文档库 最新最全的文档下载
当前位置:文档库 › 剪切板功能

剪切板功能

剪切板功能
剪切板功能

剪切板功能:

这里是一些文章



手机号码


再次确认

实现网页的前进与后退:

进入第二个页面

//这是后退的一页

这是第二页

后退

机织物在各个方向上的剪切性能

机织物在各个方向上的剪切性能 W.M.Lo 等著 纪 峰 译郭永平 校   剪切性能是影响机织物外观及力学行为的重要特性之一。本文在K ilby 等人工作的基础上建立模型,预测机织物在各个方向上的剪切刚度。基于现有文献,我们发现剪切刚度(G )、015°及5°角的剪切滞后有明显的线性关系。因此通过比较理论结果与实验数据,并将它们在极坐标图上展现出来,证明该模型亦可用于预测大范围类型机织物的剪切滞后。实验结果表明,剪切刚度与剪切滞后的这种线性关系不仅存在于经、纬两个主方向上,也存在于与经纬向成各种夹角的方向上。在实验中还发现,机织物剪切刚度的最大值出现在与经纬向成±45°夹角的方向上。 在实际应用中,纺织面料要经受大量的复杂变形,因此织物的剪切性能在许多实际应用中显得非常重要。为探索机织物剪切行为的力学本质,Dreby 等人先后设计开发了测试机织物剪切性能的方法和仪器。后来,Cusick 等人通过建立数学模型,采用一种量化的方法来描述织物的剪切性能。他们在文章中阐明,剪切过程中的滞后现象是由织物内部经纬纱交织点处纱线的相互扭转产生的摩擦约束决定的。而且,现有的文献都证明了剪切是影响织物的悬垂性、柔韧性及手感的重要性能之一。机织物的剪切性能不仅在经纬方向上,而且在其他各个方向上都影响着织物的弯曲和拉伸性能。 机织物在经纬方向的剪切行为一直受到广泛关注,因其显著影响着织物的其他力学行为。但织物在与经纬向成各种夹角方向上的剪切性能却很少被注意,因为它们涉及复杂的力学因素。所以,当两组纱线在交织点处的夹角发生变化时,获取该位置上有关剪切的量的信息也是很有用处的。 在研究中,我们采用KES 2F 测试系统测出的 剪切刚度(G )、015°和5°角的剪切滞后量(2HG ,2HG 5)来表征一块机织物的剪切性能。剪切刚 度反映了织物抵抗剪切变形的能力,而剪切滞后量反映了织物在一个剪切变形周期中能量的损失状况。在实验中,我们采用KES 2F 测试仪对大量的不同类型织物从各个方向上进行测试得到实验数据,基于这些数据我们建立数学模型,预测织物在各个不同方向上的剪切刚度。 已有文献资料显示,剪切刚度与剪切滞后之间有着显著的相关性。例如,在Collier 等人的结论中都证明剪切刚度和剪切滞后的相关系数很高,分别可达到0197、0194和0192。尽管决定机织物剪切刚度和剪切滞后的力学因素可能有所不同,根据前人结论和我们自己的实验结果,我们假设剪切刚度和剪切滞后是遵从相似的内在力学因素。由此,基于机织物剪切刚度预测模型的有效性,我们将这一模型应用到对各类机织物剪切滞后性能的预测上。将实验数据与理论结果进行对比,我们将这一模型应用到对各类机织物剪切滞后性能的预测上。将实验数据与理论结果进行对比,并在极坐标图上表示出来,可以证明该模型的有效性,同时发现剪切刚度与剪切滞后的这种线性关系不仅存在于经纬两个主要方向上,也存在于其他各个方向上。 1 对机织物在各个方向上的剪切性 能进行建模 K ilby 等人将传统的弹性理论与认为织物是各向异性的薄片的假设结合起来。根据弹性理论,织物的拉伸和剪切性能可由在经纬向及其他 — 9 3—

剪切强度

第3章 剪切和挤压的实用计算 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 剪切和挤压的强度计算 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为

剪切计算

拉伸、压缩与剪切 1 基本概念及知识要点 1.1 基本概念 轴力、拉(压)应力、力学性能、强度失效、拉压变形、胡克定律、应变、变形能、静不定问题、剪切、挤压。 以上概念是进行轴向拉压及剪切变形分析的基础,应准确掌握和理解这些基本概念。 1.2 轴向拉压 的内力、应力及变形 1.横截面上的内力:由截面法求得横截面上内力的合力沿杆的轴线方向,故定义为轴力 F N ,符号规定:拉力为正,压力为负。工程上常以轴力图表示杆件轴 力沿杆长的变化。 2.轴力在横截面上均匀分布,引起了正应力,其值为 F A σ= N 正应力的符号规定:拉应力为正,压应力为负。常用的单位为MPa 、Pa 。 3.强度条件 强度计算是材料力学研究的主要问题之一。轴向拉压时,构件的强度条件是 []F A σσ= ≤N 可解决三个方面的工程问题,即强度校核、设计截面尺寸及确定许用载荷。 4.胡克定律 线弹性范围内,杆的变形量与杆截面上的轴力F N 、杆的长度l 成正比,与截面尺寸A 成反比;或描述为线弹性范围内,应力应变成正比,即 F l l E E A σε?= =N 式中的E 称为材料的弹性模量,EA 称为抗拉压刚度。胡克定律揭示在比例极限内,应力和应变成正比,是材料力学最基本的定律之一,一定要熟练掌握。 1.3 材料在拉压时的力学性能 材料的力学性能的研究是解决强度和刚度问题的一个重要方面。材料力学性能的研究一般是通过实验方法实现的,其中拉压试验是最主要、最基本的一种试验,由它所测定的材料性能指标有: E —材料抵抗弹性变形能力的指标;b s σσ,—材料的强度指标; ψδ, —材料的塑性指标。低碳钢的拉伸试验是一个典型的试验。

剪切计算及常用材料强度..

2.剪切强度计算 (1) 剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 []s F A ττ= ≤ (5-6) 这里[τ]为许用剪应力,单价为Pa 或MPa 。 由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷τ0,再除以安全系数n ,得许用剪应力[τ]。 []n ττ= (5-7) 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料: 对脆性材料: (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa ,直径d=20mm 。挂钩及被连接板件的厚度分别为t =8mm 和t 1=12mm 。牵引力F=15kN 。试校核销钉的剪切强度。 图5-12 电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m 和n-n 两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出: 销钉横截面上的剪应力为: 故销钉满足剪切强度要求。 例5-2 如图5-13所示冲床,F max =400KN ,冲头[σ]=400MPa,冲剪钢板的极限剪应力τb =360 MPa 。试设计冲头的最小直径及钢板最大厚度。 图5-13 冲床冲剪钢板及冲剪部分受力示意图 解:(1) 按冲头压缩强度计算d 所以 (2) 按钢板剪切强度计算t 钢板的剪切面是直径为d 高为t 的柱表面。 所以 例5-3 如图5-14所示螺钉受轴向拉力F 作用,已知[τ]=0.6[σ],求其d :h 的合理比值。 图5-14 螺钉受轴向拉力示意图 解:螺杆承受的拉应力小于等于许用应力值:

胶黏剂拉伸剪切强度测试标准

胶黏剂拉伸剪切强度的测定方法 一实验原理 试样为单搭接结构,在试样的搭接面上施加纵向拉伸剪切力,测定试样能承受的最大负荷。搭接面上的平均剪应力为胶粘剂的金属对金属搭接的拉伸剪切强度,单位为MPa 二实验装置及试样 1)试验机。使用的试验机应使试样的破坏负荷在满标负荷的(15~85)%之间。试验机的力值示值误差不应大于1 %试验机应配备一副自动调心的试样夹持器,使力线与试样中心线保持一致。 试验机应保证试样夹持器的移动速度在(5 ± 1) mm/min内保持稳定。 2)量具。测量试样搭接面长度和宽度的量具精度不低于0.05 mm。 3)夹具。胶接试样的夹具应能保证胶接的试样符合要求。在保证金属片不破坏的情况下,试样与试样夹持器也可用销、孔连接的方法。但不能用于仲裁试验。 4)试样标准试样的搭接长度是(土)mm金属片的厚度是土mm,试样的搭接长度或金属片的厚度不同对试验结果会有影响。 5)建议使用LY12-CZ铝合金、1Cr18Ni9Ti不锈钢、45碳钢、T2铜等金属材料。 6)常规试验,试样数量不应少于5个。仲裁试验试样数量不应少于10个。 对于高强度胶粘剂,测试时如出现金属材料屈服或破坏的情况,则可适当增加金属片厚度或减少搭接长度。两者中选择前者较好。 测试时金属片所受的应力不要超过其屈服强度 d s,金属片的厚度S可按式(11-12 )计算: 3=(L ? T)/ d S(11- 12 ) 式中:3――金属片厚度; L ――试样搭接长度; T——胶粘剂拉伸剪切强度; d S――金属材料屈服强度(MPa。

三、试样制备 1)试样可用不带槽或带槽的平板制备,也可单片制备。 2)胶接用的金属片表面应平整,不应有弯曲、翘曲、歪斜等变形。金属片应无毛刺,边缘保持直角。 3)胶接时,金属片的表面处理、胶粘剂的配比、涂胶量、涂胶次数、晾置时间等胶接工艺以及胶粘剂的固化温度、压力、时间等均按胶粘剂的使用要求进行。 4 )制备试样都应使用夹具,以保证试样正确地搭接和精确地定位。 5)切割已胶接的平板时,要防止试样过热,应尽量避免损伤胶接缝。 四、试验条件 试样的停放时间和试验环境应符合下列要求: 1)试样制备后到试验的最短时间为16 h,最长时间为30 d。 2)试验应在温度为(23± 2)C、相对湿度为(45~55)%的环境中进行。 3)对仅有温度要求的测试,测试前试样在试验温度下停放时间不应少于h ;对有温度、湿度要求的测试,测试前试样在试验温度下停放时间一般不应少于16 h。 五、实验步骤 1)用量具测量试样搭接面的长度和宽度,精确到0.05 mm。 2)把试样对称地夹在上下夹持器中,夹持处到搭接端的距离为(50 ± 1)mm 3)开动试验机,在(5 ± 1) mm/min内,以稳定速度加载。记录试样剪切破坏的最大负荷,记录胶接破坏的类型(内聚破坏、粘附破坏、金属破坏)。 六、试验结果 对金属搭接的胶粘剂拉伸剪切强度T按式(11-13 )计算,单位为MPa> T = F / (b ? l )(11- 13) 式中:F――试样剪切破坏的最大负荷;

剪切力的计算方法

第3章 剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面 相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q =

剪切计算及常用材料强度

2.剪切强度计算 (1) 剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 []s F A ττ= ≤ (5-6) 这里[τ]为许用剪应力,单价为Pa 或MPa 。 由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷τ0,再除以安全系数n ,得许用剪应力[τ]。 []n ττ= (5-7) 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料: []0.60.8[]τσ= 对脆性材料: []0.8 1.0[]τσ= (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa ,直径d=20mm 。挂钩及被连接板件的厚度分别为t =8mm 和t 1=12mm 。牵引力F=15kN 。试校核销钉的剪切强度。 图5-12 电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m 和n-n 两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出: 2s F F = 销钉横截面上的剪应力为: 332151023.9MPa<[] 2(2010)4s F A ττπ-?===?? 故销钉满足剪切强度要求。 例5-2 如图5-13所示冲床,F max =400KN ,冲头[σ]=400MPa ,冲剪钢板的极限剪应力τb =360 MPa 。试设计冲头的最小直径及钢板最大厚度。

直接剪切试验报告

实验五 直接剪切试验 实验人: 学号: 一、概述 直接剪切试验就是直接对试样进行剪切的试验,简称直剪试验,是测定土的抗剪强度的一种常用方法,通常采用4个试样,分别在不同的垂直压力p 下,施加水平剪切力,测得试样破坏时的剪应力τ,然后根据库仑定律确定土的抗剪强度参数内摩擦角?和粘聚力c 。 二、仪器设备 1、直剪仪。采用应变控制式直接剪切仪,如图所示,由剪切盒、垂直加压设备、剪切传动装置、测力计以及位移量测系统等组成。加压设备采用杠杆传动。 2、测力计。采用应变圈,量表为百分表。 3、环刀。内径6.18cm ,高2.0cm 。 4、其他。切土刀、钢丝锯、滤纸、毛玻璃板、凡士林等。 三、操作步骤 1、将试样表面削平,用环刀切取试件,测密度, 每组试验至少取四个试样, 图7-1 应变控制式直剪仪 1—轮轴;2—底座;3—透水石;4—测微表;5—活塞; 6—上盒;7—土样;8—测微表;9—量力环;10—下盒

各级垂直荷载的大小根据工程实际和土的软硬程度而定,一般可按100kPa,200kPa,300kPa,400kPa(即1.0 kg/cm2,2.0 kg/cm2,3.0 kg/cm2,4.0 kg/cm2)施加。 2、检查下盒底下两滑槽内钢珠是否分布均匀,在上下盒接触面上涂抹少许润滑油,对准剪切盒的上下盒,插入固定销钉,在下盒内顺次放洁净透水石一块及湿润滤纸一张。 3、将盛有试样的环刀平口朝下,刀口朝上,在试样面放湿润滤纸一张及透水石一块,对准剪切盒的上盒,然后将试样通过透水石徐徐压入剪切盒底,移去环刀,并顺次加上传压板及加压框架。 4、在量力环的安装水平测微表,装好后应检查测微表是否装反,表脚是否灵活和水平,然后按顺时针方向徐徐转动手轮,使上盒两端的钢珠恰好与量力环按触(即量力环中测微表指针被触动)。 5、顺次小心地加上传压板、钢珠,加压框架和相应质量的砝码(避免撞击和摇动)。 6、施加垂直压力后应立即拔去固定销(此项工作切勿忘记)。开动秒表,同时以每分钟4~12转的均匀速度转动手轮(学生可用6转/分),转动过程不应中途停顿或时快时慢,使试样在3~5分钟内剪破,手轮每转一圈应测记测微表读数一次,直至量力环中的测微表指针不再前进或有后退,即说明试样已经剪破,如测微表指针一直缓慢前进,说明不出现峰值和终值,则试验应进行至剪切变形达到4mm(手轮转20转)为止。 7、剪切结束后,吸去剪切盒中积水,倒转手轮,尽快移去砝码,加压框架,传压板等,取出试样,测定剪切面附近土的剪后含水率。 8、另装试样,重复以上步骤,测定其它三种垂直荷载(200kPa,300kPa,400kPa)下的抗剪强度。 四、成果整理 1、按式(7-1)计算抗剪强度: τ(7-1) = CR

实验18 单向纤维增强复合材料面内剪切性能试验

实验18 单向纤维增强复合材料面内剪切性能试验 一,实验目的 1,掌握单向复合材料面内剪切性能及其测试方法。 二,实验内容 测定单向复合材料剪切强度,剪切模量,极限剪应变,观察单向复合材料试样面内剪切的破坏特征 三,实验原理 用双边带V 型缺口的扁矩形直梁试样,通过专用剪切夹具,对其施加两个对称力偶,使得试样的中心截面处产生纯剪应力状态。 四,实验仪器设备 电子万能试验机,V 型缺口梁剪切试验夹具,静态应变仪,应变计(片),温度补偿片,游标卡尺等 五,实验计算公式: 1,剪切强度和剪应力 12i i P S wh P wh τ= = P ——试样破坏时的最大载荷,或剪应变为5%的载荷,N i τ——第n 级载荷时的剪应力,单位为MPa i P ——第n 级载荷,单位为N w ——试样两缺口之间的宽度,mm h ——试样厚度,mm 2,剪应变和极限应变 4545||||i γεε+-=+ u γ=取小值 5%剪应变 极限载荷下的应变 式中:i γ——第n 级载荷时的剪应变 45ε+——第n 级载荷时+45方向的应变 45ε-——第n 级载荷时-45方向的应变 u γ——极限应变 3,剪切弹性模量

124545(||||) P G wh τγεε+-??= = ??+? 式中: 12G ——剪切弹性模量,单位为MPa τ?——剪切应力-应变曲线的直线段上选取的剪应力增量,MPa γ?——与τ?相对应的剪应变增量 P ? ——载荷应变曲线直线段上选取的载荷增量,N 45ε+?——与P ?相对应的+45方向应变增量 45ε-?——与P ?相对应的-45方向应变增量

2020年剪切力的计算方法-剪力强度公式

作者:旧在几 作品编号:2254487796631145587263GF24000022 时间:2020.12.13 第3章剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面m-面)发生相对错动(图3-1b)。 (n 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m-假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力 F(图3-1c)的作用。Q F称为剪力, Q 根据平衡方程∑=0 F Q=。 Y,可求得F 剪切破坏时,构件将沿剪切面(如图3-la所示的n m-面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。

3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2F F Q = 图3-2 由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。在这种计算方法中,假设应力在剪切面内是均匀分布的。若以A 表示销钉横截面面积,则应力为 A F Q =τ (3-1) τ与剪切面相切故为切应力。以上计算是以假设“切应力在剪切面上均匀分布”为基础的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。 当F 达到b F 时的切应力称剪切极限应力,记为b τ。对于上述剪切试验,剪切极限应力为

剪切力的计算方法-剪力强度公式

第 3 章剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图 3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(m-n面)发生相对错动(图 3-1b)。 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面m-n假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力F Q (图3-1c)的作用。F Q称为剪力,根据平衡方程Y =0,可求得F Q =F。剪切破坏时,构件将沿剪切面(如图 3-la 所示的m-n面)被剪断。只有一个剪切面的情况,称为单剪切。图 3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图 3-1 中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图 3-2a 为一种剪切试验装置的简图,试件的受力情况如图 3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F增大至破坏载荷F b时,试件在剪切面m - m及n - n处被剪断。这种具有两个剪切面的情况,称为双剪切。由图 3-2c 可求得剪切面上的剪力为

剪切计算及常用材料强度

剪切计算及常用材料强 度 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

2.剪切强度计算 (1) 剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 [] s F A ττ=≤ (5-6) 这里[τ]为许用剪应力,单价为Pa 或MPa 。 由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷τ0,再除以安全系数n ,得许用剪应力[τ]。 []n ττ= (5-7) 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料: 对脆性材料: (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa ,直径d=20mm 。挂钩及被连接板件的厚度分别为t =8mm 和t 1=12mm 。牵引力F=15kN 。试校核销钉的剪切强度。 图5-12 电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m 和n-n 两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出: 销钉横截面上的剪应力为: 故销钉满足剪切强度要求。 例5-2 如图5-13所示冲床,F max =400KN ,冲头[σ]=400MPa ,冲剪钢板的极限剪应力τb =360 MPa 。试设计冲头的最小直径及钢板最大厚度。 图5-13 冲床冲剪钢板及冲剪部分受力示意图 解:(1) 按冲头压缩强度计算d 所以 (2) 按钢板剪切强度计算t 钢板的剪切面是直径为d 高为t 的柱表面。 所以 例5-3 如图5-14所示螺钉受轴向拉力F 作用,已知[τ]=[σ],求其d :h 的合理比值。 图5-14 螺钉受轴向拉力示意图 解:螺杆承受的拉应力小于等于许用应力值: 螺帽承受的剪应力小于等于许用剪应力值: 当σ、τ同时分别达到[σ]、[τ]时.材料的利用最合理,既 所以可得

聚合物基复合材料面内剪切性能标准试验方法(D 5379 V形缺口梁 织物)

聚合物基复合材料面内剪切性能标准试验方法(D 5379 V形缺口梁织物)

ASTM D 5379/D 5379M-98 采用V形缺口梁方法 测量复合材料剪切性能的标准试验方法1 Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method 本标准以固定的编号D 5379/D 5379M出版;编号后的数字表示最初采用的或最近版本的年号。括号内的数字表明最近批准的年号。上标(ε)表明自最近版本或批准以后进行了版本修改。 1 范围 1.1 本试验方法适用于测量高模量纤维增强复合材料的剪切性能。复合材料形式限定于连续纤维或非连续纤维增强的、具有下列材料形式的复合材料。 1.1.1 仅由单向纤维的单层组成的层压板,其纤维方向与加载轴平行或垂直。 1.1.2 仅由机织物单向板组成的层压板,其经向与加载轴平行或垂直。 1.1.3 仅由单向纤维的单层组成、且包含相等的0?层和90?层的对称均衡层压板,其0?方向与加载轴 1本试验方法由ASTM的复合材料委员会D30审定,并由单层和层压板试验方法专业委员会D30.04直接负责。当前版本于1998年12

平行或垂直。 1.1.4 以随机排列的纤维为主的短纤维增强复合材料。 注1——本试验方法最初没有考虑纤维方向,主要用于各向同性材料,如金属或陶瓷。 1.2 本标准并未打算提及,如果存在的话,与使用有关的所有安全性问题。在使用本标准之前,本标准的用户有责任建立合适的安全与健康的操作方法,以及确定规章制度的适用性。 1.3 以国际单位(SI)或英制单位(inch–pound)给出的数值可以单独作为标准。正文中,英制单位在括号内给出。每一种单位制之间的数值并不严格等值,因此,每一种单位制都必须单独使用。由两种单位制组合的数据可能导致与本标准的不相符。 2 参考文献 2.1 ASTM标准 D 792 置换法测量塑料密度和比重(相对密度)试验方法2 Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement D883 与塑料相关的术语2

胶黏剂剥离剪切强度测试方法

胶黏剂剥离强度、剪切强度、环球法软换点检测 防水卷材粘结剥离强度检测GB/T532-2008《硫化橡胶或热塑性橡胶与织物粘合强度的测定》餐桌餐椅剥离强度检测家具表面软质覆面材料剥离强度的测定QB/T 3655-1999,家具表面硬质覆面材料剥离强度的测定QB/T3656-1999非金属材料180o剥离强度检测胶粘剂180o剥离强度试验方法挠性材料对刚性材料GB/T 2790-1995涂层(漆膜)剥离强度(胶层覆盖率)检测:埋地钢质管道聚乙烯防腐层GB/T23257-2009附录J钢质管道聚乙烯胶粘带防腐层技术标准SY/T0414-2007 7.5非腐蚀性气体输送用管线管内涂层SY/T6530-2010附录C压敏胶粘带180°剥离强度试验方法GB/T2792-1998石油和天然气工业-管道输送系统用埋地和水下管道的外防腐层-第3部分:补口防腐层ISO21809-3:2008附录M 膜、板、片材类剥离强度检测: GB/T8808-1988软质复合塑料材料剥离试验方法 GB/T8808-1988软质复合塑料材料剥离试验方法 检测产品: 环氧胶、聚氨酯胶、丙烯酸酯胶、UV胶、建筑胶、橡塑胶水、有机硅胶、云石胶、瓷砖胶、PVC胶水、玻璃胶、白乳胶、果冻胶、双面胶、压敏胶、植筋胶、硅酮胶、108胶水、聚氨酯胶、糯米胶、喷胶、发泡胶、107胶水、3M胶带、胶粘带、热封胶带检测、丁基胶带检测、透明胶带检测、绝缘胶带检测、屏蔽胶带、马拉胶带、铁片复合胶带、聚酰亚胺胶带、泡棉胶带、压敏胶带检测等。 检测项目: 常见性能检测:黏度、软化点、外观、密度、粘度、环保检测、固化时间、胶合强度、适用期和贮存期检测、拉伸强度、剪切强度、剥离强度、生物降解、粘结点、软化点、劈裂强度、腐蚀性、流动性、冲击强度、渗透性、介电强度、介电常数、体积电阻、单体含量、PH值、低温稳定性、扭矩强度、耐化学试剂、软化点、填料含量检测等等。 可靠性能检测:蠕变、疲劳强度、耐冲击性、耐久性、老化性能、盐雾试验等等。杂质含量/有害物质:苯、甲苯、二甲苯、游离甲醛、甲醇、氯代烃、重金属、淀粉物质、灰分物质、不挥发物含量。 检测范围:

土的剪切试验和强度指标

工程常识之 土的剪切试验和强度指标 1、直接剪切试验 在直剪仪中分别施加不同竖向压力,然后分别对施加水平剪切力进行剪切,求得破坏时的剪应力τ,根据库仑定律确定土的抗剪强度参数:内摩擦角ψ和黏聚力c。 试验方法分三种: (1)快剪Q(Quick shear):在试样上施加垂直压力后,立即加水平剪切力。在整个试验中,不允许试样的原始含水率有所改变(试样两端敷以隔水纸),即在试验过程中孔隙水压力保持不变(3~5min 内剪坏)。 对透水性强的土(渗透系数大于10-6cm/s)不适用。 (2)固结快剪CQ(Consolidation Quick shear):在垂直压力下土样完全排水固结稳定后,以很快速度施加水平剪力。在剪切过程中不允许排水(规定在3~5min内剪坏)。 得到的强度指标适用于总应力法。 (3)慢剪S(Slow shear):在加垂直荷重后,使其充分排水(试样两端敷以滤纸),在土样达到完全固结时,再加水平剪力;每加一次水平剪力后,均需经过一段时间,待土样因剪切引起的孔隙水压力完全消失后,再继续加下一次水平剪力。 得到的强度指标适用于有效应力法。 上述三种试验方法的受力条件不同,所得抗剪强度值也不同。因此,必须根据土所处的实际应力情况来选择试验方法。

2、三轴剪切试验 在三轴仪中,分别在不同的恒定周围压力(即小主应力3σ)下, 施加轴向压力(即产生主应力差1σ-3σ),进行剪切直至破坏,然后根 据摩尔-库伦理论确定土的抗剪强度参数:内摩擦角ψ和黏聚力c 。 试验方法分三种: (1)不固结不排水剪UU (Unconsolidation Undrained ):试样在施加周围压力和随后施加轴向压力力直至剪坏的整个试验过程中都不允许排水,这样从开始加压直至试样剪坏,土中的含水量始终保持不变,孔隙水压力也不可能消散,可以测得总应力抗剪强度指标c u ,φu 。 (2)固结不排水剪CU (Consolidation Undrained ):试样在施加周围压力时,允许试样充分排水,待固结稳定后,再在不排水的条件下施加轴向压力,直至试样剪切破坏,同时在受剪过程中测定土体的孔隙水压力,可以测得总应力抗剪强度指标c cu ,φ cu 和有效应力抗剪 强度指标c ’,φ’。 图中可知(φ’大于φcu ,c ’小于c cu ) (3)固结排水剪CD (Consolidation Drained ):试样先在周围压力下排水固结,然后允许试样在充分排水的条件下增加轴向压力直至

剪切力的计算方法剪力强度公式

第3章 剪切与挤压的实用计算 3、1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点就是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都就是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲与拉伸等作用。在图3-1中没有完全给出构件所受的外力与剪切面上的全部内力,而只就是给出了主要的受力与内力。实际受力与变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析就是困难的。工程中对这类构件的强度计算,一般采用在试验与经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3、2 剪切与挤压的强度计算 3、2、1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这就是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q =

剪切计算及常用材料强度..

2.剪切强度计算 (1) 剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 []s F A ττ= ≤ (5-6) 这里[τ]为许用剪应力,单价为Pa 或MPa 。 由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷τ0,再除以安全系数n ,得许用剪应力[τ]。 []n ττ= (5-7) 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料: 对脆性材料: (2) 剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。

例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa,直径d=20mm。 =12mm。牵引力F=15kN。试校核销钉的剪切挂钩及被连接板件的厚度分别为t=8mm和t 1 强度。 图5-12 电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m 和n-n两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出:销钉横截面上的剪应力为: 故销钉满足剪切强度要求。 例5-2如图5-13所示冲床,F max=400KN,冲头[σ]=400MPa,冲剪钢板的极限剪应力τ =360 MPa。试设计冲头的最小直径及钢板最大厚度。 b 图5-13 冲床冲剪钢板及冲剪部分受力示意图 解:(1) 按冲头压缩强度计算d 所以 (2) 按钢板剪切强度计算t 钢板的剪切面是直径为d高为t的柱表面。 所以 例5-3 如图5-14所示螺钉受轴向拉力F作用,已知[τ]=0.6[σ],求其d:h的合理比值。

剪切计算及常用材料强度

2.剪切强度计算 (1)剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 这里3为许用剪应力,单价为 Pa 或MPa 。 由于剪应力并非均匀分布,式 (5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度 条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷 70,再除以安全系数 许用剪应力[密] []1 n 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力 [t 与材料的许用拉应力[盅间,存在如下关系: 对塑性材料: []=0.6U 0.8[二] 对脆性材料: []2.8LJ 1.0[二] (2)剪切实用计算 剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计 算中要正确判断剪切面积,在钏钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1图5-12(a)所示电瓶车挂钩中的销钉材料为 20号钢,[30MPa ,直径d=20mm 。挂钩及被连接板件的 厚度分别为t = 8mm 和t 〔= 12mm 。牵引力F=15kN 。试校核销钉的剪切强度。 (5-6) n,得 (5-7) 图5-12电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿 m-nS n-n 两个面向左错动。 所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出: F s 销钉横截面上的剪应力为: F s _ 15 103 3 2 A 2 -(20 10 )2 = 23.9MPa<[] 故销钉满足剪切强度要求。 例5-2如图5-13所示冲床, 的 最小直径及钢板最大厚度。 F max =400KN ,冲头[b ]=400MPa 冲剪钢板的极限剪应力 护360 MPa 。试设计冲头

剪切计算及常用材料强度

剪切计算及常用材料强度 The latest revision on November 22, 2020

2.剪切强度计算 (1) 剪切强度条件 剪切强度条件就是使构件的实际剪应力不超过材料的许用剪应力。 []s F A ττ= ≤ (5-6) 这里[τ]为许用剪应力,单价为Pa 或MPa 。 由于剪应力并非均匀分布,式(5-2)、(5-6)算出的只是剪切面上的平均剪应力,所以在使用实验的方式建立强度条件时,应使试件受力尽可能地接近实际联接件的情况,以确定试样失效时的极限载荷τ0,再除以安全系数n ,得许用剪应力[τ]。 []n ττ= (5-7) 各种材料的剪切许用应力应尽量从相关规范中查取。 一般来说,材料的剪切许用应力[τ]与材料的许用拉应力[σ]之间,存在如下关系: 对塑性材料: 对脆性材料: (2) 剪切实用计算

剪切计算相应地也可分为强度校核、截面设计、确定许可载荷等三类问题,这里就不展开论述了。但在剪切计算中要正确判断剪切面积,在铆钉联接中还要正确判断单剪切和双剪切。下面通过几个简单的例题来说明。 例5-1 图5-12(a)所示电瓶车挂钩中的销钉材料为20号钢,[τ]=30MPa,直径 =12mm。牵引力F=15kN。试校核销d=20mm。挂钩及被连接板件的厚度分别为t=8mm和t 1 钉的剪切强度。 图5-12 电瓶车挂钩及其销钉受力分析示意图 解:销钉受力如图5-12(b)所示。根据受力情况,销钉中段相对于上、下两段沿m-m 和n-n两个面向左错动。所以有两个剪切面,是一个双剪切问题。由平衡方程容易求出:销钉横截面上的剪应力为: 故销钉满足剪切强度要求。 例5-2如图5-13所示冲床,F max=400KN,冲头[σ]=400MPa,冲剪钢板的极限剪应力=360 MPa。试设计冲头的最小直径及钢板最大厚度。 τ b 图5-13 冲床冲剪钢板及冲剪部分受力示意图 解:(1) 按冲头压缩强度计算d 所以 (2) 按钢板剪切强度计算t 钢板的剪切面是直径为d高为t的柱表面。 所以

校核拉杆头部的剪切强度.

7-33 试校核图示拉杆头部的剪切强度和挤压强度。已知图中尺寸D =32mm ,d =20mm 和h =12mm ,F =75kN ,材料的许用切应力][τ=100MPa ,许用挤压应力240][bs =σMPa 。 解:1. 校核拉杆头部的剪切强度 由平衡方程容易求出 Q F F = 拉杆头部剪切面上的切应力为 3 Q 751099.5MPa []2012 F F A dh ττππ?====

相关文档