文档库 最新最全的文档下载
当前位置:文档库 › 实验四可控硅调光电路

实验四可控硅调光电路

实验四可控硅调光电路
实验四可控硅调光电路

实验四 可控硅调光电路

一.实验目的

1. 了解由晶闸管构成的调光电路的结构和工作原理。

2. 观察各部分的电压波形,加深理解晶闸管可控整流电路的工作原理

二.电路原理简述

可控整流电路的作用是把交流电变换为电压值可以调节的直流电,图4-1所示为单相半控桥式整流实验电路,主电路由负载R d (白炽灯泡)和晶闸管T 1组成,触发电路为单结晶体管T 2及阻容元件构成的阻容移相触发电路。改变晶闸管T 1的导通角,使可调节主电路的可控整流电压(或电流)的数值,这点可由电灯负载的亮度变化看出,晶闸管导通角的大小决定于触发脉冲的频率f ,由公式

???

?

??-=

η

1111

n RC f

可知,当单结晶体管的分压比η(一般在0.5~0.8之间)及电容C 值固定时,则频率f 大小由RW 决定,因此,通过调节电位器R W ,就可以改变触发脉冲频率,主电路的输出电压也随之改变,从而达到可控调压的目的。关于单结晶体管为何能产生触发脉冲以及它的负阻效应,请参考教材和有关的文献,因篇幅有限,不便详细阐述。

图4-1

用万用表的电阻档可对单结晶体管和晶闸管进行简易测试。图4-2为单结晶体管BT33管脚排列,结构图及电路符号,好的单结晶体管PN 结正向电阻R EB1、R EB2均较小,且R EB1稍大于R EB2,PN 结的反向电阻R B1E 、R B2E 应很大,根据所测阻值,即可判断出各管脚及管的质量优势。

(a)(b)(c)

图4-2

图4-3为晶闸管BT151管脚排列、结构图及电路符号。晶闸管阳极(A)-

阴极(K)及阳极(A)-门极(G)之间的正反向电阻R AK、R KA、R AG、R GA均应很大,

而G-K之间为一个PN结,PN结正向电阻应较小,反向电阻应很大。

(a)(b)(c)

图4-3

三.实验设备

名称数量型号

1.交直流稳压电源 1台 MC1095E 2.通用示波器 1台

3.万用表 1只 500型/MF47型

4.直流电流表 1只

5.二极管 5只 1N4007*5

6.稳压二极管 1只 9.1V*1

7.电容 1只 0.047μF*1

8.电阻 4只 100Ω/2W*1 300Ω/1W*1

510Ω/2W*1 2kΩ/1W*1 9.电位器 1只 470kΩ*1

10. 可控硅 1只 BT151

11. 单结晶体管 1只 BT33

12. 灯座(配白炽灯泡) 1只 24V/2W

13. 短接桥和连接导线若干 P8-1和50148

14. 实验用9孔插件方板 297mm×300mm

四. 实验内容与步骤

1. 单结晶体管的简易测试

用万用表R×10Ω档分别测量E B1、E B2间正反向电阻,记入表4-1

2.晶闸管的简易测试

用万用表R×1kΩ档分别测量A-K、A-G间正反向电阻,用R×10Ω档测量G-K间正反向电阻,记入表4-2。

表4-1

表4-2

3.晶闸管导通,关断条件测试

按图4-4连接实验电路。

图4-4

1)晶闸管阳极加12V正向电压。a.在门极开路和加12V正向电压时观察管子是否导通(导通时电灯亮,关断时电灯熄灭);b.管子导通后,在去掉+5V门极电压和反接门极电压(接-5V)时,观察管子是否继续导通。

2)晶闸管导通后。a.去掉+12V阳极电压;b.反接阳极电压(接-12V),观察管子是否关断。记录之。

4.晶闸管可控整流电路

按图4-1连接实验电路,取工频电源电压12V作为整流电路输入电压u i,电位器R w置中间位置。

1)单结晶体管触发电路

a. 断开主电路(把灯泡取下),接通电源,用示波器依次观察并记录工频电源电压值u i,整流输出电压u o,削波电压u W,锯齿波电压u E,触发输出电压u B1,记录波形时,注意各波形间对应的关系,并标出电压幅度及时间,记录表4-3。

b. 改变移相电位器R W阻值,观察u E及u B1波形的变化及u B1的移相范围,记入表4-3。

表4-3

2)可控整流电路

断开工频电源电压,接入负载灯泡R d,再接通电源,调节电位器R W,使灯泡由暗到中等亮,再到最亮,用示波器观察晶闸管两端电压u T1,负载两端电压u d,并测量负载直流电压U d及工频电源电压U i有效值,记入表4-4。

表4-4

五.分析与讨论

1.总结晶闸管导通、关断的基本条件。

2.列表整理所测的实验数据,绘出所观测到的各部分波形。

3.按实验内容分析所测的实验结果与理论值的差别,分析产生误差的原因。

4.分析实验中出现的异常现象。

可控硅调光原理

3. 双向可控硅调光电路分析 左图是一个典型的双向可控硅 调光器电路,电位器POT1和电阻R1、 R2 与电容C2构成移相触发网络,当 C2的端电压上升到双向触发二极管 D1的阻断电压时,D1击穿,双向可 控硅TRIAC被触发导通,灯泡点亮。 调节POT1可改变C2的充电时间常数,TRAIC的电压导通角随之改变,也就改变了流过灯泡的电流,结果使得白炽灯的亮度随着POT1的调节而变化。POT1上的联动开关SW1在亮度调到最暗时可以关断输入电源,实现调光器的开关控制。 可控硅可控硅一旦被触发导通后,将持续导通到交流电压过零时才会截止。可控硅承担着流过白炽灯的工作电流,由于白炽灯在冷态时的电阻值非常低,再考虑到交流电压的峰值,为避免开机时的大电流冲击,选用可控硅时要留有较大的电流余量。 触发电路触发脉冲应该有足够的幅度和宽度才能使可控硅完全导通,为了保证可控硅在各种条件下均能可靠触发,触发电路所送出的触发电压和电流必须大于可控硅的触发电压UGT与触发电流I GT的最小值,并且触发脉冲的最小宽度要持续到阳极电流上升到维持电流(即擎住电流I L)以上,否则可控硅会因为没有完全导通而重新关断。 保护电阻 R2是保护电阻,用来防止POT1调整到零电阻时,过大的电流造成半导体器件的损坏。R2太大又会造成可调光范围变小,所以应适当选择。 功率调整电阻 R1决定白炽灯可调节到的最小功率,若不接入R1,则在POT1调整到最大值时,白炽灯将完全熄灭,这在家庭应用中会造成一定不便。接入R1后,当POT1调整到最大值时,由于R1的并联分流作用,仍有一定电流给C2充电,实现白炽灯的最小功率可以调节,若将R1换为可变电阻器,则可实现更精确的调节,以确保量产的一致性。同时R1还有改善电位器线性的作用,使灯光变化更适合人眼的感光特性。 电位器小功率调光器一般都选择带开关的电位器,在调光至最小时可以联动切断电源,这种电位器通常分为推动式(PUSH)和旋转式(ROTARY )两种。对于功率较大的调光器,由于开关触点通过的电流太大,一般将电位器和开关分开安装,以节省材料成本。考虑到调光特性曲线的要求,一般都选择线性电位器,这种电位器的电阻带是均匀分布的,单位长度的阻值相等,其阻值变化与滑动距离或转角成直线关系。 滤波网络由于被可控硅斩波后的电压不再呈现正弦波形,由此产生大量谐波干扰,严重污染电网系统,所以要采取有效的滤波措施来降低谐波污染。图中L1和C1构成的滤波网络用来消除可控硅工作时产生的这种干扰,以便使产品符合相关的电磁兼容要求,避免对电视机、收音机等设备的影响。 温度保险丝对于大功率的调光器或用于组群安装的调光器,内部温升比平时要高,在电路中安装一只温度保险,可以在异常温升时切断电路,防止灾害事故的发生。 3.1可控硅的缓冲保护 可控硅在电路中工作时,它的开关状态并不是瞬间完成的。可控硅刚导通时的等效阻抗还很大,这时如果电流上升很快,就会造成很大的开通损耗;同样,在可控硅接近完全关断

可控硅调光原理

可控硅是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件,一般由两晶闸管反向连接而成。它的功能不仅是整流,还可以用作无触点开关的快速接通或切断;实现将直流电变成交流电的逆变;将一种频率的交流电变成另一种频率的交流电等等。可控硅和其它半导体器件一样,有体积小、效率高、稳定性好、工作可靠等优点。它的出现,使半导体技术从弱电领域进入了强电领域,成为工业、农业、交通运输、军事科研以至商业、民用电器等方面争相采用的元件。目前可控硅在自动控制、机电应用、工业电气及家电等方面都有广泛的应用。 可控硅从外形上区分主要有螺旋式、平板式和平底式三种。螺旋式应用较多。 可控硅有三个极----阳极(A)、阴极(C)和控制极(G),管芯是P型导体和N型导体交迭组成的四层结构,共有三个PN 结,与只有一个PN结的硅整流二极管在结构上迥然不同。可控硅的四层结构和控制极的引入,为其发挥“以小控大”的优异控制特性奠定了基础。可控硅应用时,只要在控制极加上很小的电流或电压,就能控制很大的阳极电流或电压。目前已能制造出电流容量达几百安培以至上千安培的可控硅元件。一般把5安培以下的可控硅叫小功率可控硅,50安培以上的可控硅叫大功率可控硅。 我们可以把从阴极向上数的第一、二、三层看面是一只NPN型号晶体管,而二、三、四层组成另一只PNP型晶体管。其中第二、第三层为两管交迭共用。可画出图1的等效电路图。当在阳极和阴极之间加上一个正向电压E,又在控制极G和阴极C之间(相当BG2的基一射间)输入一个正的触发信号,BG2将产生基极电流Ib2,经放大,BG2将有一个放大了β2 倍的集电极电流IC2 。因为BG2集电极与BG1基极相连,IC2又是BG1 的基极电流Ib1 。BG1又把Ib1(Ib2)放大了β1的集电极电流IC1送回BG2的基极放大。如此循环放大,直到BG1、BG2完全导通。事实上这一过程是“一触即发”的,对可控硅来说,触发信号加到控制极,可控硅立即导通。导通的时间主要决定于可控硅的性能。 可控硅一经触发导通后,由于循环反馈的原因,流入BG2基极的电流已不只是初始的Ib2 ,而是经过BG1、BG2放大后的电流(β1*β2*Ib2),这一电流远大于Ib2,足以保持BG2的持续导通。此时触发信号即使消失,可控硅仍保持导通状态,只有断开电源E或降低E的输出电压,使BG1、BG2 的集电极电流小于维持导通的最小值时,可控硅方可关断。当然,如果E极性反接,BG1、BG2受到反向电压作用将处于截止状态。这时,即使输入触发信号,可控硅也不能工作。反过来,E接成正向,而触动发信号是负的,可控硅也不能导通。另外,如果不加触发信号,而正向阳极电压大到超过一定值时,可控硅也会导通,但已属于非正常工作情况了。 可控硅这种通过触发信号(小触发电流)来控制导通(可控硅中通过大电流)的可控特性,正是它区别于普通硅整流二极管的重要特征。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 表1 可控硅导通和关断条件

单向双向可控硅触发电路设计原理

单向/双向可控硅触发电路设计原理 1,可以用直流触发可控硅装置。 2,电压有效值等于U等于开方{(电流有效值除以2派的值乘以SIN二倍电阻)加上(派减去电阻的差除以派)}。 3,电流等于电压除以(电压波形的非正弦波幅值半波整流的两倍值)。 4,回答完毕。 触摸式台灯的控制原理 这种台灯的主要优点是没有开关,使用时通过人体触摸,完成开启、调光、关闭动作,给使用带来方便。 一、电路设计原理 人体感应的信号加在电源电路可控硅的触发极,使电路导通,并给负载——灯泡或灯管供电,使灯按弱光、中光、强光、关闭4个状态动作,达到调光的目的。电路见图1,该电路的关键器件是采用CMOS工艺制造的集成电路BA210l。 二、降压稳压电路 由R3、VDl、VD4、C4组成。输出9V直流电,供给BA2101,由③⑦脚引入。 三、触发电路 由触发电极M将人体的感应信号,经c3、R8、R7送至④脚的sP端,经处理后,由⑥脚输出触发信号,经cl、R1加至可控硅VS的G极,VS导通,电灯H点亮。第二次触摸,可改变触发脉冲前沿的到达时间,而使电灯亮度改变。反复触摸,可按弱光、中光、强光和关闭四个动作状态循环,达到调节亮度的目的。可控硅VS在动作中其导通角分别为120度、86度、17度。 四、辅助电路 VD2和vD3为保护集成电路而设。防止触摸信号过大而遭破坏。C3为隔离安全电容。R4为取得同步交流信号而设。R5为外接振荡电阻。 五、使用中经常出现的故障 (1)由震动引发的故障。触摸只需轻轻触及即可。但在家庭使用中触击的强度因人而异,小孩去触摸可能是重重的一拳。性格刚烈的人去触摸,可能引起剧烈震动。因此经常出现灯泡断丝。 (2)集成块焊脚由震动而产生脱焊。如③脚脱焊,使电源切断而停止工作;④、⑥脚脱焊,使触摸信号中断,都会引起灯泡不亮。因此要检查集成块各脚是否脱焊。 (3)可控硅VS一般采用MAC94A4型双向可控硅,由于反复触发,或意外大信号触发,会引起可控硅击穿而停止工作。 触摸式台灯的控制原理 这种台灯的主要优点是没有开关,使用时通过人体触摸,完成开启、调光、关闭动作,给使用带来方便。 一、电路设计原理 人体感应的信号加在电源电路可控硅的触发极,使电路导通,并给负载——灯泡或灯管供电,使灯按弱光、中光、强光、关闭4个状态动作,达到调光的目的。电路见图1,该电路的关键器件是采用CMOS工艺制造的集成电路BA210l。 二、降压稳压电路 由R3、VDl、VD4、C4组成。输出9V直流电,供给BA2101,由③⑦脚引入。 三、触发电路 由触发电极M将人体的感应信号,经c3、R8、R7送至④脚的sP端,经处理后,由⑥脚输出触发信号,

LED可控硅调光原理及问题

LED可控硅调光原理及问题 时间:2010-11-19 20:26:44 来源:作者: 1.前言 如今,LED照明已成为一项主流技术。LED手电筒、交通信号灯和车灯比比皆是,各个国家正在推动用LED灯替换以主电源供电的住宅、商业和工业应用中的白炽灯和荧光灯。换用高能效LED 照明后,实现的能源节省量将会非常惊人。仅在中国,据政府*估计,如果三分之一的照明市场转向LED 产品,他们每年将会节省1亿度的用电量,并可减少2900万吨的二氧化碳排放量。然而,仍有一个障碍有待克服,那就是调光问题。 白炽灯使用简单、低成本的前沿可控硅调光器就可以很容易地实现调光。因此,这种调光器随处可见。固态照明替换灯要想真正获得成功的话,就必须能够使用现有的控制器和线路实现调光。 白炽灯泡就非常适合进行调光。具有讽刺意味的是,正是它们的低效率和随之产生的高输入电流,才是调光器工作良好的主要因素。白炽灯泡中灯丝的热惯性还有助于掩盖调光器所产生的任何不稳定或振荡。在尝试对LED灯进行调光的过程中遇到了大量问题,常常会导致闪烁和其他意想不到的情况。要想弄清原因,首先有必要了解可控硅调光器的工作原理、LED灯技术以及它们之间的相互关系。 2.可控硅调光的原理 图1所示为典型的前沿可控硅调光器,以及它所产生的电压和电流波形。 图1 前沿可控硅调光器 电位计R2调整可控硅(TRIAC) 的相位角,当VC2超过DIAC的击穿电压时,可控硅会在每个AC电压前沿导通。当可控硅电流降到其维持电流(IH)以下时,可控硅关断,且必须等到C2 在下个半周期重新充电后才能再次导通。灯泡灯丝中的电压和电流与调光信号的相位角密切相关,相位角的变化范围介于0度(接近0度)到180度之间。 3.LED调光存在的问题 用于替换标准白炽灯的LED灯通常包含一个LED阵列,确保提供均匀的光照。这些LED以串联方式连接在一起。每个LED的亮度由其电流决定,LED的正向电压降约为3.4 V,通常介于2.8 V 到4.2 V之间。LED灯串应当由恒流电源提供驱动,必须对电流进行严格控制,以确保相邻LED灯之间具有高匹配度。 LED灯要想实现可调光,其电源必须能够分析可控硅控制器的可变相位角输出,以便对流向LED的恒流进行单向调整。在维持调光器正常工作的同时做到这一点非常困难,往往会导致性能不佳。

双向可控硅的调光电路

双向可控硅的调光电路 核心提示:双向可控硅的调光电路工作原理说明一接通电源,220V经过灯泡VR4 R19对C 23充电,由于电容二端电压是不能突变的,充电需要一定时间 双向可控硅的调光电路 工作原理说明 一接通电源,220V经过灯泡VR4 R19对C23充电,由于电容二端电压是不能突变的,充电需要一定时间的,充电时间由VR4和R19大小决定,越小充电越快,越大充电越慢。当C23上电压充到约为33V左右的时候DB1导通,可控硅也导通,可控硅导通后灯泡中有电流流过,灯泡就亮了。随着DB1导通C23上电压被完全放掉,DB1又截止可控硅也随之截止灯泡熄灭。C23上又进行刚开始一样的循环,因为时间短人眼有暂留的现象,所以灯泡看起来是一直亮的,充放电时间越短灯泡就越亮,反之,R20 C24能保护可控硅,如果用在阻性负载上可以省掉,如果是用在感性负载,比如说电动机上就要加上去,这个电路也可以用于电动机调速上,当然是要求不高的情况下。 这个电路的优点是元件少、成本低、性价比高。缺点是对电源干扰比较大、噪声大、驱动电动机时候在较小的时候可能会发热比较大。 可控硅相当于可以控制的二极管,当控制极加一定的电压时,阴极和阳极就导通了。可控硅分单向可控硅和双向可控硅两种,都是三个电极。单向可控硅有阴极(K)、阳极(A)、控制极(G)。双向可控硅等效于两只单项可控硅反向并联而成。即其中一只单向硅阳极与

另一只阴极相边连,其引出端称T2极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R×1挡),可能是A、K或G、A极(对单向可控硅)也可能是T2、T1或T2、G极(对双向可控硅)。若其中有一次测量指示为几十至几百欧,则必为单向可控硅。且红笔所接为K极,黑笔接的为G极,剩下即为A极。若正、反向测批示均为几十至几百欧,则必为双向可控硅。再将旋钮拨至R×1或R×10挡复测,其中必有一次阻值稍大,则稍大的一次红笔接的为G极,黑笔所接为T1极,余下是T2极。 2、性能的差别:将旋钮拨至R×1挡,对于1~6A单向可控硅,红笔接K极,黑笔同时接通G、A极,在保持黑笔不脱离A极状态下断开G极,指针应指示几十欧至一百欧,此时可控硅已被触发,且触发电压低(或触发电流小)。然后瞬时断开A极再接通,指针应退回∞位置,则表明可控硅良好。 对于1~6A双向可控硅,红笔接T1极,黑笔同时接G、T2极,在保证黑笔不脱离T2极的前提下断开G极,指针应指示为几十至一百多欧(视可控硅电流大小、厂家不同而异)。然后将两笔对调,重复上述步骤测一次,指针指示还要比上一次稍大十几至几十欧,则表明可控硅良好,且触发电压(或电流)小。若保持接通A极或T2极时断开G极,指针立即退回∞位置,则说明可控硅触发电流太大或损坏。可按图2方法进一步测量,对于单向可控硅,闭合开关K,灯应发亮,断开K灯仍不息灭,否则说明可控硅损坏。 对于双向可控硅,闭合开关K,灯应发亮,断开K,灯应不息灭。然后将电池反接,重复上述步骤,均应是同一结果,才说明是好的。否则说明该器件已损坏。

LED可控硅调光原理及问题.

LED可控硅调光原理及问题 2010年11月10日 17:48 本站整理作者:佚名用户评论(0) 关键字:LED(976)可控硅调光(3) 1.前言 如今,LED照明已成为一项主流技术。LED手电筒、交通信号灯和车灯比比皆是,各个国家正在推动用LED灯替换以主电源供电的住宅、商业和工业应用中的白炽灯和荧光灯。换用高能效LED 照明后,实现的能源节省量将会非常惊人。仅在中国,据政府*估计,如果三分之一的照明市场转向LED产品,他们每年将会节省1亿度的用电量,并可减少2900万吨的二氧化碳排放量。然而,仍有一个障碍有待克服,那就是调光问题。 白炽灯使用简单、低成本的前沿可控硅调光器就可以很容易地实现调光。因此,这种调光器随处可见。固态照明替换灯要想真正获得成功的话,就必须能够使用现有的控制器和线路实现调光。 白炽灯泡就非常适合进行调光。具有讽刺意味的是,正是它们的低效率和随之产生的高输入电流,才是调光器工作良好的主要因素。白炽灯泡中灯丝的热惯性还有助于掩盖调光器所产生的任何不稳定或振荡。在尝试对LED灯进行调光的过程中遇到了大量问题,常常会导致闪烁和其他意想不到的情况。要想弄清原因,首先有必要了解可控硅调光器的工作原理、LED灯技术以及它们之间的相互关系。 2.可控硅调光的原理 图1所示为典型的前沿可控硅调光器,以及它所产生的电压和电流波形。 图1 前沿可控硅调光器 电位计R2调整可控硅(TRIAC) 的相位角,当VC2超过DIAC的击穿电压时,可控硅会在每个AC电压前沿导通。当可控硅电流降到其维持电流(IH)以下时,可控硅关断,且必须等到C2 在下个半周期重新充电后才能再次导通。灯泡灯丝中的电压和电流与调光信号的相位角密切相关,相位角的变化范围介于0度(接近0度)到180度之间。

简单实用的可控硅无级调光器

(1)电路结构与特点 采用双向可控硅制作调光器,可对白炽灯进行无级调光,且调光电路体积可做得很小。目前市售的各种调光台灯大多数都采用这类结构。其电路如图18所示。 当闭合开关S后,在220 v某半个周期内,电源电压经灯泡直接加到双向可控硅vs 的两端。起初飘气管G没有被点燃,所以没有触发电压加到可控硅vs的门板,vs处于关断状态。此时电源电压经电阻R1、R2向电容cl充电,使c1两端电压不断上升,当电压达到氖气管G的启辉电压时,G被点燃发光,这时电容c1通过G、R3向v:的门板放电,双向可控硅vs被触发导通,灯泡就有电流流过。c1放电后电压跌落,且加到v8两端的交流电压过零时,双向可控硅vs就自动关断,电容飘又开始充电。交流电的另半个周期的工作情况与上述类似。如调节Rl的阻值大小,就可改变电容c1的充电速率,因而在任意半个周期里,使v5触发导通时间前移或后退,即改变了可控硅vs的导通角的大小,从而使流过灯泡的平均电流发生变化。由于灯泡两端平均电压也随之变化,所以能达到调光的目的。 电阻R3用于保护双向可控硅,使触发电流不致过大。R4和c3能吸收调光时所产生 的干扰脉冲。如果取消R4和c2,则调光时会对收音机等接收电路产生很大的干扰。氖气管G在这里既能起触发作用,又能发出微弱的红光起指示作用。 (2)元器件选择 在图18中,vs可选用国产TLc221B型1A/400 v小型塑封双向可控硅,也可选用MAC94A4小型进口双向可控硅;氖气管G可用N肋—4L、NH—416、NE—3/16等型号 的氖灯,也可用试电笔里的氖气泡,但日光灯启辉器里的氖气泡不能用;R1最好采用带开关的100kn电位器,如wHl9—l型推拉开关合成碳膜电位器;R2可选用1.2kQ、R3可 选用470 o,闭—1/4W型金属膜电阻器,R4要用470 O R—1/2w型金屑膜电阻器;C1 选用o.1PF、C2选用o.033PF,cJlo—300 v以上金属膜纸介电容器;白炽灯泡应选在15—60 W之间。 (3)电路组装与调试 可控硅调光器印制电路板的设计要按照实际灯具的体积进行,一般不宜太大。将装焊好的印制电路板安装在台灯底座内、电位器安装在台灯面板上,配上大小合适的旋钮,在面板适当位置开一个小圆孔,让氖灯的红光能从里面透出,起装饰和指示作用。

晶闸管调光电路制作

项目四电子工艺应用技能实训 任务单2

一、任务布置 1.团队制定设计方案和工作计划表。 2.设计并分析晶闸管调光电路 3.利用万用表对元件的性能进行检测 4.利用Protel DXP 2004绘制晶闸管调光电路的原理图与PCB图 5.会利用化学蚀刻方法制作晶闸管调光电路印制电路板 6.能够采用手工焊接方式进行元器件焊接 7.对晶闸管调光电路进行组装与调试 二、相关知识 1.电路组成与工作原理 本电路由整流电路、控制电路、触发电路、同步电路和负载构成。22V交流电经变压器T降压后,形成全波整流脉冲信号,经R1、V8稳压后形成梯形波,作为触发电路供电电压,此梯形波经电位器RP 、电阻R4对电容C充电,当充电电压达到峰点电压时V7导通,电容C开始放电,放电时间常数为R3C。当电压下降至单结晶体管谷点电压时V7截止,从新进行充电。在电容C放电过程中,R3上电压降通过V6加到晶闸管的控制极,当时触发电压达到控制导通电压时,晶闸管导通,灯泡亮。通过调整电位器的阻值,从而改变充电时间常数,从而改变晶闸管导通角的大小,改变灯泡的明和暗,参考原理图见图2.1。 图2.1 晶闸管调光电路参考原理图 2.主要元器件检测

①闸管检测:用万用表R×100或R×1K挡,测量晶闸管任意两管脚间的正反向电阻,当万用表指示低阻值(几百欧至几千欧的范围)时,黑表笔所接的是控制极G,红表笔所接的是阴极C,余下的一只管脚为阳极A。 好坏判断方法:用万用表R×10档,黑表笔接阳极,红表笔接阴极,指针应接近∞,当合上S时,表针应指很小阻值,约为60~200欧姆,表明晶闸管能触发导通。单向晶闸管断开S,表针不回到零,表明晶闸管是正常的。如果在S未合上时,阻值很小,或者在S合上时,表针也不动,表明晶闸管质量太差,或已击穿、断极。 图2.2 单向晶闸管万用表检测示意图 ②单结晶体管引脚判断方法 判断单结晶体管发射极E的方法是:把万用表置于R*100挡或R*1K挡,黑表笔接假设的发射极,红表笔接另外两极,当出现两次低电阻时,黑表笔接的就是单结晶体管的发射极。 单结晶体管B1和B2的判断方法是:把万用表置于R*100挡或R*1K挡,用黑表笔接发射极,红表笔分别接另外两极,两次测量中,电阻大的一次,红表笔接的就是B1极。 三、技能要点 1.晶闸管调光电路设计 (1)通过团队讨论制定设计方案,确定原理框图,确定元件参数,并利用Multisim 10进行仿真实验。 (2)利用Protel DXP绘制晶闸管调光电路原理图。 (3)根据需要建立元件库。 (4)元件标示清楚,布局位置合理、美观。晶闸管调光电路的参考电路见图2-1。 (5)对元件进行检测,元器件清单见表2-1。

可控硅调光电路

一接通电源,220V经过灯泡VR4 R19对C23充电...由于电容二端电压是不能突变的...充电需要一定时间的...充电时间由VR4和R19大小决定...越小充电越快...越大充电越慢...当C23上电压充到约为33V左右的时候...DB1导通..可控硅也导通...可控硅导通后...灯泡中有电流流过...灯泡就亮了...随着DB1导通...C23上电压被完全放掉...DB1又截止...可控硅也随之截止...灯泡熄灭...C23上又进行刚开始一样的循环...因为时间短人眼有暂留的现象,所以灯泡看起来是一直亮的... DB1是一个双向触发管...当二端电压超过33V左右.就会导通 充放电时间越短...灯泡就越亮...HE HE..反之...R20 C24能保护可控硅...如果用在阻性负载上可以省掉.如果是用在感性负载,比如说电动机上就要加上去....这个电路也可以用于电动机调速上...当然是要求不高的情况下... 触发二极管是不让不够强的触发信号通过.让可控硅避开半导区.一些不大敏感的可控硅半导区比较宽,不能省略触发二极管.即使是MCR100-D这么灵敏的可控硅,其触发电路的设计也要考虑到避免半导状态.当然MCR100-D和类似参数的可控硅,在某些应用中为了降低成本,可以省掉触发二极管. 可控硅正常时工作在开关状态下,其功耗是比较小的.在半导区工作,相当于三极管工作在线性放大区,功耗会大很 倍,容易使可控硅烧毁触发二极管的作用是当电容C23上的电压低于他的导通阀值时,相当于是断开的,当电容上的电压大于其阀值时,触发二极管突然导通,变成一个阻值很小的电阻,C23上的电压通过它加在可控硅的触发极上,产生较大的放电电流,触发可控硅的导通。 . 这个电路的优点是元件少,成本低,性价比高...缺点是...对电源干扰比较大,噪声大...驱动电动机时候在较小的时候可能会发热比较大...

双向可控硅调光台灯电路实验报告

课程设计 课程名称_____功率电子学课程设计____ 题目名称___双向可控硅调光台灯电路__ 学生学院_______________ 专业班级______ 学号_________________ 学生姓名____________________ 指导教师____________________ 2012年6月8日

目录 第一部分:摘要 (3) 第二部分:方案的选择及改进 (4) 第三部分:电路工作原理及其原理图 (5) 电路工作原理 (5) 电路原理图 (5) 第四部分:主要元件介绍 (6) 第五部分:所用仪器及元件清单 (7) 第六部分:电路波形及数据分析 (8) 电源电压 (8) 负载两端 (9) 可控硅两端 (11) 电容两端 (14) 可控硅门极 (17) 波形处理及分析 (19) 第七部分:总结 (19) 第八部分:参考文献 (20)

一、摘要 交流调压电路是采用相位控制方式的交流电力控制电路,通常是将两个晶闸管反并联后串联在每相交流电源与负载之间。在电源的每半个周期内触发一次晶闸管,使之导通。与相控整流电路一样,通过控制晶闸管开通时所对应的相位,可以方便的调节交流输出电压的有值,从而达到交流调压的目的。其晶闸管可以利用电源自然换相,无需强迫关掉电路,并可实现电压的平滑调节,系统响应速度较快,但它也存在深控时功率因数较低,易产生高次谐波等缺点。单相交流调压电路是对单相交流电的电压进行调节的电路。交流调压电路主要应用在电热控制、交流电动机速度控制、交流稳压器等场合,主要有灯光调节(如调光台灯、舞台灯光控制等),温度调节(如工频加热、感应加热、需控制的家用电器等),泵及风机等异步电动机的软起动,交流电机的调压调速(如纺织、造纸、冶金等领域的调压调速),随电机负载大小自动调压(对于起动机等有较长时间空载或轻载的负荷,自动调压可以节省电能),变压器初级调压(在高压小电流或低压大电流直流电源中,如采用晶闸管相孔整流电路,需要很多晶闸管串联或并联,若采用交流调压电路在变压器初级调压。其电压电流值都比较合理,在变压器次级只要用二极管整流即可,从而达到减少体积、减低成本的目的)。与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。

晶闸管调光电路的安装与调试课程案例

《晶闸管调光电路的安装与调试》项目案例 ————调光灯的电路制作与调试调光灯在日常生活中的应用非常广泛,其种类也很多。下图a是常见的卡通调光台灯。旋动调光旋钮便可以调节灯泡的亮度。 ( a )调光灯 ( b )调光灯原理图 1.电子调光的作用 随着社会的发展,人类对生活水平的要求越来越高。如今患近视病的人越来越多,这不仅仅是因为用眼过度所引起的,还与我们工作环境的光线程度密切的关系。为了我们能在一个舒适的光线下工作,故设计该产品,以便我们能人工改变环境的光线强度。这不仅仅大大降低我们换眼疾的概率,还可以节能。 2. 设计思路

市场一般是220V交流电,但是电子调光电路中选用的是低电压直流灯泡。故此电路中需要变压器和整理电路,另外需要控制灯泡的亮度,所以需要一个控制电路,从而对输出电压占空比进行调节,这里还需要一个斩波电路,从而来控制灯泡亮度。 3. 制作与调试 (1)按材料清单清点元器件 元件名称规格数量 VD1~VD4 二极管IN4007 5 V5 晶闸管BT1690 1 VT 单结晶体管BT33 1 VD Z稳压二极管8,.2V 1 R1 电阻器200Ω 1 R2 电阻器330Ω 1 R3 电阻器100Ω 1 R4 电阻器10kΩ 1 R5 电位100kΩ器 1 C 涤纶电容器0.1μ F 1 HL 灯泡12V25W 1 灯座 1 电源线 1 导线若干 印制板 1 (2)对照原理图b 看懂装配图,将图上的电路符号与实物对照。 (3) 检查印制板看是否有开路、短路、隐患。 (4)装接前的准备 1)用万用表测试各元件的主要参数,及时更换存在质量的元器件。 2)将所有元器件引脚上的漆膜、氧化膜清除干净,对导线进行搪锡。 3)根据要求对各元器件进行整形。 (5)装接 1)有极性的元器件二极管、晶闸管、单结晶体管等,在安装时要注意极性,切勿装错。 2)所有元器件尽量贴近线路板安装。 3)开关电位器要用螺母固定在印制板开关的孔上,电位器用导线连接到线路板的所

晶闸管直流调光电路讲解

郑州科技学院 《模拟电子技术》课程设计 题目 学生姓名 专业班级 学号 院(系) 指导教师 完成时间

目录 1课程设计的目的 (1) 2 课程设计的任务与要求 (1) 3设计方案与论证 (2) 3.1 设计方案 (2) 3.2 设计论证 (3) 4设计原理及功能说明 (4) 4.1 设计原理 (4) 4.2工作原理图当中各个元器件的功能说明 (5) 5 单元电路的设计及说明 (6) 5.1 主电路的说明 (6) 5.1.1 主电路核心器件的说明 (6) 5.1.2 主电路的设计及分析 (7) 5.2 驱动电路介绍说明 (9) 5.2.1 驱动电路核心器件介绍 (9) 5.2.2 驱动电路的组成及说明 (13) 6硬件的安装与调试 (15) 6.1 晶闸管调光电路的安装 (15)

6.2 晶闸管调光电路的调试 (15) 6.3 晶闸管调光电路故障分析及处理 (15) 7 总结 (16) 参考文献 (17) 附录1:总体电路原理图 (18) 附录2:元件清单如下表: (19)

1课程设计的目的 课程设计是课程的总结性教学环节,是培养我们综合运用本门课程及有关先修课程的基本知识去解决某一实际问题的基本训练,加深对该课程知识的理解。在整个教学计划中,它起着培养我们独立工作能力的重要作用。通过本课程设计, 主要训练和培养我们的查阅资料,方案的选择的能力。 2 课程设计的任务与要求 1. 课程设计的任务 本课程设计的任务主要是利用晶闸管所受电压的大小,调节发光二极管的亮度,并且比较一些元器件实际输出波形与理论波形的区别。同时,也让我从实际动手当中知道在制作过程中常见一些困难,及解决这些困难的方法。 2. 课程设计的要求 本课程设计主要是对工作原理方面、制作工艺方面等方面作出要求具体如下所述 (1)工作原理要求: 对整流之后加在晶闸管两端的电压的大小进行控制调节,其驱动调节的工作要求如下: 1)触发信号要有足够的功率。 2)触发信号波形应有一定的宽度,脉冲前沿尽可能的陡,以使元件再触发导通后阳极电流能迅速上升超过擎住电流而导通。 3)为使晶闸管在每个周期都在相同的控制角触发导通,触发脉冲必须与晶闸管的阳极电压同步,且脉冲与电源波形保持固定的相位关系。

双向可控硅原理与应用

[转载] 双向可控硅原理与应用 普通晶闸管(VS)实质上属于直流控制器件。要控制交流负载,必须将两只晶闸管反极性并联,让每只SCR控制一个半波,为此需两套独立的触发电路,使用不够方便。双向晶闸管是在普通晶闸管的基础上发展而成的,它不仅能代替两只反极性并联的晶闸管,而且仅需一个触发电路,是目前比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。 构造原理 尽管从形式上可将双向晶闸管看成两只普通晶闸管的组合,但实 际上它是由7只晶体管和多只电阻构成的功率集成器件。小功率 双向晶闸管一般采用塑料封装,有的还带散热板,外形如图l所 示。典型产品有BCMlAM(1A/600V)、 BCM3AM(3A/600V)、 2N6075(4A/600V),MAC218-10(8A/800V)等。大功率双向晶 闸管大多采用RD91型封装。双向晶闸管的主要参数见附表。 双向晶闸管的结构与符号见图2。它属于NPNPN五层器件,三 个电极分别是T1、T2、G。因该器件可以双向导通,故除门极G 以外的两个电极统称为主端子,用T1、T2。表示,不再划分成阳 极或阴极。其特点是,当G极和T2极相对于T1,的电压均为正 时,T2是阳极,T1是阴极。反之,当G极和T2极相对于T1的电压均为负时,T1变成阳极,T2为阴极。双向晶闸管的伏安特性见图3,由于正、反向特性曲线具有对称性,所以它可在任何一个方向导通。 检测方法 下面介绍利用万用表RXl档判定双向晶闸管电极的方法,同时还检查触发能力。 1. 判定T2极由图2可见,G极与T1极靠近,距T2极较远。因此,G—T1之间的正、反向电阻 都很小。在用RXl档测任意两脚之间的电阻时,只有在G-T1之间呈现低阻,正、反向电阻仅几 十欧,而T2-G、T2-T1之间的正、反向电阻均为无穷大。这表明,如果测出某脚和其他两脚都 不通,就肯定是T2极。,另外,采用TO—220封装的双向晶闸管,T2极通常与小散热板连通, 据此亦可确定T2极 2. 区分G极和T1极 (1)找出T2极之后,首先假定剩下两脚中某一脚为Tl极,另一脚为G极。 (2)把黑表笔接T1极,红表笔接T2极,电阻为无穷大。接着用红表笔尖把T2与G短路,给G极加 上负触发信号,电阻值应为十欧左右(参见图4(a)),证明管子已经导通,导通方向为T1一T2。再将 红表笔尖与G极脱开(但仍接T2),若电阻值保持不变,证明管子在触发之后能维持导通状态(见图4(b))。 3)把红表笔接T1极,黑表笔接T2极,然后使T2与G短路,给G极加上正触发信号,电阻值仍为十欧左右,与G极脱开后若阻值不变,则说明管子经触发后, 在T2一T1方向上也能维持导通状态,因此具有双向触 发性质。由此证明上述假定正确。否则是假定与实际不符, 需再作出假定,重复以上测量。显见,在识别G、T1, 的过程中,也就检查了双向晶闸管的触发能力。如果按哪 种假定去测量,都不能使双向晶闸管触发导通,证明管于 巳损坏。对于lA的管子,亦可用RXl0档检测,对于3A 及3A以上的管子,应选RXl档,否则难以维持导通状态。 典型应用 双向晶闸管可广泛用于工业、交通、家用电器等领域,实 现交流调压、电机调速、交流开关、路灯自动开启与关闭、 温度控制、台灯调光、舞台调光等多种功能,它还被用于 固态继电器(SSR)和固态接触器电路中。图5是由双向晶 闸管构成的接近开关电路。R为门极限流电阻,JAG为干式舌簧管。平时JAG断开,双向晶闸管TRIAC也关断。仅当小磁铁移近时JAG吸合,使双向晶闸管导通,将负载电源接通。由于通过 干簧管的电流很小,时间仅几微秒,所以开关的寿命很长. 图6是过零触发型交流固态继电器(AC-SSR)的内部电路。主要包括输入电路、光电耦合器、过零触发电路、开关电路(包括双向晶闸管)、保护电路(RC吸收网络)。当加上输入信号VI(一般为高电平)、并且交流负载电源电压通过零点时,双向晶闸管被触发,将负载电源接通。固态继电器具有驱动功率小、无触点、噪音低、抗干扰能力强,吸合、释放时间短、寿命长,能与TTL\CMOS电路兼容,可取代传统的电磁继电器。

台灯可控硅调光电路

电子技术课程设计 25W台灯可控硅调光电路设计 班级:通信11151班 学号: 姓名: 小组成员: 完成日期: 2013-7-13

目录 一、设计任务与要求 二、设计方案、原理框图与功能、指标描述 三、各个部件电路图、原理分析与设计、元器件计算与选型 四、调试步骤、试验步骤、指标测试 五、总电路图、总元器件表 六、设计总结与展望 七、设计人(承担的具体任务),同组人

一、设计任务与要求 通过设计该电路,掌握单结晶体管触发电路的工作原理及电路焊接、调试;掌握可控硅调光电路的工作原理及电路焊接、调试。在设计电路的设计过程中,通过上网或查阅参考资料,提高自己独立分析问题、解决问题的能力。了解各种常见电子器件的特性,学会撰写课程设计报告。 二、设计方案、原理框图与功能、指标描述设计方案、原理框图 图1 晶体管触发可控硅的可调光电路 功能、指标描述 该方案可根据不同的环境对光的需求不同来调整在不同光强下打开或关闭电灯。调光台灯的电路仅是一个可控硅调电压的电路,当支路电流的正半周或负半周到来时,经过全桥整流,加到可控硅上的电压是单向的、该电压通过电位器给电容充电,当电容上的电压达到一定的数值后,就会触发可控硅导通,调节电位器的旋钮,可以改变

充电时间,从而控制可控硅的导通角。 三、各个部件电路图、原理分析与设计、元器件计算与选型 图2 单结晶体管触发电路 (1)双基极二极管的结构 该电路主要的核心为单结晶体管BT33 单结晶体管BT33管脚排列、结构图及电路符号如图2所示。好 的单结晶体管PN结正向电阻R EB1、R EB2均较小,且R EB1稍大于R EB2, PN结的反响电阻R B1E、R B2E均应很大,根据所测阻值,即可判断出各 管脚及管子的质量优劣。 (2)双基极二极管的工作原理 将双基极二极管接于电路之中,观察其特性。首先在两个基极之

十二篇可控硅交流调压电路解析

第一篇: 可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器。这里介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。这台调压器的输出功率达100W,一般家用电器都能使用。 1:电路原理:电路图如下 可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。在交流电的正半周时,整流电压通过R4、W1对电容C充电。当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。当交流电通过零点时,可控硅自关断。当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。 2:元器件选择 调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其佘的都用功率为1/8W的碳膜电阻。D1—D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系例。 第二篇: 本例介绍的温度控制器,具有SB260取材方便、性能可靠等特点,可用于种子催芽、食用菌培养、幼畜饲养及禽蛋卵化等方面的温度控制,也可用于控制电热毯、小功率电暖器等家用电器。

调光电路图全集

调光电路图全集一.自动调光灯电路图 二.台灯调光器电路图

· [图文] 可控硅调光灯电路-TRIAC Light Dimmer · [组图] NB7232触摸无级调光调速电路原理及应用 · [图文] 放大机曝光仪表 · [图文] CMOS触摸式调光器 · [图文] 相位控制调光器 · [图文] 低压负载调光器 · [图文] 荧光灯光控自动调光器 · [图文] 一种家用调光电路 · [图文] 自制家用调光、调速器 · [组图] 双联三控开关电路图 · [图文] led调光电路图 · [组图] 直流调压电路图 · [图文] 单向可控硅调压电路 · [图文] 双向可控硅调光电路图 · [图文] 单向可控硅调光电路 · [图文] 自动调光灯电路图 · [图文] 用触发二极管的调光电路图 · [图文] 用UJT控制的调光电路图 · [图文] 用LS7232的触摸调光器电路图 · [图文] 荧火灯调光电路图2 · [图文] 荧光灯调光电路图 · [图文] 遥控无级调光灯电路图 · [图文] 性能优良的触摸调光器电路图 · [图文] 新颖简单的调光器电路图 · [图文] 小功率调光电路 · [图文] 台灯调光器电路图 · [图文] 实用调光器电路图 · [图文] 模块控制的调光器电路图 · [图文] 廉价的灯光调节器电路图 · [图文] 交叉调光电路图 · [图文] 键控式调光灯电路图二例 · [图文] 简易混合调光器电路图 · [组图] 简易光控自动调光灯电路图 · [图文] 简单的无滞后调光电路图 · [图文] 简单的调光器电路图 · [图文] 简单的调光电路图 · [图文] 级联交叉调光器电路图 · [图文] 互补式调光电路图

基于Multisim 10的晶闸管调光电路的设计与仿真分析

基于Multisim 10的晶闸管调光电路的设计与仿 真分析 时间:2012-08-01 18:06:10 来源:现代电子技术作者:罗庚兴,张艳摘要:晶闸管调光电路是模拟电路的课程教学和中级维修电工电子技术实训教学中的一个重点和难点内容。在教学中应用Multisim 10仿真软件,研究控制角对输出电压的影响,仿真结果与理论分析计算一致。计算机仿真辅助教学可以使课堂教学更形象、更直观,使复杂深奥的知识简单化,从而加深学生对理论知识的理解,提高教学效率,取得很好的教学效果。 关键词:Multisim 10;晶闸管;调光电路;计算机仿真 调光电路在日常生活中应用较为广泛。在教学中,它不仅是学习晶闸管应用的入门电路,也是中级维修电工电子技能实训的经典项目。调光电路内容涉及广,具体包括晶闸管、单相半波可控整流电路、单结晶体管触发电路等工作原理,以及控制角和同步触发的概念、控制角对被控电压的影响等。对于学生来说,要理解和掌握这些知识点,借助传统的仪器仪表获取波形图来分析无疑具有很大的挑战性。利用Multisim10软件进行实验仿真,可以动态直观地观察不同参数对调光电路性能的影响,对于理解原理,熟悉调试过程具有很大的帮助。 1 Multisim10简介 Multisim 10是美国国家仪器公司最新推出的版本。Multisim 10用软件的方法虚拟电子与电工元器件,虚拟电子与电工仪器和仪表,实现

了“软件即元器件”、“软件即仪器”,是一个原理电路设计、电路功能测试的虚拟仿真软件。 Multisim10的元器件库提供了千种电路元器件供实验选用,也可以新建或扩充已有的元器件库,因此也很方便的在工程设计中使用。Mu ltisim10的虚拟测试仪器仪表种类齐全,有一般实验用的通用仪器,如万用表、函数信号发生器、双踪示波器、直流电源;而且还有一般实验室少有或没有的仪器,如波特图仪、字信号发生器等。 Multisim 10不仅可以设计、测试和演示各种电子电路,而且还具有较为详细的电路分析功能。可以完成电路的瞬态分析和稳态分析、时域和频域分析等电路分析方法,以帮助设计人员分析电路的性能。 2 调光电路设计 2.1 电路组成 调光电路如图1所示,由整流电路、触发电路和主电路3部分组成。VD1~VD4组成的桥式整流电路和稳压管VD2组成的稳压电路产生一个梯形波电压,用来作为单结晶体管的电源电压,也用来保证触发电路与主电路同步。充电回路(R2+R3)C1和可编程单结晶体管PUT构成触发电路,用来产生晶闸管的同步触发脉冲。主电路由晶闸管VT1和照明灯X1组成,电源直接由220 V市电提供。 2.2 调光原理 接通电源前,电容C1上电压为零。接通电源后,电容C1经由R2、R3充电,电容的电压uC逐渐升高。当达到峰点电压UP时,PUT的e~

实验四可控硅调光电路

实验四 可控硅调光电路 一.实验目的 1. 了解由晶闸管构成的调光电路的结构和工作原理。 2. 观察各部分的电压波形,加深理解晶闸管可控整流电路的工作原理 二.电路原理简述 可控整流电路的作用是把交流电变换为电压值可以调节的直流电,图4-1所示为单相半控桥式整流实验电路,主电路由负载R d (白炽灯泡)和晶闸管T 1组成,触发电路为单结晶体管T 2及阻容元件构成的阻容移相触发电路。改变晶闸管T 1的导通角,使可调节主电路的可控整流电压(或电流)的数值,这点可由电灯负载的亮度变化看出,晶闸管导通角的大小决定于触发脉冲的频率f ,由公式 ??? ? ??-= η 1111 n RC f 可知,当单结晶体管的分压比η(一般在0.5~0.8之间)及电容C 值固定时,则频率f 大小由RW 决定,因此,通过调节电位器R W ,就可以改变触发脉冲频率,主电路的输出电压也随之改变,从而达到可控调压的目的。关于单结晶体管为何能产生触发脉冲以及它的负阻效应,请参考教材和有关的文献,因篇幅有限,不便详细阐述。 图4-1 用万用表的电阻档可对单结晶体管和晶闸管进行简易测试。图4-2为单结晶体管BT33管脚排列,结构图及电路符号,好的单结晶体管PN 结正向电阻R EB1、R EB2均较小,且R EB1稍大于R EB2,PN 结的反向电阻R B1E 、R B2E 应很大,根据所测阻值,即可判断出各管脚及管的质量优势。

(a)(b)(c) 图4-2 图4-3为晶闸管BT151管脚排列、结构图及电路符号。晶闸管阳极(A)- 阴极(K)及阳极(A)-门极(G)之间的正反向电阻R AK、R KA、R AG、R GA均应很大, 而G-K之间为一个PN结,PN结正向电阻应较小,反向电阻应很大。 (a)(b)(c) 图4-3 三.实验设备 名称数量型号 1.交直流稳压电源 1台 MC1095E 2.通用示波器 1台 3.万用表 1只 500型/MF47型 4.直流电流表 1只 5.二极管 5只 1N4007*5 6.稳压二极管 1只 9.1V*1 7.电容 1只 0.047μF*1 8.电阻 4只 100Ω/2W*1 300Ω/1W*1 510Ω/2W*1 2kΩ/1W*1 9.电位器 1只 470kΩ*1 10. 可控硅 1只 BT151 11. 单结晶体管 1只 BT33 12. 灯座(配白炽灯泡) 1只 24V/2W 13. 短接桥和连接导线若干 P8-1和50148 14. 实验用9孔插件方板 297mm×300mm

相关文档
相关文档 最新文档