文档库 最新最全的文档下载
当前位置:文档库 › 简谐振动与图像

简谐振动与图像

简谐振动与图像
简谐振动与图像

简谐振动与图像

1.某质点做简谐运动,其位移随时间变化的关系式为x=A sin π

4t,则质点

().

A.第1 s末与第3 s末的位移相同

B.第1 s末与第3 s末的速度相同

C.3 s末至5 s末的位移方向都相同

D.3 s末至5 s末的速度方向都相同图1-5

2.一质点做简谐运动的振动图象如图1-5所示,

(1)该质点振动的振幅是________ cm,周期是________ s,初相是________.

(2)写出该质点做简谐运动的表达式,并求出当t=1 s时质点的位移.

3.(2013·上海单科,4)做简谐振动的物体,当它每次经过同一位置时,可能不同的物理量是().

A.位移B.速度

C.加速度D.回复力

4.如图1-8所示,弹簧振子在振动过程中,振子从a到b历时0.2 s,振子经a、b两点时速度相同,若它从b再回到a的最短时间为0.4 s,则该振子的振动频率为().

A.1 Hz B.1.25 Hz

C.2 Hz D.2.5 Hz

5(2012·北京理综,17)一个弹簧振子沿x轴做简谐运动,取平衡位置O为x轴坐标原点.从某时刻开始计时,经过四分之一周期,振子具有沿x轴正方向的最大加速度.能正确反映振子位移x与时间t关系的图象是().

6.如图1-9所示为某弹簧振子在0~5 s内的振动图象,由图可知,下列说法中正确的是().

A.振动周期为5 s,振幅为8 cm

B.第2 s末振子的速度为零,加速度为负向的最大值

C.第3 s末振子的速度为正向的最大值

D.从第1 s末到第2 s末振子在做加速运动7.如图1-10甲所示,弹簧振子以O点为平衡位置,在A、B两点之间做简谐运动.取向右为正方向,振子的位移x随时间t的变化如图乙所示,下列说法正确的是().

图1-10

A.t=0.8 s时,振子的速度方向向左

B.t=0.2 s时,振子在O点右侧6 cm处

C.t=0.4 s和t=1.2 s时,振子的加速度完全相同

D.t=0.4 s到t=0.8 s的时间内,振子的速度逐渐减小

1.(2012·重庆理综,14)装有砂粒的试管竖直静浮于水面,如图所

示.将试管竖直提起少许,然后由静止释放并开始计时,在一定时间

内试管在竖直方向近似做简谐运动.若取竖直向上为正方向,则以下

描述试管振动的图象中可能正确的是().

2.(2011·上海单科,5)两个相同的单摆静

止于平衡位置,使摆球分别以水平初速度v1、

v2(v1>v2)在竖直平面内做小角度摆动,它们

的频率与振幅分别为f1、f2和A1、A2,则().A.f1>f2,A1=A2B.f1<f2,A1=A2

C.f1=f2,A1>A2D.f1=f2,A1<A2

3.(2011·江苏单科·12B(3))将一劲度系数为k的轻质弹簧竖直悬挂,下端系上质量为m的物块.将物块向下拉离平衡位置后松开,物块上下做简谐运动,其振动周期恰好等于以物块平衡时弹簧的伸长量为摆长的单摆周期.请由单摆的周期公式推算出该物块做简谐运动的周期T.

图1-18

4.(单选)一弹簧振子做简谐运动,它所受的回复力F随时间t变化的图象为正弦曲线,如图1-18所示,下列说法正确的是().

A.在t从0到2 s时间内,弹簧振子做加速运动

B.在t1=3 s和t2=5 s时,弹簧振子的速度大小相等,方向相反

C.在t2=5 s和t3=7 s时,弹簧振子的位移大小相等,方向相同

D.在t从0到4 s时间内,t=2 s时刻弹簧振子所受回复力做功的功率最大

图1-19

5.(1)(多选)将一个电动传感器接到计算机上,就可以测量快速变化的力,用这种方法测得的某单摆摆动时悬线上拉力的大小随时间变化的曲线如图1-19所示.某同学由此图象提供的信息作出的下列判断中,正确的是________.A.t=0.2 s时摆球正经过最低点

B.t=1.1 s时摆球正经过最低点

C.摆球摆动过程中机械能减小

D.摆球摆动的周期是T=1.4 s

图1-20

(2)(多选)如图1-20所示为同一地点的两单摆甲、乙的振动图象,下列说法中正确的是________.

A.甲、乙两单摆的摆长相等

B.甲摆的振幅比乙摆大

C.甲摆的机械能比乙摆大

D.在t=0.5 s时有正向最大加速度的是乙摆

6.[2013·江苏单科,12B(1)](单选)如图1-16所示的装置,弹簧振子的固有频率是4 Hz.现匀速转动把手,给弹簧振子以周期性的

驱动力,测得弹簧振子振动达到稳定时的频率为1 Hz,则把手转动

的频率为________.

A.1 Hz B.3 Hz

C.4 Hz D.5 Hz

图1-21

7.(2013·安徽理综,24)如图1-21所示,质量为M、倾角为α的斜面体(斜面光滑且足够长)放在粗糙的水平地面上,底部与地面的动摩擦因数为μ,斜面顶端与劲度系数为k、自然长度为L的轻质弹簧相连,弹簧的另一端连接着质量为

m的物块.压缩弹簧使其长度为3

4L时将物块由静止开始释放,且物块在以后的

运动中,斜面体始终处于静止状态.重力加速度为g.

(1)求物块处于平衡位置时弹簧的长度;

(2)选物块的平衡位置为坐标原点,沿斜面向下为正方向建立坐标轴,用x

表示物块相对于平衡位置的位移,证明物块做简谐运动;

(3)求弹簧的最大伸长量;

(4)为使斜面体始终处于静止状态,动摩擦因数μ应满足什么条件(假设滑动摩擦力等于最大静摩擦力)?

答案(1)L+mg sin α

k(3)

L

4+

2mg sin α

k(4)μ≥

(kL+4mg sin α)cos α

4Mg+4mg cos2α-kL sin α

8.一质点做简谐运动,其位移和时间关系如图1-14所示.

(1)求t=0.25×10-2 s时的位移;

(2)在t=1.5×10-2s到2×10-2s的振动过程中,质点的位移、回复力、速度、动能、势能如何变化?

(3)在t=0到8.5×10-2 s时间内,质点的路程、位移各多大?

9.如图1-15所示为一弹簧振子的振动图象,求:

图1-15

(1)该振子简谐运动的表达式.

(2)在第2 s末到第3 s末这段时间内,弹簧振子的加速度、速度、动能和弹性势能各是怎样变化的?

(3)该振子在前100 s的总位移是多少?路程是多少?

机械振动和机械波知识点总结与典型例题

高三物理第一轮复习《机械振动和机械波》 一、机械振动: (一)夯实基础: 1、简谐运动、振幅、周期和频率: (1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。 特征是:F=-kx,a=-kx/m (2)简谐运动的规律: ①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。 ②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。 ③振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。 ④当质点向远离平衡位置的方向运动时,质点的速度减小、动量减小、动能减小,但位移增大、回复力增大、加速度增大、势能增大,质点做加速度增大减速运动;当质点向平衡位置靠近时,质点的速度增大、动量增大、动能增大,但位移减小、回复力减小、加速度减小、势能减小,质点做加速度减小的加速运动。 ④弹簧振子周期:T= 2 (与振子质量有关,与振幅无关) (3)振幅A :振动物体离开平衡位置的最大距离称为振幅。它是描述振动强弱的物理量, 是标量。 (4)周期T 和频率f :振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为频率,单位是赫兹(Hz )。周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f. 2、单摆: (1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。 (2)单摆的特点: ○ 1单摆是实际摆的理想化,是一个理想模型; ○ 2单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ○3单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角α<100 时,单摆的振动是简谐运动,其振动周期T= g L π 2。 (3)单摆的应用:○1计时器;○2测定重力加速度g=2 24T L π. 3、受迫振动和共振: (1)受迫振动:物体在周期性驱动力作用下的振动叫受迫振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 (2)共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。 ○ 2产生共振的条件:驱动力频率等于物体固有频率。○3共振的应用:转速计、共振筛。 4、简谐运动图象: (1)特点:用演示实验证明简谐运动的图象是一条正弦(或余弦)曲线。 (2)简谐运动图象的应用: ①可求出任一时刻振动质点的位移。 ②可求振幅A :位移的正负最大值。 ③可求周期T :两相邻的位移和速度完全相同的状态的时间间隔。 ④可确定任一时刻加速度的方向。 ⑤可求任一时刻速度的方向。 ⑥可判断某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。 πm K

机械振动第1节简谐运动讲义-人教版高中物理选修3-4讲义练习

第1节简谐运动 1.平衡位置是振子原来静止的位置,振子在其附近 所做的往复运动,是一种机械振动,简称振动。 2.如果质点的位移与时间的关系遵从正弦函数的规 律,即它的振动图像(x-t图像)是一条正弦曲线, 这样的振动叫做简谐运动,它是一种最简单、最基 本的振动,是一种周期性运动。 3.简谐运动的位移一时间图像表示质点离开平衡位 置的位移随时间变化的关系,而非质点的运动轨 迹。由该图像可以确定质点在任意时刻偏离平衡位 置的位移和运动情况。 一、弹簧振子 1.弹簧振子 如图所示,如果球与杆或斜面之间的摩擦可以忽略,且弹簧的质量与小球相比也可以忽略,则该装置为弹簧振子。 2.平衡位置 振子原来静止时的位置。 3.机械振动 振子在平衡位置附近所做的往复运动,简称振动。 二、弹簧振子的位移—时间图像 1.振动位移 从平衡位置指向振子某时刻所在位置的有向线段。 2.建立坐标系的方法 以小球的平衡位置为坐标原点,沿振动方向建立坐标轴。一般规定小球在平衡位置右边(或上边)时,位移为正,在平衡位置左边(或下边)时,位移为负。 3.图像绘制 用频闪照相的方法来显示振子在不同时刻的位置。

三、简谐运动及其图像 1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 2.特点:简谐运动是最简单、最基本的振动,其振动过程关于平衡位置对称,是一种往复运动。弹簧振子的运动就是简谐运动。 3.简谐运动的图像 (1)形状:正弦曲线,凡是能写成x=A sin(ωt+φ)的曲线均为正弦曲线。 (2)物理意义:表示振动的质点在不同时刻偏离平衡位置的位移,是位移随时间的变化规律。 1.自主思考——判一判 (1)平衡位置即速度为零时的位置。(×) (2)平衡位置为振子能保持静止的位置。(√) (3)振子的位移-5 cm小于1 cm。(×) (4)简谐运动的轨迹是一条正弦(或余弦)曲线。(×) (5)简谐运动是一种匀变速直线运动。(×) 2.合作探究——议一议 (1)简谐运动与我们熟悉的匀速运动比较,速度有何不同的特点?如何判断一个物体的运动是不是简谐运动? 提示:简谐运动与匀速运动的区别在于其速度大小、方向都不断变化,只要质点的位移随时间按正弦规律变化,则这个质点的运动就是简谐运动。 (2)如图所示为振子的位移—时间图像,振子的位移—时间图像就是振子的运动轨迹吗? 提示:图像描述的是振动物体的位移随时间的变化规律,并不是物体的运动轨迹。

第一节 简谐运动选择题1

填空题 1、简谐运动的物体由极端位置向平衡位置所做的运动是[ ] A 匀加速运动 B 加速度不断增大的加速运动 C 加速度不断减小的加速运动 D 加速度不断增大的减速运动 2、弹簧振子作简谐运动时,以下说法正确的是[] A 振子通过平衡位置时,回复力一定为零 B 振子若做减速运动,加速度一定在增加 C 振子向平衡位置运动时,加速度一定与速度方向一致 D 在平衡位置两侧,振子速率相同的两个位置是相对平衡位置对称的 3、做简谐运动的物体,当它们每次经过同一位置时,有可能不同的物理量是[] A 位移 B 回复力 C 加速度 D 速度 4、一弹簧振子周期为2.4s,当它从平衡位置向右运动了1.5s 时,其运动情况是[] A 向右减速 B 向左减速 C 向右加速 D 向左加速 5、如图所示弹簧振子,振子质量为2.0×102g,作简谐运动,当它到达平衡位置左侧2.0cm 时受到的回复力是0.40N,当它运动到平衡位置右侧4.0cm处时,加速度为:[] A 2ms-2向右 B 2ms-2向左 C 4ms-2向右 D 4ms-2向左 6、上题中,若弹簧振子的振幅为8cm,此弹簧振子振动的周期为:[ ] A 0.63s B 2s C 8s D 条件不足,无法判断 7、对于作简谐运动的物体,其回复力和位移的关系可用下述哪个图像表示:[]

8、弹簧振子在BC间作简谐运动,O为平衡位置,BC间距离为10cm,由B→C运动时间为1s,则[ ] A 从B开始经过0.25s,振子通过的路程是2.5cm B 经过两次全振动,振子通过的路程为40cm C 振动周期为1s,振幅为10cm D 从B→O→C振子做了一次全振动 9、下列关于简谐运动周期、频率、振幅说法那些正确:[] A 振幅是矢量,方向是由平衡位置指向极端位置 B 周期和频率的乘积为一常数 C 振幅增大,周期随它增大,频率减小 D 做简谐运动系统一定,其振动频率便一定,与振幅无关 10、如图所示,把一个有槽的物体B与弹簧相连,使B在光滑水平面上做简谐运动,振幅为A1.当B恰好经过平衡位置,把另一个物体C轻轻的放在(C速度可以认为是零)B的槽内,BC共同作践谐振动的振幅为A2.比较A1和A2的大小:[ ] A、A1=A2 B、A1>A2 C、A1

(完整版)机械振动和机械波练习题【含答案】

机械振动和机械波练习题 一、选择题 1.关于简谐运动的下列说法中,正确的是[ ] A.位移减小时,加速度减小,速度增大 B.位移方向总跟加速度方向相反,跟速度方向相同 C.物体的运动方向指向平衡位置时,速度方向跟位移方向相反;背向平衡位置时,速度方向跟位移方向相同 D.水平弹簧振子朝左运动时,加速度方向跟速度方向相同,朝右运动时,加速度方向跟速度方向相反 2.弹簧振子做简谐运动时,从振子经过某一位置A开始计时,则[ ] A.当振子再次与零时刻的速度相同时,经过的时间一定是半周期 B.当振子再次经过A时,经过的时间一定是半周期 C.当振子的加速度再次与零时刻的加速度相同时,一定又到达位置A D.一定还有另一个位置跟位置A有相同的位移 3.如图1所示,两木块A和B叠放在光滑水平面上,质量分别为m和M,A与B之间的最大静摩擦力为f,B与劲度系数为k的轻质弹簧连接构成弹簧振子。为使A和B在振动过程中不发生相对滑动,则[ ] 4.若单摆的摆长不变,摆球的质量增为原来的4倍,摆球经过平衡位置时的速度减少为原来的二分之一,则单摆的振动跟原来相比 [ ] A.频率不变,机械能不变B.频率不变,机械能改变 C.频率改变,机械能改变D.频率改变,机械能不变 5.一质点做简谐运动的振动图象如图2所示,质点在哪两段时间内的速度与加速度方向相同[ ] A.0~0.3s和0.3~0.6s B.0.6~0.9s和0.9~1.2s C.0~0.3s和0.9~1.2s D.0.3~0.6s和0.9~1.2s

6.如图3所示,为一弹簧振子在水平面做简谐运动的位移一时间图象。则此振动系统[ ] A.在t1和t3时刻具有相同的动能和动量 B.在t3和t4时刻振子具有相同的势能和动量 C.在t1和t4时刻振子具有相同的加速度 D.在t2和t5时刻振子所受回复力大小之比为2∶1 7.摆A振动60次的同时,单摆B振动30次,它们周期分别为T1和T2,频率分别为f1和f2,则T1∶T2和f1∶f2分别等于[ ] A.2∶1,2∶1B.2∶1,1∶2 C.1∶2,2∶1 D.1∶1,1∶2 8.一个直径为d的空心金属球壳内充满水后,用一根长为L的轻质细线悬挂起来形成一个单摆,如图4所示。若在摆动过程中,球壳内的水从底端的小孔缓慢泄漏,则此摆的周期[ ] B.肯定改变,因为单摆的摆长发生了变化 C.T1先逐渐增大,后又减小,最后又变为T1 D.T1先逐渐减小,后又增大,最后又变为T1 9.如图5所示,AB为半径R=2m的一段光滑圆糟,A、B两点在同一水平高度上,且AB弧长20cm。将一小球由A点释放,则它运动到B点所用时间为[ ]

2019-2020学年高中物理 第十一章 机械振动 第1节 简谐运动教案 新人教版选修3-4.doc

2019-2020学年高中物理第十一章机械振动第1节简谐运动教案 新人教版选修3-4 教学设计说明 本节课是一节物理知识和方法相结合,理论探究和实验探究相结合的探究课。知识层面主要从振动的定义、振动图像的得到、猜想和验证等方面展开探究,这其中涉及了理想化模型的思想、图像法、猜想和验证等物理探究中常用的思想方法,因此本节课知识体系的展开和物理探究方法的展开完全是糅合在一起的。理论探究侧重学生思维能力,对于高中学生而言,比实验探究更具难度,因此本节课的理论探究是教师引导下的学生的探究,主要采用了①与已有知识的对比和迁移②层层递进的问题分解这两种方法来加以引导。学生分组活动的两个实验,一是用特殊值法验证猜想,一是沙漏直接记录法得到x-t图,这两种方法都不是最精确的方法,而课堂中却把最精确的频闪照片方法和位移传感器的记录和验证方法作为演示实验,这样做是为了给学生这样一种观点:科学探究不是遥不可及,不一定要借助很先进的工具和仪器,最简单易行的方法也是好方法。整节课以方法为线索将学生的认知过程与探究过程加以链接,学生在学习物理知识的同时又学习了物理方法,体验提出问题——探索方法(思考设计、类比迁移)——应用方法(知识与方法的领会)——解决问题(知识与方法的获得)的科学探究的一般过程。 教学目标: (一)知识与技能 1、知道什么是弹簧振子,理解振动的平衡位置和位移。 2、知道弹簧振子的位移-时间图象,知道简谐运动及其图象。 (二)过程与方法 通过对简谐运动图象的绘制,认识简谐运动的特点。 (三)情感、态度与价值观 1、通过对简谐运动图象的绘制,培养认真、严谨、实事求是的科学态度。 2、从图象中了解简谐运动的规律,培养分析问题的能力及审美能力(逐步认识客观存在的简洁美、对称美等)。 教学重点: 理解简谐运动的位移-时间图象。 教学难点:

N考核《大学物理学》机械振动与机械波部分练习题

《大学物理学》机械振动与机械波部分练习题(解答) 一、选择题 1.一弹簧振子,当把它水平放置时,它作简谐振动。若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 ( C ) (A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。 2.两个简谐振动的振动曲线如图所示,则有 ( A ) (A )A 超前/2π; (B )A 落后/2π; (C )B 超前/2π; (D )B 落后/2π。 3.一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: ( D ) (A )/4T ; (B )/6T ; (C )/8T ; (D )/12T 。 4.分振动方程分别为13cos(50)4 x t π π=+ 和234cos(50)4 x t π π=+ (SI 制)则它们的合振动表达式为: ( C ) (A )5cos(50)4 x t π π=+; (B )5cos(50)x t π=; (C )115cos(50)27x t tg π π-=+ +; (D )145cos(50)23 x t tg ππ-=++。 5.两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l ?和2l ?,且 1l ?=22l ?,两弹簧振子的周期之比T 1:T 2为 ( B ) (A )2; (B )2; (C )1/2; (D )2/1。 6.一个平面简谐波沿x 轴负方向传播,波速u=10m/s 。x =0处,质点振动曲线如图所示,则该波的表式为 (A ) )2 20 2 cos(2π π π+ + =x t y m ; (B ))220 2 cos(2π π π-+ =x t y m ; (C ))2 20 2 sin( 2π π π ++=x t y m ; (D ))2 20 2 sin( 2π π π - + =x t y m 。 -

(完整word版)机械振动和机械波知识点复习及练习

机械振动和机械波 一 机械振动知识要点 1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a 、物体离开平衡位置后要受到回复力作用。b 、阻力足够小。 ? 回复力:效果力——在振动方向上的合力 ? 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) ? 描述振动的物理量 位移x (m )——均以平衡位置为起点指向末位置 振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动 ? 概念:回复力与位移大小成正比且方向相反的振动 ? 受力特征:kx F -= 运动性质为变加速运动 ? 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大 ? v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同 3. 简谐运动的图象(振动图象) ? 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化 4. 简谐运动的表达式:)2sin( φπ +=t T A x 5. 单摆(理想模型)——在摆角很小时为简谐振动 ? 回复力:重力沿切线方向的分力 ? 周期公式:g l T π 2= (T 与A 、m 、θ无关——等时性) ? 测定重力加速度g,g=2 24T L π 等效摆长L=L 线+r 6. 阻尼振动、受迫振动、共振 阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。 特点:驱受f f = ? 共振:物体在受迫振动中,当驱动力的频率跟物体的固有频率相等的时候,受迫振动的振 幅最大,这种现象叫共振 ? 条件:固驱f f =(共振曲线) 【习题演练一】 1 一弹簧振子在一条直线上做简谐运动,第一次先后经过M 、N 两点时速度v (v ≠0)相同,那么,下列说法正确的是( ) A. 振子在M 、N 两点受回复力相同 B. 振子在M 、N 两点对平衡位置的位移相同 C. 振子在M 、N 两点加速度大小相等 D. 从M 点到N 点,振子先做匀加速运动,后做匀减速运动 2 如图所示,一质点在平衡位置O 点两侧做简谐运动,在它从平衡位置O 出发向最大位移A 处运动过程中经0.15s 第一次通过M 点,再经0.1s 第2次通过M 点。则此后还要经多长时间第3次通过M 点,该质点振动的频率为 3 甲、乙两弹簧振子,振动图象如图所示,则可知( ) A. 两弹簧振子完全相同 B. 两弹簧振子所受回复力最大值之比F 甲∶F 乙=2∶1

高中物理第十一章机械振动第1节简谐运动案新人教版选修

第1节 简谐运动 1.了解什么是机械振动,认识自然界和生产、生活中的振动现象。 2.认识弹簧振子这一物理模型,理解振子的平衡位置和位移随时间变化的图象。 3.理解简谐运动的概念和特点,知道简谐运动的图象是一条正弦曲线。 4.能够利用简谐运动的图象判断位移和速度等信息。 一、弹簧振子 1.平衡位置:振子原来□01静止时的位置。 2.机械振动:振子在□ 02平衡位置附近的往复运动,简称振动。 3.弹簧振子:如图所示,小球套在光滑杆上,如果弹簧的质量与小球相比□03可以忽略,小球□04运动时空气阻力也可以忽略,把小球拉向右方,然后放开,它就在□05平衡位置附近运动起来。这种由□ 06小球和□07弹簧组成的系统称为弹簧振子,有时也简称为振子,弹簧振子是一种理想化模型。 二、弹簧振子的位移—时间图象 1.振动位移:可用从平衡位置指向振子所在位置的□ 01有向线段表示。 2.位移—时间图象:以小球的平衡位置为坐标原点,用横坐标表示振子□ 02振动的时间,纵坐标表示振子□ 03相对平衡位置的位移,建立坐标系,得到位移随时间变化的情况——振动图象。 3.物理意义:反映了振子的□ 04位移随□05时间的变化规律。 4.特点:弹簧振子的位移—时间图象是一条□ 06正(余)弦曲线。 三、简谐运动 1.定义:如果质点的位移与时间的关系遵从□ 01正弦函数的规律,即它的振动图象(x -t 图象)是一条□ 02正弦曲线,这样的振动叫做简谐运动。 2.特点:简谐运动是最简单、最基本的振动,其振动过程关于□ 03平衡位置对称,是一种□04往复运动。弹簧振子的运动就是□ 05简谐运动。

3.简谐运动的图象 (1)简谐运动的图象是振动物体的□06位移随时间的变化规律。 07正弦曲线。 (2)简谐运动的图象是□ 判一判 (1)竖直放于水面上的圆柱形玻璃瓶的上下运动是机械振动。( ) (2)物体的往复运动都是机械振动。( ) (3)弹簧振子的位移是从平衡位置指向振子所在位置的有向线段。( ) (4)简谐运动的图象表示质点振动的轨迹是正弦或余弦曲线。( ) (5)只要质点的位移随时间按正弦函数的规律变化,这个质点的运动就是简谐运动。( ) (6)简谐运动的平衡位置是速度为零时的位置。( ) 提示:(1)√(2)×(3)√(4)×(5)√(6)× 想一想 (1)弹簧振子是一种理想化模型,以前我们还学过哪些理想化模型? 提示:点电荷、质点。 (2)简谐运动与我们熟悉的匀速直线运动比较,速度有何不同的特点?如何判断一个物体的运动是不是简谐运动? 提示:简谐运动与匀速直线运动的区别在于其速度大小、方向都在不断变化。只要物体的位移随时间按正弦函数的规律变化,则这个物体的运动就是简谐运动。 课堂任务弹簧振子 1.机械振动的理解 (1)机械振动的特点 ①振动的轨迹:可能是直线,也可能是曲线(摆钟的摆动)。 ②平衡位置:质点原来静止时的位置。从受力角度看,应该是振动方向上合力为零的位置。 ③振动的特征:振动具有往复性。 (2)机械振动的条件

关于两个简谐振动合成的思考

关于两个简谐运动合成的思考 曾骥敏 (能源与环境学院一卡通:213093696) 【摘要】现在,笔者想着重谈谈李萨茹图形。笔者想首先从大一下学期用示波器做的关于振动的实验中谈起…… 【关键词】简谐运动、李萨茹图形、振动 Thought Of Superposition of Two Simple Harmonic Motions Jimmy Zeng (School of Energy& Environment, number:213093696) Abstract: And now, I want to tell something about Lissajous figures. Let me introduce the experiment used by an oscilloscope I have done in the last semester. Key words: Simple Harmonic Motions, Lissajous figures, oscillation

经过一年大学物理的学习,笔者学习了包括力学、声学、光学、电磁学等许多基础的物理学知识,而笔者想在这里提出的自己关于两个简谐运动合成的一些粗略的思考。 首先,笔者想先提出关于前辈们在这方面所做的贡献。 大学物理中,简单的两个简谐运动的合成可以分成两种类型: (1)两个简谐运动的振动方向一致; (2)两个简谐运动的振动方向相互垂直。 而在每一种分类中,又可将其再细分成两种类型: (a)两个简谐运动拥有相同的角速度ω; (b)两个简谐运动的角速度各不相同,分别为ω 1、ω 2 。 让笔者再对这几种分类简单地做一下具体的说明: (1)当两个简谐运动的振动方向一致时,假设: (a)当两者拥有相同的角速度ω时,

2020春高中人教版物理选修3-4学案:第十一章 第1节 简谐运动 Word版含解析

第十一章机械振动 第1节简谐运动 1.了解什么是机械振动,认识自然界和生产、生活中的振动现象。 2.认识弹簧振子这一物理模型,理解振子的平衡位置和位移随时间变化的图象。 3.理解简谐运动的概念和特点,知道简谐运动的图象是一条正弦曲线。 4.能够利用简谐运动的图象判断位移和速度等信息。 一、弹簧振子 1.平衡位置:振子原来□01静止时的位置。 2.机械振动:振子在□02平衡位置附近的往复运动,简称振动。 3.弹簧振子:如图所示,小球套在光滑杆上,如果弹簧的质量与小球相比□03可以忽略,小球□04运动时空气阻力也可以忽略,把小球拉向右方,然后放开,它就在□05平衡位置附近运动起来。这种由□06小球和□07弹簧组成的系统称为弹簧振子,有时也简称为振子,弹簧振子是一种理想化模型。 二、弹簧振子的位移—时间图象 1.振动位移:可用从平衡位置指向振子所在位置的□01有向线段表示。 2.位移—时间图象:以小球的平衡位置为坐标原点,用横坐标表示振子□02振动的时间,纵坐标表示振子□03相对平衡位置的位移,建立坐标系,得到位移随时

间变化的情况——振动图象。 3.物理意义:反映了振子的□04位移随□05时间的变化规律。 4.特点:弹簧振子的位移—时间图象是一条□06正(余)弦曲线。 三、简谐运动 1.定义:如果质点的位移与时间的关系遵从□01正弦函数的规律,即它的振动图象(x-t图象)是一条□02正弦曲线,这样的振动叫做简谐运动。 2.特点:简谐运动是最简单、最基本的振动,其振动过程关于□03平衡位置对称,是一种□04往复运动。弹簧振子的运动就是□05简谐运动。 3.简谐运动的图象 (1)简谐运动的图象是振动物体的□06位移随时间的变化规律。 (2)简谐运动的图象是□07正弦曲线。 判一判 (1)竖直放于水面上的圆柱形玻璃瓶的上下运动是机械振动。() (2)物体的往复运动都是机械振动。() (3)弹簧振子的位移是从平衡位置指向振子所在位置的有向线段。() (4)简谐运动的图象表示质点振动的轨迹是正弦或余弦曲线。() (5)只要质点的位移随时间按正弦函数的规律变化,这个质点的运动就是简谐运动。() (6)简谐运动的平衡位置是速度为零时的位置。() 提示:(1)√(2)×(3)√(4)×(5)√(6)× 想一想 (1)弹簧振子是一种理想化模型,以前我们还学过哪些理想化模型?

2简谐振动的合成

简谐振动的合成 1. 两个不同的轻质弹簧分别挂上质量相同的物体1和 2, 若它们的振幅之比A 2 /A 1=2, 周期之比T 2 / T 1=2, 则它们的总振动能量之比E 2 / E 1 是( A ) (A) 1 (B) 1/4 (C) 4/1 (D) 2/1 解:振动能量22 2 22221T A m A m E E E p k πω==+= 即 2 12 1 212T A m E π= 2222222T A m E π= 121222222112222 121222 2 222212 12 2 1=??? ???=???? ???=?==∴T T A A T T A A T A m T A m E E ππ 2.有两个同方向的谐振动分别为X 1=4COS(3t+π/4)cm , X 2 =3COS(3t -3π/4)cm, 则合振动的振幅为A=1cm, 初周相为φ=π/4. ∵φ2-φ1=-π ∴A=|A 1-A 2|=|4-3|=1cm φ=φ1=π/4 3. 一质点同时参与两个两个同方向, 同频率的谐振动, 已知其中一个分振动的方程为X 1=4COS3t cm, 其合振动的方程为 X=4COS (3t+π/3)cm, 则另一个分振动的振幅为A 2 =4cm , 初位相φ=2π/3. 3 , 0 ,411π ??= ===cm A A 解:根据题意作旋转矢量图

21A A A 及平行四边形中和 4. 一质点同时参与了三个简谐振动, 它们的振动方程分别为X 1=A COS(ω t+π/3), X 2 =A COS (ωt+5π/3), X 3 =A COS(ωt+π), 其合成运动的运动方程为X=0. 解: 作旋转矢量图 已知A 1=A 2=A 3=A, A 3 且 A A A A =+='21 A 合=0 ∴ x = 0 5. 频率为v 1和v 2的两个音叉同时振动时,可以听到拍 音,若v 1>v 2,则拍的频率是( B ) (A)v 1+v 2 (B)v 1-v 2 (C)(v 1+v 2)/2 (D)(v 1-v 2)/2 O 1 A : 形的对边组成一个正三角 m A A A 4c 12===∴ππ π π ??3 2 3 3 32= + = + =20 )(321=++=∴A A A A 合

机械振动与机械波 答案

衡水学院 理工科专业《大学物理B 》机械振动 机械波 习题解答 命题教师:杜晶晶 试题审核人:杜鹏 一、填空题(每空2分) 1、一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取坐标原点。若t =0时质点第一次通过x =-2cm 处且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为23 s 。 2、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。 (a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为cos(2//2)x A t T ππ=-。 (b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为cos(2//3)x A t T ππ=+。 3、频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距 0.5 m 。。 4、一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是 0.02m ,波长是 2.5m ,频率是 100 Hz 。 5、产生机械波的条件是有 波源 和 连续的介质 。 二、单项选择题(每小题2分) (C )1、一质点作简谐振动的周期是T ,当由平衡位置向x 轴正方向运动时,从1/2最大位移处运动到最大位移处的这段路程所需的时间 为( ) (A )T /12 (B )T /8 (C )T /6 (D ) T /4 ( B )2、两个同周期简谐振动曲线如图1所示,振动曲线1的相位比振动曲线2的相位( ) 图1 (A )落后2π (B )超前2 π (C )落后π (D )超前π ( C )3、机械波的表达式是0.05cos(60.06)y t x ππ=+,式中y 和x 的单位是m ,t 的单位是s ,则( ) (A )波长为5m (B )波速为10m ?s -1 (C )周期为13s (D )波沿x 正方向传播 ( D )4、如图2所示,两列波长为λ的相干波在p 点相遇。波在S 1点的振动初相是1?,点S 1到点p 的距离是r 1。波在S 2点的振动初相是2?,点S 2到点p 的距离是r 2。以k 代表零或正、负整数,则点p 是干涉极大的条件为( ) (A )21r r k π-= (B )212k ??π-= (C )()21212/2r r k ??πλπ-+-= 图2

1 第1节 简谐运动

第1节简谐运动 1.了解什么是机械振动. 2.理解平衡位置、回复力、位移、简谐运动的概念.(重点) 3.掌握简谐运动、回复力的特征以及回复力、加速度、速度随位移变化的规律.(重点+难点) 一、什么是机械振动 1.定义:物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动,简称振动.2.平衡位置:振动物体所受回复力为零的位置. 3.回复力 (1)方向:总是指向平衡位置. (2)作用效果:总是要把振动物体拉回到平衡位置. (3)来源:回复力是根据力的效果命名的力.可能是几个力的合力,也可能是由某一个力或某一个力的分力来提供. 1.(1)小鸟飞走后树枝的往复运动不是机械振动.() (2)平衡位置即速度为零时的位置.() 提示:(1)×(2)× 二、弹簧振子的振动 1.弹簧振子是一种理想模型,其主要组成部分是一个质量可以忽略不计的弹簧和一个质量为m的物体. 2.如图所示,弹簧振子运动过程中,各物理量变化情况:

振子运动A→O O→A′A′→ O O→A 位移x方向、 大小变化 向右、 减小 向左、 增大 向左、 减小 向右、 增大 弹力F方向、 大小变化 向左、 减小 向右、 增大 向右、 减小 向左、 增大加速度a方 向、大小变化 向左、 减小 向右、 增大 向右、 减小 向左、 增大速度v方向、 大小变化 向左、 增大 向左、 减小 向右、 增大 向右、 减小 三、简谐运动 1.定义:物体所受回复力的大小跟位移大小成正比,并且总是指向平衡位置,则物体的运动叫做简谐运动. 2.特征 (1)受力特征:回复力满足F=-kx,其中k为比例系数,负号表示力与位移的方向相反,x 为物体偏离平衡位置的位移. (2)运动特征:加速度满足a=- k m x,即做简谐运动的物体加速度的大小与位移的大小成正比,方向与位移方向相反. 2.(1)所有的振动都可以看做简谐运动.() (2)简谐运动是匀速运动.() (3)简谐运动的轨迹是一条正弦曲线.() 提示:(1)×(2)×(3)× 对简谐运动中x、v、a的理解 1.简谐运动的位移、速度、加速度 (1)位移 振动中的位移都是从平衡位置指向振子所在的位置.位移的表示方法是:以平衡位置为坐标

-简谐运动的图像

简谐运动的图像 知识要点: 一、简谐运动的图像 1、坐标轴:横轴表示时间,纵轴表示位移。 具体作法:以平衡位置为坐标原点,以横轴表示,以纵轴表示质点对平衡位置的位 移,根据实验数据在坐标平面上画出各个点,并用平滑曲线将各点连接起来,即得 到简谐运动的位移——时间图像。(通常称之为振动图像) 2、简谐运动图像的特点:理论和实验都证明,所有简谐运动的振动图像都是正弦或余 弦曲线。 3、简谐运动图像的物理意义:表示做简谐运动的质点的位移随时间变化的规律,即位 移——时间函数图像。 注意:切不可将振动图像误解为物体的运动轨迹。处理振动图像问题时,一定要把图像还原为质点的实际振动过程分析。 二、从简谐运动图像可获取的信息 1、任一时刻振动质点离开平衡位置的位移:纵坐标值。 2、振幅A:图像中纵坐标的最大值。 3、周期T:两相邻的位移和速度始终完全相同的两状态间的时间间隔。 4、任一时刻的速度大小及方向:图线上该时刻对应的斜率大小反映速度大小,斜率正、 负反映速度方向。斜率大时速度大,斜率为正时速度为正,斜率为负值时速度为负。 5、任一时刻加速度(回复力)方向:与位移方向相反,总是指向平衡位置,即时间轴。 6、某一段时间内位移、回复力、加速度、速度、动能及势能的变化情况:当振动质点 向平衡位置方向运动时,速度、动能均增大,而位移、回复力、加速度、势能均减 小,否则相反。 典型例题: 例1、如图9-15所示为某质点简谐运动的振动图像,根据图像回答: ⑴振幅、周期; ⑵具有正向最大速度的时刻; ⑶具有正向最大加速度的时刻; ⑷在3~4s内,质点的运动情况; ⑸1~4s内质点通过的路程。 解析:⑴由图像可知振幅A=10cm,周期T=4s。 ⑵物体在平衡位置时有最大速度,顺着时间轴向后看,看它下一时刻的位移,就知道 它向哪个方向运动,故可知t=0,4s,8s,…4ns(n为非负整数)时,具有正向最 大速度。 ⑶物体在最大位移处时具有最大加速度,由于加速度与位方向相反,故只胡当质点位 为负时,加速度方为正,故可知t=3s,7s,11s,…(4n+3)s(n为非负整数)时, 具有正向最大加速度。 ⑷在3~4s内物体由负向最大位移处返回平衡位置,加速度逐渐减小,速度逐渐增大, 加速度和速度方向均为正,物体做加速度逐渐减小的加速运动。 ⑸1~4s内质点通过的路程s=3A=30cm。 例2、一弹簧振子做简谐运动,周期为T,则() A.若t时刻和(t+Δt)时刻振子运动位移的大小相等,方向相同,则Δt一定等于T 的整数倍;

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

简谐运动的六种图象

简谐运动的六种图象 北京顺义区杨镇第一中学范福瑛 简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征. 运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。 以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。 1.位移-时间关系式,图象是正弦曲线,如图2 2.速度-时间关系式,图象是余弦曲线,如图3

3.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图5 5.速度-位移关系式,图象是椭圆,如图6

, 整理化简得 6.能量-位移关系 弹簧和振子组成的系统能量(机械能)守恒, 总能量不随位移变化,如图7直线c 弹性势能,图象是抛物线的一部分,如图7曲线b

振子动能,图象是开口向下的抛物线的一部分,如图7曲线a 图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。 2011-12-20 人教网 【基础知识精讲】 1.振动图像 简谐运动的位移——时间图像叫做振动图像,也叫振动曲线. (1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹. (2)特点:只有简谐运动的图像才是正弦(或余弦)曲线. 2.振动图像的作图方法 用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线. 3.振动图像的运用 (1)可直观地读出振幅A、周期T以及各时刻的位移x. (2)判断任一时刻振动物体的速度方向和加速度方向 (3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 【重点难点解析】 本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况. 一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动. 所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲 线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律. 例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )

简谐运动和机械波

简谐运动和机械波 重点难点 1.简谐运动特点 ①研究简谐运动,通常以平衡位置为坐标原点. ②对称性:在振动轨迹上关于平衡位置对称的两点,位移、回复力、加速度等大反向;速度等大,方向可能相同,也可能相反;动能、速率等大;振动质点从平衡位置开始第一次通过这两点所用的时间相等. ③周期性: 2.振动图象 振动图象反映的是一个质点的位移随时间的变化规律,由图象可直接读出振幅、周期和任意时刻的运动方向. 由于振动的周期性和非线性,在从任意时刻开始计时的一个周期内或半周期内,质点运动的路程都相等(分别为4A 和2A ),但从不同时刻开始计时的四分之一周期内,质点运动的路程是不一定相等的. 3.单摆 ①单摆周期与高度关系 设地球质量为M 时,半径为R ,地球表面的重力加速度为g 0.离地面高h 处重力加速度为g ,单摆的质量为m ,忽略地球自转的影响,则有 022 ,()GM GM g g R R h ==+ 因此可得单摆在高为h 处的周期T 与地面处周期T 0的关系为 R h R g g T T +==00 或 0 20g L R h R R h R T T +=+=π ②单摆周期与不同行星的关系 把单摆分别置于质量为M 1、M 2,半径为R 1、R 2的两行星表面上,其周期分别为T 1和T 2,重力加速度分别为g 1、g 2,忽略行星自转影响,则有 22 122111,R GM g R GM g ==, 2121221)(M M R R g g ?= 4.波动过程具有时间和空间的周期性 介质在传播振动的过程中,介质中每一个质点相对于平衡位置的位移随时间作周期性变化,这体现了时间的周期性;另一方面,每一时刻,介质中沿波传播方向上各个质点的空间分布具有空间周期性.√如相距波长整数倍的两个质点振动状态相同,即它们在任一时刻的位移、速度及相关量均相同;相距半波长奇数倍的两个质点振动状态相反,即它们在任一时刻的位移、速度及相关量均相反. 5.由波的图象判定质点振动方向或波的传播方向 ①“带动”法 如果已知某质点的振动方向,在波的图象中找一个与它紧邻的另一质点,分析这两个质点哪一个先振,先振的质点靠近振源,从而判断出波的传播方向. 反之,如果知道了波的传播方向,也就知道了振源在哪一侧,再找一个与所研究的质点紧邻且靠近振源的质点,这个质点先振,由此判断所研究质点的振动方向. ②微平移法 规律方法

相关文档