文档库 最新最全的文档下载
当前位置:文档库 › 叶栅的库塔-儒可夫斯基公式及其在风力机分析中的应用 风能12-1班

叶栅的库塔-儒可夫斯基公式及其在风力机分析中的应用 风能12-1班

叶栅的库塔-儒可夫斯基公式及其在风力机分析中的应用  风能12-1班
叶栅的库塔-儒可夫斯基公式及其在风力机分析中的应用  风能12-1班

新疆大学课程考试(查)论文

2014——2015 学年第二学期

《叶栅的库塔-儒可夫斯基公式及其在风力机分析中的应用》

课程名称:风力机空气动力学

任课教师:张新燕

学院:电气工程学院

专业:风能与动力工程

学号:20122105214

姓名:黄博

成绩:

叶栅的库塔-儒可夫斯基公式及其在风力机分析

中的应用

【摘要】:升力来源于机翼上下表面气流的速度差导致的气压差。但机翼上下表面速度差的成因解释较为复杂,通常科普用的等时间论和流体连续性理论均不能完整解释速度差的成因。航空界常用二维机翼理论,主要依靠库塔条件、绕翼环量、库塔-儒可夫斯基定理和伯努利定理来解释。

【关键词】:升力、库塔条件、绕翼环量、库塔-儒可夫斯基定理、风力机。

一、库塔—儒可夫斯基定理 库塔(W.Kutta,1902) 和儒可夫斯基(N.Joukowski,1906)将有环量圆柱绕流升力公式推广到任意形状物体的绕流,指出:对任何形状物体的绕流中,只要存在环量Г,都会产生升力,方向为来流方向(Vo)按反环量旋转90°,单位长

度上的升力大小为 L = ρVoΓ。

上式称为库塔-儒可夫斯基升力定理。

1.1库塔—儒可夫斯基定理定理的证明

用动量定理来证明该定理:

不计质量力,在y方向列立动量方程。

图1-1库塔-儒可夫斯基定理几何证明

通过控制面Cr 的动量为

)cos sin )(cos (2θθθπ

s

r r o v v v V ++? 忽略扰动速度V r 和Vs 的二阶以上小量,求出积分得Cr 边界在y向动量变化为 ρV 。v s r π (a)

作用于控制体边界C上y方向的力为翼型的反作用力-L

作用于控制体边界Cr 上流体压力在y方向分量的积分为

θθπ

d pr sin 20?- (b)

压力p可用柏努利方程确定 2222

1)sin ()cos [(21o o s o r o V p v V v V p ρθθρ+=++++ 忽略扰动速度的二阶以上小量得

p=P 0- ρV0 v r cos θ-ρV0v s sin θ

代入压力积分,可得Cr 上所受y方向的力为

o s V rv d pr ρπθθπ

-=-?sin 20

(c) 将(a),(b),(c)代入动量方程得

-L-πrv s ρVo=ρVov s rπ

所以

L=-2πrv s ρVo (d )

令Cr 上沿顺时针方向速度环量为Γ

cr,则有 Γcr=-2πrv s

在无旋流场中,绕周线Cr 的速度环量Γcr 亦即等于绕翼剖面周线C的速

度环量Γ,因此儒可夫斯基定理得证:

L=ρV。Γ (1-1) 1.2库塔—儒可夫斯基定理定理的意义

库塔-儒可夫斯基定理(Kutta –Joukowski theorem )是空气动力学的基本定理,计算旋转圆柱上的浮力,或是一物体在上下方速度不等的流场中的浮力,得名自德国科学家马丁·威廉·库塔及俄国科学家尼古拉·叶戈罗维奇·茹科夫斯基,他们在二十世纪初首次提出这様的概念。定理是有关一个正圆柱的浮力以及圆柱和流体之间的相对速度、流体密度以及环量。环量定义为流体速度沿着曲线的分柱,在绕着圆柱或机翼一周的线积分,其速度的大小及方向会沿着路径而改变。

用(1-1)式计算翼型及流体机械中的叶片上的升力时的关键在于如何确定绕翼型的环量(机翼环量的形成)。

1.3库塔条件

旋转圆柱产生升力可用实验验证,环量本质上是由旋转圆柱通过粘性带动周围流体形成(但可按势流理论计算)。翼型不旋转,环量何以产生呢?

绕运动翼型产生环量的过程,可分为4个阶段:

1.运动前,沿包围翼型的封闭线ABCD 的环量为零(图1-2a )。

2.起动后,由于上下翼线长度不同,后驻点位于上翼面尾缘之前方。下部流体绕过尖锐尾缘时形成尾部涡量。根据开尔文定理,必在翼型前部产生大小相等方向相反的涡量(图1-2b )。

图1-2绕运动翼型产生环量的过程

3.在反涡量作用下,后驻点向尾缘点移动。随着涡量之增强,后驻点不断后移(图1-2c),直到后驻点与尾缘点重合,上下速度在此平滑联接为止。

4.尾涡被冲向下游,沿包围翼型的ABEF线环量则保留下来。只要翼型速度等条件不变,该环量则保持不变(图1-2d)。

事实上上述过程是瞬间完成的,从尾缘脱落的尾涡称为“起动涡”;而保持在翼型上的涡量称为“附着涡”。如果翼型立即停止,附着涡也随即脱落下来形成“停止涡”,并与起动涡构成大小相等方向相反的涡对,以垂直于它们之间的连线运动(机翼启动涡和停止涡演示)。

由上述分析可知,运动翼型上的后驻点与尾缘点重合,沿上下翼面的流动速度在尾缘点平滑衔接是确定翼型绕流环量Г的条件,此条件通常称为库塔条件。(机翼绕流库塔条件演示)

当翼型以速度V。匀速运动时,由库塔条件确定的绕流环量为Γ,根据库塔-儒可夫斯基升力定理,翼型升力为PU Γ。一般认为环量Γ与翼型型线、攻角(翼型与水平线夹角)及尾部形状有关。

库塔-儒可夫斯基升力公式也可以推广应用于理想流体平行流绕过任意形状柱体有环量、沿表面无脱离的平面流动。例如翼形物体绕流中,绕流物体获得了垂直于运动方向上的升力,这正是诸如飞机机翼、汽轮机、风力机等流体机械获取动力或实现能量转换的工作原理。

二、库塔-儒可夫斯基公式在风力机分析中的应用

2.1风力机介绍

风力机经过多年的发展和演变,已经有很多形式,但是归纳起来,可分为两类:①水平轴风力机,风伦的旋转转轴与风向平行;②垂直轴风力机,风轮的旋转轴垂直与地面或气流方向。本系统中采用的是水平轴风力机。

2.2风力机的气动原理

风力发电机组主要利用气动升力的风轮。气动升力是由飞行器的机翼产生的

一种力,如图2--1。

图2-1气动升力图

从图可以看出,机翼翼型运动的气流方向有所变化,在其上表面形成低压区,在其下表面形成高压区,产生向上的合力,并垂直于气流方向。在产生升力的同时也产生阻力,风速也会有所下降。升力总是推动叶片绕中心轴转动。

库塔-儒可夫斯基升力公式。它表明在理想流体平行流绕过圆柱体有环量的流动中,在垂直于来流方向上,流体作用于单位长度圆柱体上的升力的大小等于流体密度、来流速度、和速度环量三者的乘积。式中的负号表示:若速度环量,即环流方向为顺时针方向,则升力竖直向上;若速度环量,即环流方向为逆时针方向,则升力竖直向下。总的来说,升力的方向由来流速度方向沿逆速度环流的方向旋转90度来确定。

图2-2满足库塔条件的实际机翼

在真实且可产生升力的机翼中,气流总是在后缘处交汇,否则在机翼后缘将会产生一个气流速度很大的点。这一条件被称为库塔条件,只有满足该条件,机翼才可能产生升力。

图2-3 绕翼环量(附着涡)与尾涡(自由涡)

在理想气体中或机翼刚开始运动的时候,这一条件并不满足,粘性边界层没有形成。通常翼型(机翼横截面)都是上方距离比下方长,刚开始在没有环流的情况下上下表面气流流速相同,导致下方气流到达后缘点时上方气流还没到后缘,后驻点位于翼型上方某点,下方气流就必定要绕过尖后缘与上方气流汇合。

由于流体粘性(即康达效应),下方气流绕过后缘时会形成一个低压旋涡,导致后缘存在很大的逆压梯度。随即,这个旋涡就会被来流冲跑,这个涡就叫做起动涡。

图2-4实际模型上观测到的尾涡

根据海姆霍兹旋涡守恒定律(开尔文定律),对于理想不可压缩流体(位势流)在有势力的作用下翼型周围也会存在一个与起动涡强度相等方向相反的涡,叫做环流,或是绕翼环量。

环流是从翼型上表面前缘流向下表面前缘的,所以环流加上来流就导致后驻点最终后移到机翼后缘,从而满足库塔条件。

对长度有限的实际机翼,绕翼环量在翼尖处折转90度向后,形成尾涡。尾涡可在各型风力机的机翼外侧后方直接观察到,这是对绕翼环量最直接的实际观测。

2.3

风力机机翼绕流环量形成的物理过程

图2-5启动前 图2-6启动时 图2-7启动后 静止流场中机翼加速到V 的过程中环量产生的机理:

a) 作包围机翼剖面并延伸到充分远的封闭流体周线CDFE ,启动前此封闭流体周线上的速度环量为零。由汤姆逊定理,此流体周线上的环量将始终保持为零。

b)机翼突然启动,速度很快达Vo ,流体处处无旋。绕翼型的环量为零。 后驻点不在后缘而在B处,流体绕过后缘尖点T流到翼背上去,T 附近速度很大,压力很低,B处速度为零,压力很高,流体由T流向B时遇到很大逆压梯度,使边界层分离,形成起动涡。起动涡随着流体向下游运动。根据汤姆逊定理,沿流体周线CDFE 的环量仍应为零,故绕翼剖面必将产生一速度环量,其大小与起动涡相等方向相反。

由于环量的作用,后驻点B向后缘点移动。不断有反时针方向的旋涡流向下游,绕机翼的环量Γ也不断增大,驻点不断向后缘点推移,直到后驻点B推移到后缘点为止。当机翼剖面以速度Vo继续飞行,后缘不再有旋涡脱落,环量Γ也不再变化,Γ就只与翼剖面的几何形状以及来流的速度大小与方向有关。

T

c) 这时翼剖面上、下两股流体将在翼剖面的后缘处汇合。

这时为正常飞行的有利流动图案,流体绕流过机翼时,上面的流线较密,下面的流线较稀,故上面流体的速度大、压力小,下面的流体速度小,压力大,因而产生升力。飞机机翼至少一部分是由流过上表面的空气把它吸起来的,上表面产生的负压对全部升力的贡献比下表面正压力的贡献大。

图2-8吸力压力示意图 图2-9压力系数分布曲线

2.4风力机机翼的流体动力特性 2.4.1流体动力特性

升力L :绕流物体上、下物面上流动的不对称,引起压力的不对称,在垂直于运动方向产生的压力差。

阻力R :二元机翼的总阻力有摩擦阻力和形状阻力两部分组成。

流体动力系数:是无量纲参数,主要有升力系数L C ,阻力系数,R C 力矩系数,M C lA V L C L 2021ρ=

(2-1) lA V D C D 2021ρ=

(2-2) lAb V M C M 202

1

ρ= (2-3)

2.4.2升力系数

CL~α为风洞试验求得的升力系数曲线: 攻角α的增加,升力系数CL按直线比例上升,达到临界攻角α

cr时升力系数达

到最大值CLmax 。 失速:攻角增加到某一值升力突然减小并伴随着阻力突然增大。机翼或水翼突然丧失了支承力,舵失去操纵作用的现象。

原因:边界层分离造成。

临界攻角:由实验确定,对于翼剖面一般在10°~20°之间。

吸力压力压力系数分布曲线

图2-10 升力系数曲线

零升力角0α:翼型升力为零时所对应的攻角,零升力线与弦线之间的夹角,

一般约为0~-2o 。在这一攻角附近,机翼的阻力最小。对称翼型

f =0,α0=0。α0的大小在数值上约等于f 大小的百分数,即

α0=-f 100% (2-4) 最大升力系数:主要与翼型的相对拱度f 、相对厚度t 以及雷诺数有关。CL随

Re的增大而略有减小,这是由于大Re将推迟翼剖面边界层分离,从而减小边 界层压差阻力的结果。

图2-11最大升力系数斜率 升力系数曲线斜率L dC d α

:反映升力系数随几何攻角的变化程度。 当λ≥2时,在很大攻角范围内,升力系数为

0()()()L L L a dC dC C d d ααααα

==- 当λ=∞时,升力曲线的斜率的理论值为:(

)2L L dC C d πα==(1/弧度), 但试验结果为:()(0.80.9)2L L dC C d πα

== (1/弧度)。 三、总结 库塔-儒可夫斯基定理是空气动力学的基本定理,库塔-儒可夫斯基升力公式也可以推广应用于理想流体平行流绕过任意形状柱体有环量、沿表面无脱离的平面流动。例如翼形物体绕流中,绕流物体获得了垂直于运动方向上的升力,这正是诸如飞机机翼、汽轮机、风力机等流体机械获取动力或实现能量转换的工作原理。

风力发电机的分类

1,风力发电机按叶片分类。 按照风力发电机主轴的方向分类可分为水平轴风力发电机和垂直轴风力发电机。 (1)水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平的风力发电机。水平轴风力发电机相对于垂直轴发电机的优点;叶片旋转空间大,转速高。适合于大型风力发电厂。水平轴风力发电机组的发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高。到目前为止,用于发电的风力发电机都为水平轴,还没有商业化的垂直轴的风力发电机组。 (2)垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直的风力发电机。垂直轴风力发电机相对于水平轴发电机的优点在于;发电效率高,对风的转向没有要求,叶片转动空间小,抗风能力强(可抗12-14级台风),启动风速小维修保养简单。垂直轴与水平式的风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式的要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式的更加安全稳定;另外,国内外大量的案例证明,水平式的风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故。 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机。 凡属轴流风扇的叶片数目往往是奇数设计。这是由于若采用偶数片形状对称的扇叶,不易调整平衡。还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生的疲劳,将会使叶片或心轴发生断裂。因此设计多为轴心不对称的奇数片扇叶设计。对于轴心不对称的奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内的各种扇叶设计中。包括家庭使用的电风扇都是3个叶片的,叶片形状是鸟翼型(设计术语),这样的叶片流量大,噪声低,符合流体力学原理。所以绝大多数风扇都是三片叶的。三片叶有较好的动平衡,不易产生振荡,减少轴承的磨损。降低维修成本。 按照风机接受风的方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型。 上风向风机一般需要有某种调向装置来保持叶轮迎风。 而下风向风机则能够自动对准风向, 从而免除了调向装置。但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片的气流而形成所谓塔影效应,使性能有所降低。 2,按照风力发电机的输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列。 (1)小型风力发电机是指发电机容量为0.1~1kw的风力发电机。 (2)中型风力发电机是指发电机容量为1~100kw的风力发电机。 (3)大型风力发电机是指发电机容量为100~1000kw的风力发电机。 (4)兆瓦级风力发电机是指发电机容量为1000以上的风力发电机。 3,按功率调节方式分类。可分为定桨距时速调节型,变桨距型,主动失速型和 独立变桨型风力发电机。 (1)定桨距失速型风机;桨叶于轮毂固定连接,桨叶的迎风角度不随风速而变化。依靠桨叶的气动特性自动失速,即当风速大于额定风速时依靠叶片的失速特性保持输入功率基本恒定。

风力发电机叶片数目与风能利用率

风力发电机叶片数目与风能利用率 曹连芃 摘要:介绍风轮实度大小对风力机运行特性的影响,为什么现在风力发电机多为“一根杆子三根针”的结构。 关键字:风轮,风轮实度,叶尖速比,风能利用系数,一根杆子三根针,实度比,风能,风力发电机 图1是我们常见的风力发电机外观图,它有三个叶片,三个叶片与轮毂构成风轮,风轮转轴带动机舱内的发电机,由于风轮的转轴是水平的,故称为水平轴风力发电机。 图1-水平轴风力发电机 我们看到绝大多数风力发电机是三个叶片,这是为什么? 在谈这个问题之前,先介绍一个有关风力机叶片数目的概念——风轮实度。风力机叶片(在风向投影)的总面积与风通过风轮的面积(风轮扫掠面积)之比称为实度(或称实度比、容积比),是风力机的一个参考数据。 图2是几种水平轴风力机叶轮,绘有单叶片、双叶片、三叶片、多叶片四种

风轮的示意图,风轮实度的计算方法如下: S为每个叶片对风向的投影面积,R为风轮半径,B为叶片个数, σ为实度比 σ=BS/πR2 图2-单叶片至多叶片的风轮实度 在图2中从单叶片到三叶片的风轮实度比小,是低实度风轮,12叶片的风轮实度比高,是高实度风轮。 从图中看三个细细的叶片似乎让大多数风都漏掉了,为什么不采用多叶片风轮以便接受更多风能呢。 我们通过图3来做简单的解释:图上部分是风通过普通三叶片的气流示意图,气流通过叶轮做功后速度减慢,由于速度变慢气流体积有所增大,就有图中所示的气体发散的流动曲线。图2下部分是风通过多叶片的气流示意图,多叶片大大增加了气体通过的阻力,气流会分开绕过叶轮流向后方,只有部分气流通过叶轮做功,由于阻力大,通过叶片的风速也会降低得较多,所以叶轮实际得到的风功率减少了,这就是多叶片风力机得不到更多风能的重要原因。

风机叶片材料 设计与简介

风机叶片材料、设计与工艺简介 核心提示:复合材料风机叶片是风力发电系统的关键动部件,直接影响着整个系统的性能,并要具有长期在户外自然环境条件下使用的耐候性和合理的价格。因此,叶片的材料、设计和制造质量水平十分重要,被视为风力发电系统的关键技术和技术水平代表。 复合材料风机叶片是风力发电系统的关键动部件,直接影响着整个系统的性能,并要具有长期在户外自然环境条件下使用的耐候性和合理的价格。因此,叶片的材料、设计和制造质量水平十分重要,被视为风力发电系统的关键技术和技术水平代表。影响风机叶片相关性能的因素主要有原材料、风机叶片设计及叶片的制造工艺三种。 一风机叶片的原料 目前的风力发电机叶片基本上是由聚酯树脂、乙烯基树脂和环氧树脂等热固性基体树脂与E-玻璃纤维、S-玻璃纤维、碳纤维等增强材料,通过手工铺放或树脂注入等成型工艺复合而成。 对于同一种基体树脂来讲,采用玻璃纤维增强的复合材料制造的叶片的强度和刚度的性能要差于采用碳纤维增强的复合材料制造的叶片的性能。但是,碳纤维的价格目前是玻璃纤维的10左右。由于价格的因素,目前的叶片制造采用的增强材料主要以玻璃纤维为主。随着叶片长度不断增加,叶片对增强材料的强度和刚性等性能也提出了新的要求,玻璃纤维在大型复合材料叶片制造中逐渐出现性能方面的不足。为了保证叶片能够安全的承担风温度等外界载荷,风机叶片可以采用玻璃纤维/碳纤维混杂复合材料结构,尤其是在翼缘等对材料强度和刚度要求较高的部位,则使用碳纤维作为增强材料。这样,不仅可以提高叶片的承载能力,由于碳纤维具有导电性,也可以有效地避免雷击对叶片造成的损伤。 风电机组在工作过程中,风机叶片要承受强大的风载荷、气体冲刷、砂石粒子冲击、紫外线照射等外界的作用。为了提高复合材料叶片的承担载荷、耐腐蚀和耐冲刷等性能,必须对树脂基体系统进行精心设计和改进,采用性能优异的环氧树脂代替不饱和聚酯树脂,改善玻璃纤维/树脂界面的粘结性能,提高叶片的承载能力,扩大玻璃纤维在大型叶片中的应用范围。同时,为了提高复合材料叶片在恶劣工作环境中长期使用性能,可以采用耐紫外线辐射的新型环氧树脂系统。 二风机叶片的设技 以最小的叶片重量获得最大的叶片面积,使得叶片具有更高的捕风能力,叶片的优化设计显得十分重要,尤其是符合空气动力学要求的大型复合材料叶片的最佳外形设计和结构优化设计的重要性尤为突出,它是实现叶片的材料/工艺有效结合的软件支撑。另外,计算机

风电场综合统计指标计算公式

风电综合统计指标计算公式 1、平均风速 平均风速是指统计周期内风机轮毂高度处瞬时风速的平均值。取统计周期内全场风机或场内代表性测风塔的风速平均值,即 1 1n i i V V n ==∑ 单位:米/秒(/m s ) 式中: V —统计周期内的风电场平均风速,/m s ; n —统计周期内的全场风机的台数或代表性测风塔的个数; i V —统计周期内的单台风机或单个代表性测风塔的平均风速,/m s 。 2、平均温度 平均温度是指统计周期内风机轮毂高度处环境温度的平均值,即 1 1n i i T T n ==∑ 单位:摄氏度(o C ) 式中: T —统计周期内的风电场平均温度,o C ; n —统计周期内的记录次数; i T —统计周期内的第i 次记录的温度值,o C 。 3、平均空气密度 平均空气密度是指统计周期内风电场所处区域空气密度的平均值,即 P RT ρ= 单位:千克/立方米(3 /kg m ) 式中: ρ—统计周期内的风电场平均空气密度,3 /kg m ; P —统计周期内的风电场平均大气压强,a P ; R —气体常数,取287/J kg K ?;

T —统计周期内的风电场开氏温标平均绝对温度,K 。 4、 平均风功率密度 平均风功率密度是指统计周期内风机轮毂高度处风能在单位面积上所产生的平均功率,即 3 1 12n i wp i D V n ρ==∑()() 单位:瓦特/平方米(2 /W m ) 式中: wp D —统计周期内的风电场平均风功率密度,2 /W m ; n —统计周期内的记录次数; ρ—统计周期内的风电场平均空气密度,3/kg m ; 3 i V —统计周期内的第i 次记录平均风速值的立方。 5、有效风速小时数 有效风速小时数是指统计周期内风机轮毂高度处介于切入风速与切出风速之间的风速累计小时数,简称有效风时数,即 n i i V V V V T T == ∑有效风时数 单位:小时(h ) 式中: T 有效风时数 —统计周期内的风电场有效风时数,h ; 0V —风机的切入风速,/m s ; n V —风机的切出风速,/m s ; i V T —统计周期内出现介于切入风速(0V )和切出风速(n V ) 之间的风速小时数,h 。 6、风机可利用率 风机可利用率是指统计周期内除去风机因定期维护或故障时数后剩余时数与总时数除去非设备自身责任停机时数后剩余时数的百分比,即 (1)100%A B T B η-=- ?-可利用率 式中: η可利用率—统计周期内的风电场风机可利用率;

翼型风力机叶片的设计与三维建模论文

甘肃机电职业技术学院 现代装备制造工程系毕业论文 翼型风力机叶片的设计与三维建模 姓名:王成寿 学号: 142000848 班级:G142701 年级:2014级 指导老师:杨欣

风能作为一种清洁的可再生能源,越来越受到世界各国的重视。 其蕴量巨大,全球的风能约为 2.74×10^9M W,其中可利用的风能为2×10^7M W,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而现在,人们感兴趣的是如何利用风来发电。 把风的动能转变成机械动能,再把机械能转化为电力动能,这就 是风力发电。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 本课题研究水平轴风力发电机的叶片设计、实体建模。主要任务 如下:1.编制叶素轴向、周向速度诱导因子、最佳弦长及扭角的计算的界面程序;2.根据程序计算并绘制风力机叶片弦长随叶片展向长度的变化曲线;3.根据程序计算并绘制风力机叶片扭角随叶片展向长度的变化曲线;4.将所设计的叶片的三维模型的进行实体建模。 关键词:风力发电,风力机叶片,三维建模

摘要 (1) 1、综述 (1) 1.1、风力机简介 (1) 1.2、风力机简史 (1) 1.3、风力机的特点 (2) 1.4、风力机的基本原理 (2) 1.5、风力机的构成和分类 (3) 1.6、风力机存在的问题 (3) 1.7、本课题的背景目的及主要工作 (4) 2、风力机设计理论 (6) 2.1、翼型基本知识 (6) 2.2、叶片设计的空气动力学理论 (7) 2.2.1、贝茨理论 (7) 2.1.2、叶素理论 (8) 2.1.3、动量理论 (9) 2.3、风力机的特性系数 (10) 2.3.1、风能利用系数C p (10) 2.3.2、叶尖速比λ (10) 2.4、翼型介绍 (11) 2.4.1、翼型的发展概述 (11) 2.4.2、N A C A翼型简介 (11) 3、风力机叶片的设计 (13) 3.1、风力机叶片的外形设计 (13) 3.1.1、叶片设计的总体参数 (13) 3.1.2、确定风轮直径D (13) 3.1.3、翼型弦长计算 (14) 3.1.4、叶片重要参数的选取 (14) 3.2、叶片优化设计的计算程序编制 (16)

无叶片风力发电机--VORTEX

VORTEX——没有叶片的风力发电机就是这么酷 一.前言 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×10^9MW,其中可利用的风能为2×10^7MW[1]。随着全球经济的发展,所面临的能源问题和环境问题越来越严峻,使得风能等可再生能源迅速发展起来。根据国家能源局数据,2014年中国全部发电设备容量为1360GW,其中并网风电的容量达到了95.8GW,也就是说说,风电装机量在中国发电装机总量当中占据大约7%的份额。 一般情况下,我们所看见的风力发电机都是水平轴扇叶风机,他们有着很大的风机叶片,以此来吸收风能并发电。然而,这样的风电机有一些弊端。一个风电场的众多风机之间的排列需要较大的安全距离,也就是说一块固定大小的地面上能够安装的风电机数量是有限的;另外,扇叶的旋转也对鸟类带来了危险。 想象一下,一个没有叶片的风机会是什么样纸?它需要更少的材料,成本更低,噪声更小,对环境友好度更好……关上你的脑洞,来一睹它的风采吧↓↓↓

这个酷炫的没有叶片的风机是由西班牙公司Vortex Bladeless开发。无叶片风机Vortex 的工作原理是利用结构的振荡捕获风的动能,从而利用感应发电机或压电发电机将风的动能转变成电能输出。该设计理念将减少常规涡轮机中很多零部件的设计与制造,如叶片,机舱,轮毂,变速器,制动装置,转向系统等,从而使无叶片风机Vortex具有无磨损、性价比高、便于安装和维护、环境友好型及土地利用率高等显著特点。 二.Vortex的发电原理——卡门涡街 无叶片风机Vortex的基本发电原理是卡门涡街,维基百科上这样描述它,“在流体中安置阻流体,在特定条件下会出现不稳定的边界层分离,阻流体下游的两侧,会产生两道非对称地排列的旋涡,其中一侧的旋涡循时针方向转动,另一旋涡则反方向旋转,这两排旋涡相互交错排列,各个旋涡和对面两个旋涡的中间点对齐,如街道两边的街灯般,这种现象,因匈牙利裔美国空气动力学家西奥多·冯·卡门最先从理论上阐明而得名卡门涡街”[2-3]。 卡门涡街可以解释许多现象。1940年11月7日美国华盛顿州塔科马海峡吊桥(Tacoma Narrow Bridge)崩塌事件。华盛顿州政府特为此而设立专案调查组,经过美国空气动力学家西奥多·冯·卡门在加州理工学院风洞进行模型测试,证明塔科马海峡吊桥倒塌事件的元凶,是卡门涡街引起吊桥共振。原设计为了求美观及省钱,使用过轻的物料,造成其发生共振的破坏频率,与卡门涡街接近,从而随强风而剧烈摆动,导致吊桥崩塌。

风电场发电量计算方法

发电量计算梳理 发电量计算部分,我们所要做的工作是这样的: 当拿到标书(可研报告)等资料后,我们首先要提澄清(向业主索要详细发电量计算所需的资料);然后选择机型(确定该风电场适合用什么类型的风机);最后进行发电量计算。 一、澄清 下面列出了发电量计算需要的所有内容,提澄清的时候,缺什么就列出来。 风电场详细发电量计算所需资料汇总 (1)请业主提供风电场的可研报告; (2)请业主提供风电场内的测风塔各高度处完整一年实测风速、风向、风速标准偏差数据,以及测风塔的地理位置坐标; (3)请业主提供测风塔测风数据的密码; (4)风电场是否已确定风机布置位置,若已确定风机位置,请提供相应的固定风机点位坐标; (5)请业主提供风电场的边界拐点坐标; (6)请业主提供风电场内预装轮毂高度处的50年一遇最大风速; (7)请业主提供风电场场址处的空气密度; (8)请业主提供预装轮毂高度处15m/s湍流强度特征值; (9)请业主提供风电场的海拔高度以及累年极端最低温度; (10)请业主提供风电场内测风塔处的综合风切变指数; (11)请业主提供风电场影响发电量结果的各项因素的折减系数。

https://www.wendangku.net/doc/849818730.html,/SELECTION/inputCoord.asp 第二步:打开Global Mapper软件,将.dxf和.zip地形文件拖入。 设置“投影”:Gauss Krueger(3 degree zones)\Gauss Krueger(6 degree zones); 设置“基准”:XIAN 1980(CHINA)\BEIJING 1954; 设置“地区”:Zone x(xxE-xxE)。 1 将.dxf拖入Global Mapper并设置好投影及基准后,将鼠标放于地图任意位置,软件右下角会显示点位坐标。完整坐标表示应该为横坐标8位,纵坐标7位。而横坐标的前两位经常被省去,如果你看到的是横坐标6位,纵坐标7位,那么横坐标的前两位就是被省略的。此时要人为对地图进行整体偏移。偏移量为“地区”Zone后的数值,见下图。

风电叶片设计流程

叶片设计流程 一.空气动力设计 1.确定风轮的几何和空气动力设计参数 2.选择翼型 3.确定叶片的最佳形状 4.计算风轮叶片的功率特性 5.如果需要可以对设计进行修改并重复步骤4,以找到制造 工艺约束下的最佳风轮设计。 6.计算在所有可遇尖速比下的风轮特性 对于每个尖速比可采用上面步骤4所述的方法,确定每个叶素的空气动力状态,由此确定整个风轮的性能。 7.风力机叶片三维效应分析 8.非定常空气动力现象 9.风力机叶片的动态失速 10.叶片动态入流 二.风机载荷计算 作为风力机设计和认证的重要依据,用于风力机的静强度和疲劳强度分析。国际电工协会制定的IEC61400-1标准、德国船级社制定的GL 规范和丹麦制定的DS 472标准等对风力机的载荷进行了详细的规定。

2.1IEC61400-1 标准规定的载荷情况 2.2风机载荷计算 1计算模型 1)风模型 (1)正常风模型 (2)极端风模型 (3)三维湍流模型 2)风机模型 风机模型包括几何模型、空气动力学模型、传动系统动力学模型、控制系统闭环模型和运行状态监控模型等。 2风力机载荷特性 1)叶片上的载荷 (1)空气动力载荷 包括摆振方向的剪力Q yb和弯矩M xb、挥舞方向的剪力Q xb和弯矩M yb以及与变浆距力矩平衡的叶片俯仰力矩M zb。可根据叶片空气动力设计步骤4中求得的叶素上法向力系数Cn和切向力系数Ct, 通过积分求出作用在叶片上的空气动力载荷。 (2)重力载荷 作用在叶片上的重力载荷对叶片产生的摆振方向弯矩,随叶片方位角的变化呈周期变化,是叶片的主要疲劳载荷。 (3)惯性载荷

(4)操纵载荷 2)轮毂上的载荷 3)主轴上的载荷 4)机舱上的载荷 5)偏航系统上的载荷 6)塔架上的载荷 三.风力机气动弹性 当风力机在自然风条件下运行时,作用在风力机上的空气动力、惯性力和弹性力等交变载荷会使结构产生变形和振动,影响风力机的正常运行甚至导致风力机损坏。因此,在风力机的设计中必须考虑系统的稳定性和在外载作用下的动力响应,主要有①风力机气动弹性稳定性和动力响应②风力机机械传动系统的振动③风力机控制系统(包括偏航系统和变浆距系统等)的稳定性和动力响应④风力机系统的振动。 3.1风力机气动弹性现象 1.风力机叶片气动弹性稳定性问题 2.风力机系统振动和稳定性问题 3.2风力机气动弹性分析 目的是保证风力机在运行过程中不出现气动弹性不稳定。主要的方法是特征值法和能量法。特征值法是在求解弹性力学的基本方 程中,考虑作用在风力机叶片上的非定常空气动力,建立离散的描述风力机叶片气动弹性运动的微分方程。采用Floquet理论求解,最后 稳定性判别归结为状态转移矩阵的特征值计算。

风力发电机原理及结构

风力发电机原理及结构 风力发电机是一种将风能转换为电能的能量转换装置,它包括风力机和发电机两大部分。空气流动的动能作用在风力机风轮上,从而推动风轮旋转起来,将空气动力能转变成风轮旋转机械能,风轮的轮毂固定在风力发电机的机轴上,通过传动系统驱动发电机轴及转子旋转,发电机将机械能变成电能输送给负荷或电力系统,这就是风力发电的工作过程。 1、风机基本结构特征 风力机主要有风轮、传动系统、对风装置(偏航系统)、液压系统、制动系统、控制与安全系统、机舱、塔架和基础等组成。 (1)风轮 风力机区别于其他机械的主要特征就是风轮。风轮一班有2~3个叶片和轮毂所组成,其功能是将风能转换为机械能。 风力发电厂的风力机通常有2片或3片叶片,叶尖速度50~70m/s,3也片叶轮通常能够提供最佳效率,然而2叶片叶轮及降低2%~3%效率。更多的人认为3叶片从审美的角度更令人满意。3叶片叶轮上的手里更平衡,轮毂可以简单些。 1)叶片叶片是用加强玻璃塑料(GRP)、木头和木板、碳纤维强化塑料(CFRP)、钢和铝职称的。对于小型的风力发电机,如叶轮直径小于5m,选择材料通常关心的是效率而

不是重量、硬度和叶片的其他特性,通常用整块优质木材加工制成,表面涂上保护漆,其根部与轮毂相接处使用良好的金属接头并用螺栓拧紧。对于大型风机,叶片特性通常较难满足,所以对材料的选择更为重要。 目前,叶片多为玻璃纤维增强负荷材料,基体材料为聚酯树脂或环氧树脂。环氧树脂比聚酯树脂强度高,材料疲劳特性好,且收缩变形小,聚酯材料较便宜它在固化时收缩大,在叶片的连接处可能存在潜在的危险,即由于收缩变形,在金属材料与玻璃钢之间坑能产生裂纹。 2)轮毂轮毂是风轮的枢纽,也是叶片根部与主轴的连接件。所有从叶片传来的力,都通过轮毂传到传动系统,在传到风力机驱动的对象。同时轮毂也是控制叶片桨距(使叶片作俯仰转动)的所在。 轮毂承受了风力作用在叶片上的推理、扭矩、弯矩及陀螺力矩。通常安装3片叶片的水平式风力机轮毂的形式为三角形和三通形。 轮毂可以是铸造结构,也可以采用焊接结构,其材料可以是铸钢,也可以采用高强度球墨铸铁。由于高强度球墨铸铁具有不可替代性,如铸造性能好、容易铸成、减振性能好、应力集中敏感性低、成本低等,风力发电机组中大量采用高强度球墨铸铁作为轮毂的材料。 轮毂的常用形式主要有刚性轮毂和铰链式轮毂(柔性轮毂

风力发电机叶片工艺流程

风力发电机叶片制作工艺流程 传统能源资源的大量使用带来了许多的环境问题和社会问题,并且其存储量大大降低,因而风能作为一种清洁的可循环再生的能源,越来越受到世界各国的广泛关注。风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。并且,随着叶片的增大,刚度也成为主要问题。为了实现风力的大功率发电,既要减轻叶片的重量,又要满足强度与刚度要求,这就对叶片材料提出了很高的要求。 1 碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。Vesta Wind System 公司的V90型3.0 MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80 型2.0MW发电机且为39m长的叶片质量相同。同样是34 m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控制系统,在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适应叶片充分利用了纤维增强材料的特性,能产生非对称性和各向异性的材料,采用弯曲/扭曲叶片设计,使叶片在强风中旋转时可减少瞬时负载。美国Sandia National Laboratories致力于自适应叶片研究,使1.5MW风机的发电成本降到4.9美分/(kW?h),价格可和燃料发电相比。 6)利用导电性能避免雷击

风力机叶片设计

风力机叶片设计、制造的趋势和评价 风力机叶片设计、制造的趋势和评价 风力机叶片设计、制造的趋势和评价风力机叶片设计、制造的趋势和评价美国Sandia 国家试验室 Paul S.Veers,Thomas D.Ashwill,,Herbert J. Sutherland,https://www.wendangku.net/doc/849818730.html,ird and Donald.W Lobitz 等著前言风力机叶片的尺寸和产量都巳稳定增大,现在主流产品功率为 1MW 至 3MW。80 米直径的转子巳在生产,90 米至 120 米直径的转子已有样机。2001 年生产风力机叶片共用了5 万吨成品玻璃纤维层合板,今后几年还会增加。叶片变长叶轮变大,都会增加叶片在整机成本中的比重。因为叶片是整台风机的关键部件之一,改进叶片的设计、制造及性能,一直是研究开发的主要目标。叶片设计和制造的改进基于多年的生产经验和工业研发。有的研发是欧美政府资助的项目。研究的重点是,多种叶片设计和材料技术。技术挑战包括:尺寸加大但抑制重量增加、改进功率性能和减轻载荷、方便运输、使疲劳循环达 1 亿至 10 亿次、和降低设计裕度。叶片只占风机成本的 10% ~ 15%,所以靠叶片来降低能源价格(COE),其作用是有限度的。如果创新的叶片设计,能降低 10% ~ 20%载荷,则能从几个主要部件(如塔、传动轴系、叶片本身)都得到好处。适当的叶片成本降低,和带来的其它系统造价降低,可降低能源价格。设计和制造历史上的叶片结构和制造方法图1 是切面图,表示风机叶片的典型结构。翼缘(大梁盖)为较厚的主要是单向纤维铺层组成,以承担拍打方向的弯矩。叶片蒙皮是典型的双轴向的(double-bias)或三轴向的(triaxial)玻璃纤维;轻木或泡沫塑料芯是抗屈曲用的。过去,叶片用全玻璃纤维铺层或个别情况用碳纤维局部加强制造。当叶片长度到 30 米时,最普通的制造方法是湿法手工铺放敞模成型。值得注意的例外是 Vestas,她造叶片一直用预浸料玻璃纤维。 图 1. 风力机叶片结构图叶片质量增加的趋势图 2 给出 750KW 至 4.5MW 风机叶片质量与风机转子半径的关系。简单地放大叶片,其质量将按转子半径的立方增加。但图 2 并非如此,仅是半径 2.3 次方的关系。从图 2 还可看到叶片质量有较大分散度。这主要因为材料、制造方法及设计准则的变化。对某一设计等级的某个制造厂,还可发现其质量增大另一种趋势。Vestas 的 V66 和 V80 叶片的质量差就是半径的 2.7 次方的关系。此指数值很接近立方放大关系。因为 V66 巳用了高性能预浸材料,己是轻重量设计,再降低重量(假定未改变纤维种类) 的空间不大了。质量增长指数低于立方关系,很可能是采用较厚截面的翼型的结果。LM35.0 和 LM43.8,在 IEC 二级,的质量差放大指数为半径的 1.7 次方,这大大低于其它各家的。这是因为 LM 设计中已在材料性能上采取了重大改进 , 和使用较厚截面的翼型。 图 2. 商用 MW 级叶片设计的质量增长(基本为玻璃纤维) 参 考文献 2 详细介绍了,商业叶片质量增长趋势,和气动力、结构设计、材料、

风电场电量计算公式

风电场电量计算公式 单位:MWh 1.关口表计量电量 1)上网电量 251正向A总(A+) 2)用网电量 251反向A总(A-) 3)送网无功 251正向R总(R+) 4)用网无功 251反向R总(R-) 2.发电量:是指每台风力发电机发电量的总和。 1)表底读数 (312A+)+(313A+)+(314A+)+(315A+)+(316A+)+(317A+) 2)日用量 (今日表底读数-昨天表底读数)*350*60*0.001(即*21) 3)月累计今日日用量+昨天月累计 4)年累计今日日用量+昨天年累计 3.上网电量:风电场与电网的关口表计计量的风电场向电网输送的电能。 1)表底读数 251A+ 2)日用量 (今251A+)-(昨251A+) 3)月累计今日日用量+昨天月累计 4)年累计今日日用量+昨天年累计 4.用网电量:风电场与电网的关口表计计量的电网向风电场输送————————————————————————————————————————————————————— 的电能。 1)表底读数 251A- 2)日用量 (今251A-)-(昨251A-)

3)月累计今日日用量+昨天月用量 4)年累计今日日用量+昨天年累计 5.站用电量 1)表底读数 361A+ 2)日用量 (今日表底读数-昨天表底读数)*350*20*0.001(即*7) 3)月累计今日日累计+昨天月累计 4)年累计今日日累计+昨天年累计 注意:现在算出的单位是Mwh,运行日志上的单位是万kWh,要将算出的数小数点前移一位(如:427Mwh=42.7万kWh) *厂用电率:风电场生产和生活用电占全场发电量的百分比。 厂用电率=(厂用电量日值?发电量日值)×100 =(0.161?20.02)×100 *风电场的容量系数:是指在给定时间内该风电场发电量和风电场装机总容量的比值 容量系数=发电量日值?(50×2×24) 等效利用小时数也称作等效满负荷发电小时数。 *风电机等效利用小时数(等效满负荷发电小时数):是指某台风电机发电量折算到该风电机满负荷的运行小时数。 ————————————————————————————————————————————————————— 公式为:风电机等效利用小时数,发电量,额定功率 *风电场等效利用小时数(等效满负荷发电小时数):是指某风电场发电量折算到该场满负荷的运行小时数。

风力发电机叶片材料的选用

风力发电机叶片材料的选用 叶片是风力发电机组的重要构件。它将风能传递给发电机的转子,使之旋转切割磁力线而发电。为确保在野外极其恶劣环境中长期不停、安全地运行,对叶片材料的要求是:①密度小且具有最佳的疲劳强度和力学性能,能经受住极端恶劣条件和随机的负荷(如暴风等)的考验,确保安全运转20年以上;②成本(精确说为分摊到每度电的成本)低;③叶片的弹性、旋转时的惯性及其振动频率特性曲红都正常,传递给整个发电系统的负荷稳定性好; ④耐腐蚀、耐紫外线(UV)照射和抗雷击性好;⑤维护费用低。 FRP完全可以满足以上要求,是最佳的风力发电机叶片材料。 1.1 GFRP 目前商品化的大型风机叶片大多采用玻璃纤维增强塑料(GFRP)制造。GFRP叶片的特点为: ①可根据风机叶片的受力特点来设计强度与刚度风机叶片主要是纵向受力,即气动弯曲和离心力,气动弯曲载荷比离心力大得多,由剪切与扭转产生的剪应力不大。利用玻璃纤维(GF)受力为主的受力理论,可将主要GF布置在叶片的纵向,这样就可使叶片轻量化。 ②翼型容易成型,可达到最大气动效率为了达到最佳气动效果,利用叶片复杂的气动外形,在风轮的不同半径处设计不同的叶片弦长、厚度、扭角和翼型,如用金属制造则十分困难。同时GFRP叶片可实现批量生产。 ③使用时间长达20年,能经受108以上疲劳交变载荷GFRP疲劳强度较高,缺口敏感性低,内阻尼大,抗震性能较好。 ④耐腐蚀性好由于GFRP具有耐酸、碱、水汽的性能,可将风机安装在户外,特别对于近年来大力发展的离岸风电场来说,能将风机安装在海上,使风力机组及其叶片经受各种气候环境的考验。 为了提高GFRP的性能,还可通过表面处理,上浆和涂覆等对GF进行改性。美国的研究表明,采用射电频率等离子体沉积去涂覆E-GF,其拉伸及耐疲劳性可达到碳纤维(CF)的水平。 GFRP的受力特点是在GF方向能承受很高的拉应力,而其它方向承受的力相对较小。 叶片由蒙皮和主梁组成,蒙皮采用夹芯结构,中间层是硬质泡沫塑料或Balsa木,上下面层为GFRP。面层由单向层和±45°层组成。单向层可选用单向织物或单向GF铺设,一般用7或4GF布,以承受由离心力和气动弯矩产生的轴向应力;为简化成型工艺,可不用

风力发电机叶片结构设计及其有限元分析(精品doc)

风力发电机叶片结构设计及其有限元分析 摘要 为了更好地发展我国的风力发电事业,实现风力发电机的国产化,必须深入开展风力机设计、分析方面的研究。本文根据传统的 的叶片设计方法设计了2MW 风力机叶片,并生成三维几何模型, 然后利用有限元模拟对叶片进行了振动模态分析,得到各阶振动频 率和振型,为防止结构共振提供了依据。 关键词:风力机,叶片,有限元模拟,优化 THE FE SIMULATION AND OPTIMAL DESIGN OF WIND TURBINE COMPONENTS ABSTRACT In order to promote the capability of design and manufacturing of wind turbine in China, more study should be done in the field of wind turbine design and analysis. In this paper, a blade for 2MW wind turbine is designed according to the traditional design procedure and the 3D geometrical model is created. Then the modal analysis is done through the FE simulation to get the frequency and mode shape, which provides the theoretic basis to prevent resonance.

风力发电机的组成部件及其功用

风力发电机的组成部件及其功用 风力发电机是将风能转换成机械能,再把机械能转换成电能的机电设备。风力发电机通常由风轮、对风装置、调速装置、传动装置、发电机、塔架、停车机构等组成。下面将以水平轴升力型风力发电机为主介绍它的各主要组成部件及其工作情况。图3-3-4和3-3-5是小型和中大型风力发电机的结构示意图。 图3-3-4 小型风力发电机示意图 1—风轮2—发电机3—回转体4—调速机构5—调向机构6—手刹车机构7—塔架8—蓄电池9—控制/逆变器 图3-3-5 中大型风力发电机示意图 1—风轮;2—变速箱;3—发电机;4—机舱;5—塔架。 1 风轮 风轮是风力机最重要的部件,它是风力机区别于其它动力机的主要标志。其作用是捕捉和吸收风能,并将风能转变成机械能,由风轮轴将能量送给传动装置。

风轮一般由叶片(也称桨叶)、叶柄、轮毂及风轮轴等组成(见图3-3-6)。叶片横截面形状基本类型有3种(见图第二节的图3-2-3):平板型、弧板型和流线型。风力发电机的叶片横截面的形状,接近于流线型;而风力提水机的叶片多采用弧板型,也有采用平板型的。图3-3-7所示为风力发电机叶片(横截面)的几种结构。 图3-3-6 风轮 1.叶片 2.叶柄 3.轮毂 4.风轮轴 图3-3-7 叶片结构 (a)、(b)—木制叶版剖面; (c)、(d)—钢纵梁玻璃纤维蒙片剖面; (e) —铝合金等弦长挤压成型叶片;(f)—玻璃钢叶片。 木制叶片(图中的a与b)常用于微、小型风力发电机上;而中、大型风力发电机的叶片常从图中的(c)→(f)选用。用铝合金挤压成型的叶片(图中之e),基于容易制造角度考虑,从叶根到叶尖一般是制成等弦长的。叶片的材质在不断

风能计算公式

面这个公式就是著名的“风能公式”: E=1/2(ρtsυ3) 式中:ρ!———空气密度(千克/米2); υ———风速(米/ 秒); t———时间(秒); S———截面面积(米2)。 它是风能利用中常常要用的公式。由风能公式可以看出,风能主要与风速、风所流经的面积、空气密度三个因素有关,其关系如下: (1)风能(E)的大小与风速的立方(υ3)成正比。也就是说,影响风能的最大因素是 风速。 (2)风能(E)的大小与风所流经的面积(s)成正比。对于风力发电机来说,就是风能与风力发电机的风轮旋转时的扫掠面积成正比。由于通常用风轮直径作为风力发电机的主要参数,所以风能大小与风轮直径的平方成正比。 (2)风能(E)的大小与空气密度(ρ)成正比。空气密度是指单位体积(m3)所容纳空气的质量(千克)。因此,计算风能时,必须要知道空气密度ρ值。空气密度ρ值与空气的湿度、温度和海拔高度有关,可以从相关的资料中查到。 风能密度公式 空气的流动称为风,它是能量的一种(动能),俗称“风能”。20世纪以来靠风力发电的事业受到了重视,并且正在迅速扩展。 风里究竟有多少能量,如何计算风的能量?这就不能不谈风能密度公式。 风所具有的能量应当与风的速度v有关,还应当与当地的空气的密度ρ有关。 质量为m的空气如果速度为v,根据物理学的动能公式,它具有的动能就是质量乘速度的平方的二分之一,即动能=(1/2)mv2。单位体积内的空气质量就是空气的密度,所以单位体积的空气具有的能量是(1/2)ρv2。 我们要分析的是由于空气的流动在单位时间,通过单位横截面给我们带来了多少能量,所以仅知道单位体积的空气具有的风能是不够的。由于空气的流动在单位时间,通过单位横截面给我们带来的能量还应当与单位时间空气的流动速度成(也就是风速)正比例。所以空

风力发电机的分类

,风力发电机按叶片分类. 按照风力发电机主轴地方向分类可分为水平轴风力发电机和垂直轴风力发电机. ()水平轴风力发电机:旋转轴与叶片垂直,一般与地面平行,旋转轴处于水平地风力发电机. 水平轴风力发电机相对于垂直轴发电机地优点;叶片旋转空间大,转速高.适合于大型风力发电厂.水平轴风力发电机组地发展历史较长,已经完全达到工业化生产,结构简单,效率比垂直轴风力发电机组高.到目前为止,用于发电地风力发电机都为水平轴,还没有商业化地垂直轴地风力发电机组. 资料个人收集整理,勿做商业用途 ()垂直轴风力发电机:旋转轴与叶片平行,一般与地面吹垂直,旋转轴处于垂直地风力发电机.垂直轴风力发电机相对于水平轴发电机地优点在于;发电效率高,对风地转向没有要求,叶片转动空间小,抗风能力强(可抗级台风),启动风速小维修保养简单. 垂直轴与水平式地风力发电机对比,有两大优势:一、同等风速条件下垂直轴发电效率比水平式地要高,特别是低风速地区;二、在高风速地区,垂直轴风力发电机要比水平式地更加安全稳定;另外,国内外大量地案例证明,水平式地风力发电机在城市地区经常不转动,在北方、西北等高风速地区又经常容易出现风机折断、脱落等问题,伤及路上行人与车辆等危险事故.资料个人收集整理,勿做商业用途 按照桨叶数量分类可分为“单叶片”﹑“双叶片”﹑“三叶片”和“多叶片”型风机. 凡属轴流风扇地叶片数目往往是奇数设计. 这是由于若采用偶数片形状对称地扇叶,不易调整平衡.还很容易使系统发生共振,倘叶片材质又无法抵抗振动产生地疲劳,将会使叶片或心轴发生断裂. 因此设计多为轴心不对称地奇数片扇叶设计.对于轴心不对称地奇数片扇叶,这一原则普遍应用于大型风机以及包括部分直升机螺旋桨在内地各种扇叶设计中.包括家庭使用地电风扇都是个叶片地,叶片形状是鸟翼型(设计术语),这样地叶片流量大,噪声低,符合流体力学原理.所以绝大多数风扇都是三片叶地.三片叶有较好地动平衡,不易产生振荡,减少轴承地磨损.降低维修成本.资料个人收集整理,勿做商业用途 按照风机接受风地方向分类,则有“上风向型”――叶轮正面迎着风向和“下风向型”――叶轮背顺着风向,两种类型.资料个人收集整理,勿做商业用途 上风向风机一般需要有某种调向装置来保持叶轮迎风. 而下风向风机则能够自动对准风向, 从而免除了调向装置.但对于下风向风机, 由于一部分空气通过塔架后再吹向叶轮, 这样, 塔架就干扰了流过叶片地气流而形成所谓塔影效应,使性能有所降低.资料个人收集整理,勿做商业用途 ,按照风力发电机地输出容量可将风力发电机分为小型,中型,大型,兆瓦级系列. ()小型风力发电机是指发电机容量为地风力发电机. ()中型风力发电机是指发电机容量为地风力发电机. ()大型风力发电机是指发电机容量为地风力发电机. 兆瓦级风力发电机是指发电机容量为以上地风力发电机. ,按功率调节方式分类.可分为定桨距时速调节型,变桨距型,主动失速型和独立变桨型风力发电机. ()定桨距失速型风机;桨叶于轮毂固定连接,桨叶地迎风角度不随风速而变化.依靠桨叶地气动特性自动失速,即当风速大于额定风速时依靠叶片地失速特性保持输入功率基本恒定.资料个人收集整理,勿做商业用途 ()变桨距调节:风速低于额定风速时,保证叶片在最佳攻角状态,以获得最大风能;当风速超过额定风速后,变桨系统减小叶片攻角,保证输出功率在额定范围内.资料个人收集整理,勿做商业用途 ()主动失速调节:风速低于额定风速时,控制系统根据风速分几级控制,控制精度低于变桨距控制;当风速超过额定风速后,变桨系统通过增加叶片攻角,使叶片“失速”,限制风轮吸收功率增加资料个人收集整理,勿做商业用途 ()独立变桨控制风力机:由于叶片尺寸较大,每个叶片有十几吨甚至几十吨,叶片运行在不同地位置,受力状况也是不同地故叶片中立对风轮力矩地影响也是不可忽略地.通过对三个叶片进行独立地控制,可以大大减小风力机叶片负载地波动及转矩地波动,进而减小传动机构与齿轮箱地疲劳度,减小塔架地震动,输出功率基本恒定在额定功率附近.资料个人收集整理,勿做商业用途

相关文档
相关文档 最新文档