表面,把千分尺主指针读数基本调零,而副指针无调零装置。) 6.正常测量时,按下加热按钮(高速或低速均可,但低速档由于功率小,一般最多只能加热到C 50?左右),观察被测金属管温度的变化,直至金属管温度等于所需温度值(例如C 35?)。.

金属线胀系数的测量1

实验3-16 金属线胀系数的测定 兰州大学大学物理实验教学示范中心 王心华 一、实验目的 1、了解GXZ-3型金属线膨胀系数测量仪的工作原理; 2、掌握测量微小位移的方法; 3、学会测量金属的线膨胀系数。 二、实验仪器 GXZ-3线膨胀系数测量仪、样品、千分表(配固定支架)、米尺 三、实验原理 当温度升高时,一般固体中原子的热运动随固体温度的升高而加剧,把这种由于温度升高而引起固体中原子间平均距离增大,进而引起固体体积增大的现象称为固体的热膨胀。固体的热膨胀又可分为体膨胀和线膨胀,本实验主要研究线膨胀。 实验表明,在一定的温度范围内,固体的长度一般随温度的升高而增加,其长度和温度之间的关系为 )1(20 +++=t t L L βα (1) 式中,式中L 0为温度t=0℃时的长度,α、β、…是和被测物质有关的常数,都是很小的数值。而β及以下各系数和α相比甚小,所以在常温下可以忽略,则(1)式可写成 )1(0t L L α+= (2) 此处α就是通常称为的固体的线膨胀系数(简称线胀系数),单位为℃-1。不同材料具有不同 的线胀系数。 表1 几种材料的线胀系数 实验发现,同一材料在不同的温度区域,其线胀系数未必相同。在某些特殊的情况下,某些合金会出现线胀系数的突变。当然,在一般情况下,在温度变化不大的范围内,线胀系数仍可认为是一常量。 对于条状或杆状的固体材料,设温度为t 1℃时,其长度为L 1;当温度升高到t 2时,其长度增加ΔL 。则有 )1(101t L L α+= (3) )1(201t L L L α+=?+ (4) 由(3)、(4)两式相比消去L 0得 ()1121t L t t L L ?--?=α (5) 由于ΔL 与L 1相比甚小,L 1(t 2 - t 1)>> ΔL t 1,所以上式可以近似为

金属线胀系数的测定实验报告

实验5 金属线胀系数的测定 测量固体的线胀系数,实验上归结为测量在某一问题范围内固体的相对伸长量。此相对伸长量的测量与杨氏弹性模量的测定一样,有光杠杆、测微螺旋和千分表等方法。而加热固体办法,也有通入蒸气法和电热法。一般认为,用电热丝同电加热,用千分表测量相对伸长量,是比较经济又准确可靠的方法。 一、实验目的 1.学会用千分表法测量金属杆长度的微小变化。 2.测量金属杆的线膨胀系数。 二、实验原理 一般固体的体积或长度,随温度的升高而膨胀,这就是固体的热膨胀。设物体的温度改变t ?时,其长度改变量为L ?,如果t ?足够小,则t ?与L ?成正比,并且也与物体原长L 成正比,因此有 t L L ?=?α (1) 式(1)中比例系数α称为固体的线膨胀系数,其物理意义是温度每升高1℃时物体的伸长量与它在0℃时长度之比。设在温度为0℃时,固体的长度为0L ,当温度升高为t ℃时,其长度为t L ,则有 t L L L t α=-00/)( 即 )1(0t L L t α+= (2) 如果金属杆在温度为1t ,2t 时,其长度分别为1L ,2L ,则可写出 )1(101t L L α+= (3) )1(202t L L α+= (4) 将式(3)代入式(4),又因1L 与2L 非常接近,所以,1/12=L L ,于是可得到如下

结果: )(12112t t L L L --=α (5) 由式(5),测得1L ,2L ,1t 和2t ,就可求得α值。 三、仪器介绍 (一)加热箱的结构和使用要求 1.结构如图5-1。 2.使用要求 (1)被测物体控制于mm 4008?φ尺寸; (2)整体要求平稳,因伸长量极小,故仪器不应有振动; (3)千分表安装须适当固定(以表头无转动为准)且与被测物体有良好的接触(读数在0.2~0.3mm 处较为适宜,然后再转动表壳校零); (4)被测物体与千分表探头需保持在同一直线。 (二)恒温控制仪使用说明

金属线膨胀系数测定

金属线膨胀系数的测量 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的毁损,仪表的失灵,以及加工焊接中的缺陷和失败等等。 材料的线膨胀是材料受热膨胀时,在一维方向上的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数作测定。 一、实验教学目的 1.掌握一种测线膨胀系数的方法; 2.应用逐差法处理数据。 二、实验教学重难点 1.千分表的读数 2.逐差法处理数据 三、实验仪器与用具 数字智能化热学综合实验平台、千分表、游标卡尺。 四、实验原理 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L 的 物体,受热后其伸长量L ?与其温度的增加量t ?近似成正比,与原长L 亦成正比,即 L L t α?=? 式中的比例系数α 。大量实验表明,不同材几种材料的线胀系数 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。因此测定线胀系数也是了解材料持性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出1t 时杆长L 、

受热后温度达2t 时的伸长量L ?和受热前后的温度1t 及2t ,则该材料在(1t ,2t )温区的线胀系数为: 21() L L t t α?= - (2) 其物理意义是固体材料在(t 1,t 2)温区内,温度每升高一度时材料的相对伸长量,其单位为(℃)-1 。 测线胀系数的主要问题是如何测伸长量ΔL 。先粗估算出ΔL 的大小,若L ≈250mm ,温度变化t 2-t 1≈100℃,金属的a 数量级为10-5 (℃)-1 ,则可估算出ΔL ≈0.25mm 。对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的,可采用千分表(分度值为0.001mm )、读数显微镜、光杠杆放大法、光学干涉法。本实验中采用千分表测微小的线胀量。 五、实验步骤

金属线胀系数的测量

实验十九 金属线胀系数的测量 【金属线胀系数】 金属杆的长度一般是温度的函数,在常温下,固体的长度L 与温度t 有如下关系: ( )01L L t α=+ (19-1) 式中0L 为固体在t =0℃时的长度;α称为线胀系数。其数值与材料性质有关,单位为℃-1 。要测量线胀系数α,需测量不同温度下金属杆的长度。 【实验仪器】 线胀系数测定仪(附光杠杆),望远镜直横尺,钢卷尺,蒸汽发生器,气压计(共用),温度计(50~100℃,准确到0.1℃),游标卡尺。 【实验方案】 设物体在t 1℃时的长度为L ,温度升到t 2℃时增加了ΔL 。根据(19-1)式可以写出 ( )01L L t α=+ (19-2) ()021L L L t α+?=+ (19-3) 从(19-2)、(19-3)式中消去L 0后,再经简单运算得 由于L L ? ,故(19-4)可以近似写成 显然,固体线胀系数的物理意义是当温度变化1℃时,固体长度的相对变化值。在(5)式中,L 、t 1、t 2都比较容易测量,但L ?很小,一般长度仪器不易测准,本实验中用光杠杆和望远镜标尺组来对其进行测量。关于光杠杆和望远镜标尺组测量微小长度变化原理可 以根据如图1所示进行推导,详细原理见实验五(杨氏模量的测定)。 【实验注意事项】 1、实验系统调好后,一旦开始测量,在实验过程中绝对不能对系统的任一部分进行任何调整。否则,所有数据将重新再测.

2、注意保护平面镜和望远镜,不能用手触摸镜面. 【实验目的】 掌握利用光杠杆测定线胀系数的方法。 【实验内容与步骤】 1、在室温下,用米尺测量待测金属棒的长度L 三次,取平均值。然后将其插入仪器的大圆柱形筒中。注意,棒的下端点要和基座紧密接触。 2、插入温度计,小心轻放,以免损坏。 3、将光杠杆放置到仪器平台上,其后脚尖踏到金属棒顶端,前两脚尖踏入凹槽内。平面镜要调到铅直方向。望远镜和标尺组要置于光杠杆前约1米距离处,标尺调到垂直方向。调节望远镜的目镜,使标尺的像最清晰并且与十字横线间无视差。记下标尺的读数d 1。 4、记下初温t 1后,给仪器通电加热,间隔10℃记录一次温度i t 以及望远镜中标尺的相应读数i d ()1,2,,6i = 。 5、停止加热。测出距离D 。取下光杠杆放在白纸上轻轻压出三个足尖痕迹,用铅笔通过前两足迹联成一直线,再由后足迹引到此直线的垂线,用标尺测出垂线的距离h 。 6、用逐差法或线性拟合法计算出金属杆温度每升高一摄氏度时金属杆的伸长量L ?,代入(19-5)计算金属杆的线胀系数,并计算出不确定度。 【实验数据记录】 1、数据测量记录: 单位:mm 光杆干平面镜到尺子的距离D= cm 光杆干前后足尖的垂直距离h = mm 2、金属杆伸长记录 【思考题】 1. 本实验所用仪器和用具有哪些?如何将仪器安装好?操作时应注意哪些问题? 2. 调节光杠杆的程序是什么?在调节中要特别注意哪些问题? 3. 分析本实验中各物理量的测量结果,哪一个对实验误差影响较大?

金属的热膨胀系数

铜17、7X10^-6/.C 无氧铜18、6X10^-8/。C ?铝23X10^-6/。C?铁12X10^—6/.C?普通碳钢、马氏体不锈钢得热膨胀系数为1、01, 奥氏体不锈钢为1、6,单位计不住了,但有个简单得说法告诉:?普通碳钢1米1度1丝,即1米得钢温度升高1℃放大0。01mm,而?不锈钢为0.016mm。? 钢筋与混凝土具有相近得温度线膨胀系数(钢筋得温度线膨胀系数为1、2×10^(-5)/℃,t混凝土得温度线膨胀系数为1、0×10^(—5)~1、5×10^(-5)/℃), 钢质材得膨胀系数为:1、2*10^-5/℃ 长度方向增加:100mm*1、2*10^—5*(250-20)=0。276mm?宽度方向增加:200mm*1、2*10^-5*(250-20)=0。552mm △Ⅰ=a(to-t1)? a不锈钢线膨胀系数 材料温度范围?20 20-100 20-200 20-300 20-400 20-600 铝(合金) 22、0-24、0 23、4—24、8 24、0-25、9 碳钢 10、6-12、2 11、3—13 12、1-13、512、9-13、9 13、5-14、3 14、7-15 ?线膨胀系数不就是一个固定得数值,会随着温度得升高而提高,所以在应用时只作为参考,还要根据材料成份,就是否经过锻打\热处理等情况做综合考虑、 材料线膨胀系数(x0、000001/°C) 一般铸铁9、2-11、8 一般碳钢10~13 铬钢10~13 镍铬钢13-15 铁12-12、5 铜18、5 青铜17、5 黄铜18、5 铝合金23、8 金 14、2 热膨胀系数 thermal expansion coefficient 物体由于改变而有胀缩现象。其变化能力以等压(p一定)下,单位温度变化所导致得变化,即热膨胀系数表示 热α=ΔV/(V*ΔT)、 式中ΔV为所给温度变化ΔT下物体体积得改变,V为物体体积

金属线膨胀系数测量实验报告

梧州学院学生实验报告 成绩: 指导教师: 专业: 班别: 实验时间: 实验人: 学号: 同组实验人: 实验名称:金属线膨胀系数测量 实验目的:1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 实验仪器: 型号规格 单位 数量 备注 FB7 1 2型金属线膨 胀系数测定仪 台 1 被测件测试架 台 1 千分表 只 1 传感器连接线 根 2 L=80c m 红黑各一根 小漏斗 只 1 电源线 根 1 实验讲义(说明书)] 本 1 注意事项:1、做实验前必须精读FB712型金属线膨胀系数测定仪的使用说明书,正规操作 2 、注意千分表的使 用规范。 FB712型金属线膨胀系数测量仪实验装置示意图 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。 特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为 L 的物体, 受热后其伸长量厶L 与其温度的增加量△ t 近似成正比,与原长L 亦成正比,即: △ L=a ? L ?△ t (1) 式中的比例系数a 称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数 不同,塑料的 47 -J?V 叱-■: <■:"負号 ■'a ^_A s'.Vi Pf jW 丹 >¥ -i~ ■ "I irtf I - *■ 4 !■":■_! 牡二盂:J 豪迂二辽山输咤或典: &::?,、性%世*巴电冷忙即卜亠:.豆凳;其 応宓云I 恣心加[文 图&匹丁型金属线勝胀無数测定仪实物黑片 强制风冷 低速如撰 高速&]壇 盥控设齧 放水阀 H 水fr 匕 千分表 铝骨 FT1碱度传感黯 循环水管 削* 口 金廉管温度扬示 甥管 爲虔倩号践 S 度 指

实验金属线胀系数的测定

实验十固体线胀系数的测定 一般情况下,物体当温度升高时,由于原子或分子的热运动加剧,粒子间的平均距 离发生变化,温度越高,其平均距离也越大,在宏观上体现出体积发生热膨胀。热膨胀 是物质的基本热学性质之一。物质的热膨胀不仅与物质的种类有关,而且对于同种物质 温度不同时其膨胀系数也不相同。因此,在生产、科研和生活中必须考虑物质“热胀冷 缩”的特性。测定其膨胀系数有着重要的实际意义。 尤其是对于固体而言,虽然固体的热膨胀非常小,但是物体发生很小形变时却产生 很大的应力。通常测量固体线胀系数是在某一温度范围内测量固体的微小深长量,测量 微小深长量的方法有光杠杆法、螺旋测微法等,在这里介绍用光杠杆方法测量金属的线 胀系数。 【实验目的】 1 ?学习固体热膨胀的原理和实验测量方法; 2 ?测量金属在一定温度范围内平均线膨胀系数; 3?掌握用光杠杆测量微小长度变化的原理和方法。 【实验仪器】 【实验原理】 L o t t 由(4-14-2 )式可见,〉的物理意义就是温度每升高 时的长 度之比(则物体长度的相对变化) 。严格地讲, 关的量,但是:随温度的变化一般很小。 当物体的温度变 化不太大时, 所确定的[视作在此温度范围内物体的平均线膨胀系数。 如图4-14-1所示,实际测量得到的是物体在温度 t 1时的长度L 1和温度升到t 2时的长 度L 2。以及在t 1至t 2间的伸长量 L ,设〉是常数,则有 L 1 = L o (1 +%1 ) L 2 二 L o (1 : t2 ) 厂1(1「I),简化为 1 "选 固体线胀系数测定仪、待测金属棒、 望远镜。 温度计、秒表、光杠杆、米尺、游标尺、尺读 设物体在温度t =0°C 时的长度为 L t = L o (1 式中:-为该物体的线膨胀系数。设物体的伸长量为 丄 昱 L t - L 。仁 a = ---------- L o ,则该物体在t °C 时的长度为 5) (4-14-1 ) 二L t -L o ,将式(4-14-1)改写成 (4-14-2 ) I C 时物体的伸长量:L 与它在0C :-不是一个常数,而是与温度 t 有 我们把式(4-14-2) (4-14-3 ) (4-14-4 ) 将(4-14-3 )式代入(4-15-4)式,得 L 2

16344118831金属线胀系数的测定数据处理参考

金属线胀系数的测定实验指导书 电热法测定金属线胀系数 本实验要测出铜管在受热时产生的长度变化. 光杠杆放大测量微小长度变化量 本实验用光杠杆和镜尺组测量N ,那么ΔN 与ΔL 的关系如下图所示: 从图1中我们可以看到,当温度变化Δt 时长度的变化为ΔL ,此时刻度尺的读数就变化了ΔN 。 由三角函数关系可得: θθh htg L ≈=?; θθD Dtg N 22≈=?; 可得:D N h L 2?= ?, 所以:α=t LD h ??N 2。 最小二乘法处理数据 本实验不直接计算Δt 和ΔN ,而是将实验中测到的N i 和t i 直接代入最小二乘法公式中计算b 及其不确定度,参看课本27页公式(9)、(10)与(12),令 N y t x ==,,之后再求出线胀系数α和它的不确定度。注意此时LD hb 2=α。

数据处理参考 3.1实验数据记录表格 表1 测金属线胀系数相关数据表 注意表格应为三线表 t(℃) N(cm) D h(cm) L (cm ) 49.50 3.2数据处理 令t x =, N y = 则:==t x ,==N y , ==22t x ,==2 2t x , ==22N y ,==2 2N y , ==tN xy ,=?=?N t y x (1) 求相关系数r =---= ))((2222y y x x y x xy r 若:10 ≤≤r r (0r 的值参看课本27页表3-4),则可知x 和y 具有线性关系 (2) 求b b S =--=22x x y x xy b =y S 课本27页 公式(10) ==b b S U 课本27页 公式(12) (2) 求h ,L 的不确定度 ==?= 3002.03m h u

固体线热膨胀系数的测定实验报告

固体线热膨胀系数的测定 【实验目的】 材料的线膨胀指的是材料受热后一维长度的伸长。当温度升高时,一般固体由于其原子或分子的热运动加剧,粒子间的平均距离发生变化,温度越高,其平均距离越大,这就是固体的热膨胀。热膨胀是物质的基本热学性质之一。物体的热膨胀不仅与物质种类有关。对金属晶体而言,由于它们是由许多晶粒构成的,这些晶粒在空间方位上排列是无规则的,整体表现出各相同性。它们的线膨胀在各个方向均相同。 虽然固体的热膨胀非常微小,但使物体发生很小形变时就需要很大的应力。在建筑工程、机械装配、电子工业等部门中都需要考虑固体材料的热膨胀因素。因此固体线胀系数是选择材料的一项重要指标,测定固体的线膨胀系数具有重要的实际意义。 1. 掌握测量固体线热膨胀系数的基本原理。测量铁、铜、铝棒的线热膨胀系数。 2. 学会使用千分表,掌握温度控制仪的操作。 3. 学习图解图示法处理实验数据。 【实验原理】 设为物体在温度时的长度,则该物体在时的长度可由下式表示: (1) 其中,为该物体的线膨胀系数,在温度变化不大时,可视为常数。将式(23-1)改写为: (2) 可见,的物理意义为:温度每升高时物体的伸长量与它在时的长度之比,单位为:或。 实际测量中,一般只能测得材料在温度及时的长度及,设是常量,则有: (3) 由式(6)即可求得物体在温度之间的平均线膨胀系数。其 中,微小长度变化量可直接用千分表测量。本实验对金属铁、铜、 铝进行测量求出不同金属的线膨胀系数。 【实验仪器】 FD-LEA固体线热膨胀系数测定仪(一套)、(电加热箱、千分 表、温控仪)金属棒、电源线、加热线、传感器及电缆 仪器介绍 1.千分表是一种测定微小长度变化量的仪表,其外形结构如图

光杠杆法测量金属的线胀系数

评分: 大学物理实验设计性实验 实验报告 实验题目:光杠杆法测量金属的线胀系数 班级:船舶与海洋工程(2)班 姓名:葛志杰肖利斌陈彦宇 学号:10960215 10970224 指导教师:殷鹏飞 实验日期:2010年11月29 日

光杠杆法测量金属的线胀系数 葛志杰肖利斌陈彦宇 (重庆交通大学航海学院船舶与海洋工程(2)班400074) 摘要在不增加任何实验装置和改变测温系统的条件下,采用降温测量的方法测定了金属线胀系数。比较了升温测量和降温测量的实验结果,并对测量进行了误差分析。结果显示降温测量能有效地解决了升温测量结果偏差太大的问题。 关键词线胀系数;光杠杆;最小二乘法 Optical lever measurement Of linear expansion coefficient of metal Abstract In the experimental setup and without any additional changes in the conditions of temperature measurement system, the use of cooling the metal was determined by measuring the linear expansion coefficient. Temperature measurement and comparison of experimental results of temperature measurement, and measurement error analysis carried out. The results show temperature measurement can effectively solve the temperature deviation of the test result that much of a problem. Keywords coefficient of linear expansion; optical lever; least squares 1.引言: 任何物体都具有“热胀冷缩”的特性,这个特性在工程设计、精密仪表设计、材料的焊接和加工中都必须加以考虑。在一维情况下,固体受热后长度的增加称为线膨胀,我们用线膨胀来表示固体的这种差别。测定固体的线胀系数,实际上归结为测量在某一温度范围内的固体的微小伸长量。测量方法有光杠杆法、螺旋测微法、干涉法等,本实验用光杠杆法,测量精确度极高。 2.实验目的: 1.学会用光杠杆法测量固体长度的微小变化。 2.测量金属杆的线膨胀系数。

金属线胀系数的测定

一、实验目的: 1.学会用千分表法测量金属杆长度的微小变化。 2.测量金属杆的线胀系数。 二、实验原理: 一般固体的体积或长度,随温度的升高而膨胀,这就是固体的热膨胀。绝大多数固体材料,其长度是随温度的升高而增加的,这一现象称为线膨胀。设物体的温度改变t ?时其长度改变量为L ?,如果t ?足够小,则t ?与L ?成正比,并且也与物体原长L 成正比,因此有 t ?=?L L α 上式中比例系数α称为固体的线胀系数,其物理意义是温度每升高C 1o 时物体的伸长量与它在C o 0时长度之比。设在温度为C o 0时,固体的长度为0L ,当温度升高为t 时,其长度为t L ,则有 ()t /-00t α=L L L 即 ()t 10t α+=L L 如果金属杆在温度为1t ,2t 时,其长度分别为1L ,2L 则可得出 ()101t 1α+=L L ()202t 1α+=L L 将式()101t 1α+=L L 代入式()202t 1α+=L L ,又因1L 与2L 非常接近,所以 1/21≈L L ,于是可得到如下结果: () 1211 2t t --= L L L α 由上式,测得和就可求得值。 三、实验仪器: 加热箱 恒温控制仪 四、实验内容和步骤:

1.接通电加热器与温控仪输入输出接口和温度传感器的航空插头。 2.测出金属杆的长度1L (本实验使用的金属杆的长度为4000mm ),使其一端与隔热顶尖紧密接触。 3.调节千分表带绝热的测量杆,使其刚好与金属杆的自由端接触,记下此时千分表的读数1n 。 4.接通恒温控制仪的电源,设定需要加热的值,一般可分别增加温度为C 020、C 030、C 040、C 050,按确定键开始加热,注视恒温控制仪,每隔C 05读一次读数,同时读出千分表的示数,将相应的读数n 32n 32n n n t t t ,,,,,,, 记在表格里。 5.显然,金属杆各时刻上升的温度是,,,,11312t t t t t t n --- 相应的伸长量是,,,,n 11312n n n n n n --- 则前面式可表示为 ()111n n t t L n n -=-α 即 ()t L n t t L n n n n ??= --= 1111α 根据式来计算出α。因为长度的测量是连续进行的,故用逐差法对n ?进行处理。 6.与理论参考值比较,考虑误差情况。 注意事项 1.在测量过程中整个系统应保持稳定,不能碰撞。 2.读取数据时特别是要迅速。 五、实验数据与处理:

实验十三 金属线胀系数的测定

实验十三 金属线胀系数的测定 实验目的 1.研究固体受热膨胀后伸长量与其温度增加量的关系; 2.学习用光杠杆测微小位移量的原理; 3.掌握光杠杆和望远镜的调节方法; 实验器材 线胀系数测定仪(附光杠杆),尺读望远镜,钢卷尺,温度计(0~100℃,准确到0.1℃),游标卡尺,待测铜棒。 实验原理 1.金属线胀系数的测定及其测量方法 固体的长度一般是温度的函数,在常温下,固体的长度L 与温度t 有如下关系: L =L 0(1+αt+βt 2+…) (13-1) 式中L 0为固体在t =0℃时的长度,α、β…是和被测材料有关的常数,都是很小的数值。而β以下各系数和α相比甚小,所以在常温下可以忽略则(13-1)可写成 L =L 0(1+αt ) (13-2) 此处α就是通常所称的线胀系数,单位为℃-1。 设物体在t 1℃时的长度为L ,温度升到t 2℃时,其长度增加了ΔL 。根据(13-2)式可以写出 L =L 0(1+αt 1) (13-3) L +ΔL =L 0(1+αt 2) (13-4) 从(13-3)、(13-4)式中消去L 0后,再经简单运算得 112)(Lt t t L L ?--?= α (13-5) 由于ΔL<

实验10 金属线胀系数的测定(96-98)2555

- 96 - 固体线胀系数的测定 实验十 固体线胀系数的测定 一般情况下,物体当温度升高时,由于原子或分子的热运动加剧,粒子间的平均距 离发生变化,温度越高,其平均距离也越大,在宏观上体现出体积发生热膨胀。热膨胀 是物质的基本热学性质之一。物质的热膨胀不仅与物质的种类有关,而且对于同种物质 温度不同时其膨胀系数也不相同。因此,在生产、科研和生活中必须考虑物质“热胀冷 缩”的特性。测定其膨胀系数有着重要的实际意义。 尤其是对于固体而言,虽然固体的热膨胀非常小,但是物体发生很小形变时却产生 很大的应力。通常测量固体线胀系数是在某一温度范围内测量固体的微小深长量,测量 微小深长量的方法有光杠杆法、螺旋测微法等,在这里介绍用光杠杆方法测量金属的线 胀系数。 【实验目的】 1.学习固体热膨胀的原理和实验测量方法; 2.测量金属在一定温度范围内平均线膨胀系数; 3.掌握用光杠杆测量微小长度变化的原理和方法。 【实验仪器】 固体线胀系数测定仪、待测金属棒、温度计、秒表、光杠杆、米尺、游标尺、尺读 望远镜。 【实验原理】 设物体在温度o 0C t =时的长度为0L ,则该物体在o C t 时的长度为 )1(0t L L t α+= (4-14-1) 式中α为该物体的线膨胀系数。设物体的伸长量为0L L L t -=δ,将式(4-14-1)改写成 t L L t L L L t 000δα=-= (4-14-2) 由(4-14-2)式可见, α的物理意义就是温度每升高l ℃时物体的伸长量L δ与它在0℃时的长度之比(则物体长度的相对变化)。严格地讲,α不是一个常数,而是与温度t 有 关的量,但是α随温度的变化一般很小。当物体的温度变化不太大时,我们把式(4-14-2) 所确定的α视作在此温度范围内物体的平均线膨胀系数。 如图4-14-1所示,实际测量得到的是物体在温度1t 时的长度1L 和温度升到2t 时的长 度2L 。以及在1t 至2t 间的伸长量L δ,设α是常数,则有 )1(101t L L α+= (4-14-3) )1(202t L L α+= (4-14-4) 将(4-14-3)式代入(4-15-4)式,得)1(121 12t t L L αα++=,简化为

线胀系数测定实验报告

金属线胀系数的测量 一、实验目的 学习利用光杠杆法测量金属杆的线胀系数 二、实验仪器 控温式固体线胀系数测定仪(型号GXC-S ) 光杠杆 尺读望远镜 卷尺 游标卡尺 三、实验原理 1)当温度升高时,一般固体中原子的热运动随固体温度的升高而加剧,把这种由于温度升高而引起固体中原子间平均距离增大,进而引起固体体积增大的现象称为固体的热膨胀。固体的热膨胀又可分为体膨胀和线膨胀,本实验主要研究线膨胀。 设L t 表示温度t 时物体的长度,dL 表示温度变化dt 时物体长度的变化,定义 dt dL L t t 1=α…………………………………………(1) t α为物体在温度时的线胀系数,其物理意义是固体的温度每升高1oC 时的相对升长量。它不仅与物体的材料有关,还与温度有关。但是除了在物体熔点附近有很大的突变外,在其他温度范围内变化不大。因此,在远离固体熔点,而且温度变化范围不大时,可以引进一个平均线胀系数的概念,即 ) ()(112121t t L L L --=α ……………………………………….(2) 式中1L 和2L 分别为物体在温度1t 和2t 时的长度,α是一个很小的量。当温度变化较大时,精密的测量表明α和t 有关,经验公式为 =αa+b t +c t 2+...... .. (3) 式中a 、b 、c 、……是常量。一般固体材料的α值很小,所以12L L L -=?也很小,因此本实验成功的关键之一就是测准L ?的问题,我们采用光杠杆法测量L ?。 图1 在距光杠杆前约1—2米处放置望远镜R 及标尺N 。调节好望远镜后,可通过望远镜看到光杠杆的镜面内标尺的象。设望远镜中水平叉丝(或叉丝交点)对准标尺上的刻度为N 0,如图1,当金属杆受热膨胀而伸长△L 时,光杠杆后足随金属杆C 向上移动。这时光杠杆的两个前足固定,于是平面镜绕前两足的水平轴线而转动θ角(实线为光杠杆原来的位置,虚线为转动后的位置),如图1所示。由图中可知: H L tg ?=θ ………………………………(4) 式中H 为光杠杆后足到前两足连线的距离。 而这时望远镜中所看到的标尺象的刻度为N 1,可以证明<θ201=N O N 。 这就是利用光杠杆将θ角放大一倍。由图3—4可知: D N N tg 012-=θ …………………………(5) 由于L ?变化很小,因此θ及θ2亦很小,由(4)、(5)有:

教案 金属线胀系数

物理实验课教案 实验名称:金属线胀系数的测定 指导老师:林一仙 时间:2007/2008学年第一学期 1目的 1)学习用电热法测量金属线胀系数; 2)学习利用光杠杆法测量微小长度变化量; 3)掌握图解法处理数据的方法。 2仪器 控温式固体线胀系数测定仪(型号GXC-S ) 光杠杆 尺读望远镜 游标卡尺 3实验原理及方法 3.1原理概述 (a)、热膨胀原理:当温度升高时,金属杆的长度会发生变化,这种变化可用线胀系数来衡量。当温度变化不大时可用平均线胀系数α来描述。即 )() (112121t t L L L --=α 式中1L 和2L 分别为物体在温度1t 和2t 时的长度,一般固体材料的α值很小,所以12L L L -=?也很小,因此本实验成功的关键之一就是测准L ?的问题,我们采用光杠杆法测量L ?。 (b)、热传导和热平衡原理: 温度总是从高温往低温传递,因此只要存在温差就会有热传导在进行,那么就不会处在平衡的状态。从观察方法来看,当温度不变时就表明系统处于热平衡的状态。只有在平衡状态下测出的温度和刻度才能相对应。 动态平衡:指温度在某一个小范围内波动(一般不超过0.5度)。 (c)、加热器的结构 温度探头是放在样品(铜管)的空腔中的,因此温度探头不能及时测到样品的温度,必须等到样品和空腔中的空气达到热平衡状态时温度探头测出的温度才是样品的真实温度。 3.2原理图

从图2可知: ()D N H D H L 2201?=N -N =? 所以可得:()0121t t D L -H ?N = α=t LD ?H ?N 2 3.3方法 控温式固体线胀系数测定仪(型号GXC-S )是采用电热法对金属杆进行加热,加热原理如图1。由于电热法有热惯性,所以只有等到温度达到最大时才会有一个短暂的平衡,此时才能读出样品的温度和相应的刻度读数。 由于固体线膨胀幅度很小,所以必须通过放大以后才能测量,这里用到的是光杠杆放大的方法,原理如图2。 4教学内容 原理和方法 5教学组织及教学要求 1)线胀系数的定义,热传导原理和热平衡原理要讲一下; 2)光杠杆系统的调节和线胀系数仪的操作示范及讲解;卡尺的用法示范。 3)读出与室温相对应的第一组温度和刻度; 4)当温度升到最高时的读数作为测量点,一般波动时间为1-2分钟,之后就会下降。所以一般温度30秒不变就可以读数了。 6实验教学的重点与难点 (一)、重点: 热膨胀原理和热传导原理及热平衡原理,微小变化量测量原理; (二)、难点:

固体线膨胀系数的测定

固体线膨胀系数的测定 绝大多数物质具有热胀冷缩的特性,在一维情况下,固体受热后长度的增加称为线膨胀。在相同条件下,不同材料的固体,其线膨胀的程度各不相同,我们引入线膨胀系数来表征物质的膨胀特性。线膨胀系数是物质的基本物理参数之一,在道路、桥梁、建筑等工程设计,精密仪器仪表设计,材料的焊接、加工等各种领域,都必须对物质的膨胀特性予以充分的考虑。 【实验目的】 1、学习测量固体线膨胀系数的一种方法。 2、了解一种位移传感器——数字千分表的原理及使用方法。 3、了解一种温度传感器——AD590的原理及特性。 4、通过仪器的使用,了解数据自动采集、处理、控制的过程及优点。 5、学习用最小二乘法处理实验数据。 【实验原理】 1、线膨胀系数 设在温度为t1时固体的长度为L1,在温度为t2时固体的长度为L2。实验指出,当温度变化范围不大时,固体的伸长量△L= L2-L1与温度变化量△t= t2-t1及固体的长度L1成正比。即: △L=αL1△t (1)式中的比例系数α称为固体的线膨胀系数,由上式知: α=△L/Ll·1/△t (2)可以将α理解为当温度升高1℃时,固体增加的长度与原长度之比。多数金属的线膨 胀系数在(0.8—2.5)×10-5/℃之间。 线膨胀系数是与温度有关的物理量。当△t很小时,由(2)式测得的α称为固体在温度为t1时的微分线膨胀系数。当△t是一个不太大的变化区间时,我们近似认为α是不变的,由(2)式测得的α称为固体在t1—t2温度范围内的线膨胀系数。 由(2)式知,在L1已知的情况下,固体线膨胀系数的测量实际归结为温度变化量△t与相应的长度变化量△L的测量,由于α数值较小,在△t不大的情况下,△L也很小,因此准确地测量△L及t是保证测量成功的关键。 2、微小位移的测量及数字千分表 测量微小位移,以前用得最多的是机械百分表,它通过精密的齿条齿轮传动,将位移转化成指针的偏转,表盘最小刻度为0.01mm,加上估读,可读到0.001mm,这种百分表目前在机械加工行业仍广泛使用。 物理实验中常用光杠杆法测微小位移,它通过光学系统将微小位移量放大再加以观测。

相关文档
相关文档 最新文档