文档库 最新最全的文档下载
当前位置:文档库 › 地铁盾构的选型和使用

地铁盾构的选型和使用

地铁盾构的选型和使用
地铁盾构的选型和使用

地铁盾构的选型及现场管理和使用

一、概述

1、概念

盾构是一种用于隧道暗挖施工,具有金属外壳,壳内装有主机和辅助设备,既能支承地层的压力,又能在地层中整体掘进,进行土体开挖,碴土排运和管片安装等作业,使隧道一次成形的机械。

盾构是相对复杂的集机、电、液、传感、信息技术于一体的隧道施工专用工程机械,主要用于地铁、铁路、公路、市政、水电等工程。

盾构的工作原理就是一个钢结构组件依靠外壳支承,沿隧道轴线一边对土壤进行切削一边向前推进,在盾壳的保护下完成掘进、排碴、衬砌工作,最终贯通隧道。

盾构施工主要由稳定开挖面、掘进及排土、管片衬砌和壁后注浆三大要素组成。

盾构是根据工程地质、水文地质、地貌、地面建筑物及地下管线和构筑物等具体特征来“量身定做”的一种非标设备。盾构不同于常规设备,其核心技术不仅仅是设备本身的机电工业设计,还在于设备通过不同的设计如何满足工程地质施工的需求。因此,盾构的选型正确与否决定着盾构施工的成败。

2、盾构的类型

盾构的类型是指与特定的施工环境、基础地质、工程地质和水文地质特征相匹配的盾构种类。

一般掘进机的类型分为软土盾构、硬岩掘进机(TBM)、复合盾构三种。软土盾构的特点是仅安装切削软土用的切刀和括刀,无需开岩的滚刀。TBM主要用于山岭隧道。复合盾构是指既适用于软土,又适应于硬岩的一类盾构,主要用于复杂地层的施工。地铁盾构就是一种复合盾构。主要特点是刀盘既安装用于软土切削的切刀和括刀,又安装破碎岩石的滚刀,或安装破碎砂卵石和漂石的撕裂刀。

复合盾构分为土压平衡盾构和泥水加压平衡盾构。

3、盾构的组成

地铁施工可供选择的复合盾构机机型只有两种,即土压平衡盾构机或泥水平衡盾构机。

一台盾构按外观结构形式分为刀盘部分、前盾、中盾、尾盾、后配套部分和辅助设备(管片和砂浆运输设备、泥水站等)。

土压平衡盾构由以下十一部分组成:⑴、刀盘(分为面板式、辐条式、复合式三种),⑵刀盘驱动(分为电机和液压两种),⑶刀盘支承(主轴承),⑷膨润土添加系统和泡沫系统,⑸螺旋输送机,⑹皮带输送机,⑺同步注浆系统,⑻盾尾密封系统,⑼管片安装机,⑽数据采集系统,⑾导向系

统。

泥水平衡盾构由以下十部分组成:⑴、刀盘(分为面板式、辐条式、复合式三种),⑵刀盘驱动(分为电机和液压两种),⑶刀盘支承(主轴承),⑷泥水处理站,⑸环流系统,⑹同步注浆系统,⑺盾尾密封系统,⑻管片安装机,⑼数据采集系统,⑽导向系统。

4、地铁结构设计基本参数

管片内径:5400mm/5500mm

管片外径:6000mm/6200mm

环宽:1200mm 、1500mm

管片厚度:300mm、350mm

分块情况:6块

二、盾构的选型

1、盾构选型的原则

盾构选型是盾构法隧道能否安全、环保、优质、经济、快速建成的关键工作之一,盾构选型应从安全适应性(也称可靠性)、技术先进性、经济性等方面综合考虑,所选择的盾构形式要能尽量减少辅助施工法并确保开挖面稳定和适应围岩条件,同时还要综合考虑以下因素:

①可以合理使用的辅助施工法如降水法、气压法、冻结法和注浆法等。

②满足本工程隧道施工长度和线形的要求。

③后配套设备、始发设施等能与盾构的开挖能力配套。

④盾构的工作环境。

不同形式的盾构所适应的地质范围不同,盾构选型总的

原则是安全性适应性第一,以确保盾构法施工的安全可靠;在安全可靠的情况下再考虑技术的先进性,即技术先进性第二位;然后再考虑盾构的价格,即经济性第三位。盾构施工时,施工沿线的地质条件可能变化较大,在选型时一般选择适合于施工区大多数围岩的机型。

盾构选型时主要遵循下列原则:

①应对工程地质、水文地质有较强的适应性,首先要满足施工安全的要求。

②安全适应性、技术先进性、经济性相统一,在安全可靠的情况下,考虑技术先进性和经济合理性。

③满足隧道外径、长度、埋深、施工场地、周围环境等条件。

④满足安全、质量、工期、造价及环保要求。

⑤后配套设备的能力与主机配套,满足生产能力与主机掘进速度相匹配,同时具有施工安全、结构简单、布臵合理和易于维护保养的特点。

⑥盾构制造商的知名度、业绩、信誉和技术服务。

根据以上原则,对盾构的形式及主要技术参数进行研究分析,以确保盾构法施工的安全、可靠,选择最佳的盾构施工方法和选择最适宜的盾构。盾构选型是盾构施工的关键环节,直接影响盾构隧道的施工安全、施工质量、施工工艺及施工成本,为保证工程的顺利完成,对盾构的选型工作非常慎重。

2、盾构选型的依据

盾构选型应以工程地质、水文地质为主要依据,综合考虑周围环境条件、隧道断面尺寸、施工长度、埋深、线路的曲率半径、沿线地形、地面及地下构筑物等环境条件,以及

周围环境对地面变形的控制要求的工期、环保等因素,同时,参考国内外已有盾构工程实例及相关的盾构技术规范、施工规范及相关标准,对盾构类型、驱动方式、功能要求、主要技术参数,辅助设备的配臵等进行研究。选型时的主要依据如下内容:

①工程地质、水文地质条件:颗粒分析及粒度分布,单轴抗压强度,含水率,砾石直径,液限及塑限,N值,黏聚力c、内磨擦角,土粒子相对密度,孔隙率及孔隙比,地层反力系数,压密特性,弹性波速度,孔隙水压,渗透系数,地下水位(最高、最低、平均),地下水位的流速、流向,河床变迁情况等。

②隧道长度、隧道平纵断面形状和尺寸等设计参数。

③周围环境条件:地上及地下建筑物分布,地下管线埋深及分布,沿线河流、湖泊、海洋的分布,沿线交通情况、施工场地条件,气候条件,水电供应情况等。

④隧道施工工程筹划及节点工期要求。

⑤宜用的辅助工法。

⑥技术经济比较。

3、盾构选型主要步骤

①在对工程地质、水文地质条件、周围环境、工期要求、经济性等充分研究的基础上选定盾构的类型;对敞开式、闭胸式盾构进行比选。

②在确定选用闭胸式盾构后,根据地层的渗透系数、颗粒级配、地下水压、环保、辅助施工方法、施工环境、安全等因素对土压平衡盾构和泥水盾构进行比选。

③根据详细的地质勘探资料,对盾构各主要功能部件进行选择和设计(如刀盘驱动形式,刀盘结构形式、开口率,

刀具种类与配臵,螺旋输送机的形式与尺寸,沉浸墙的结构设计与泥浆门的形式,破碎机的布臵与形式,送泥管的直径等),并根据地质条件等确定盾构的主要参数。盾构的主要技术参数在选型时应进行详细计算,主要包括刀盘直径,刀盘开口率,刀盘转速,刀盘扭矩,刀盘驱动功率,推力,掘进速度,螺旋输送机功率、直径、长度、送排泥管直径,送排泥泵功率、扬程等。

④根据地质条件选择与盾构掘进速度相匹配的盾构后配套施工设备。

4、盾构选型的主要方法

4.1 根据地层的渗透系数进行选型

地层渗透系数对于盾构的选型是一个很重要的因素。通常,当地层的渗透系数小于10-7m/s时,可以选用土压平衡盾构;当地层的渗透系数在10-7-10-4m/s之间时,既可以选用土压平衡盾构也可以选用泥水式盾构;当地层的透水系数大于10-4m/s时,宜选用泥水盾构。根据地层渗透系数与盾构类型的关系,若地层以各种级配富水的砂层、砂砾层为主时,宜选用泥水盾构;其他地层宜选用土压平衡盾构。

4.2 根据地层的颗粒级配进行选型

土压平衡盾构主要适用于粉土、粉质黏土、淤泥质粉土、粉砂层等黏稠土壤的施工,在黏性土层中掘进时,由刀盘切削下来的土体进人土仓后由螺旋输送机输出,在螺旋输送机内形成压力梯降,保持土仓压力稳定,使开挖面土层处于稳定。一般来说,当岩土中的粉粒和黏粒的的总量达到40%以上时,通常宜选用土压平衡盾构,相反的情况选择泥水盾构比较合适。粉粒的绝对大小通常以0.075mm为界。

4.3根据地下水压进行选型

当水压大于0.3Mpa时,适宜采用泥水盾构。如果采用土压平衡盾构,螺旋输送机难以形成有效的土压下降,导致开挖面坍塌。

当水压大于0.3Mpa时,如因地质原因需采用土压平衡盾构,则需增大螺旋输送机的长度或采用一级螺旋输送机,或采用保压泵。

4.4盾构选型时必须考虑的特殊因素

盾构选型时,在实际实施时,还需解决理论的合理性与实际的可能性之间的矛盾。必须考虑环保,地质和安全因素。

1)环保因素

对泥水盾构而言,虽然经过过筛、旋流、沉淀等程序,可以将弃土浆液中的一些粗颗粒分离出来,并通过汽车、船等工具运输弃渣,但泥浆中的悬浮或半悬浮状态的细土颗粒仍不能完全分离出来,而这些物质又不能随意处理,就形成了使用泥水盾构的一大困难。降低污染保护环境是选择泥水盾构面临的十分重要的课题,需要解决的是如何防止将这些泥浆弃臵江河湖海等水体中造成范围更大,更严重的污染。

要将弃土泥浆彻底处理可以作为固体物料运输的程度也是可以做到的,国内外都有许多成功的事例,但做到这点并不容易,因为:

①处理设备费,增加了工程投资。

②用来安装这些处理设备需要的场地较大。

③处理时间较长。

2)工程地质因素

盾构施工工程地质的复杂性主要反映在基础地质(主要是围岩岩性)和工程地质特性的多变方面。在一个盾构施工段或一个盾构合同标段中,某些部分的施工环境适合选用土压平衡盾构,但某些部分又很适合选用泥水盾构。盾构选型时应综合考虑并对不同选择进行风险分析后择其优者。

3)安全因素

从保持工作面的稳定、控制地面沉降的角度来看,当隧道断面较大时,使用泥水盾构要比使用土压平衡盾构的效果好一些,特别是在河湖等水体下、在密集的建筑物或构筑物下及上软下硬的地层中施工时。在这些特殊的施工环境中,施工过程的安全性是盾构选型时的一项极其重要的选择,如北京铁路地下直径线最终选择了泥水盾构。

5、盾构模式的选择

在选择盾构模式时,最重要的是要以保持开挖面稳定为基点进行选择。为了选择合适的盾构模式,除对土质、地下水进行调查以外,还要对用地环境、竖井周围环境、安全性、经济性进行充分考虑。

近几年来,由竖井或渣土处理而影响盾构形式选择的实例不断增加。另外,在一些实例中,施工经验也会成为盾构选型的重要因素。因此,在选型时,要邀请具有制造同类盾

构经验的国内外知名盾构制度商进行技术交流;可邀请国内盾构隧道设计、科研、施工方面专家进行选型论证和研究,并参照类似工程和盾构选型及施工情况。

5.1土压平衡盾构

土压盾构主要适用于粉质黏土、淤泥质粉土、粉砂层等黏稠土壤的施工,在黏性土层掘进时,由刀盘切削下来的土体进入土仓后由螺旋输送机输出,在螺旋输送机内形成压力梯降,保持土仓压力稳定,使开挖面土层处于稳定。盾构向前推进的同时,螺旋输送机排土,使排土量等于开挖量,即可使开挖面的地层始终保持稳定。排土量通过调节螺旋输送机的转速和出土闸门的开度予以控制。

当含砂量超过某一限度时,泥土的流塑性明显变差,土仓内土体因固结作用而被压密,导致渣土难以排送,需向土仓内注水、泡沫、泥浆等添加材料,以改善土体流塑性。在砂性土层施工时,由于砂性土流动性差,砂土磨擦力大、渗透系数高、地下水丰富等原因,土仓内压力不易稳定,须进行渣土改良。

根据以上叙述,土压平衡盾构主要分为两种:一种是适用于含水量和粒度组成比较适中,开挖面土砂可直接注入土仓及螺旋输送机内,从而维持开挖稳定的土压式盾构;另一种是对应于砂粒含量较多而不具有流动性的土质,需通过水、泡沫、泥浆等添加材料使泥土压力可以很好地传递到开

挖面的加泥式土压平衡盾构。

土压平衡盾构根据土压力的状况进行开挖和推进,通过检查土仓压力不但可以控制开挖的稳定性,还可以减少对周围地基影响。土压平衡盾构一般不需要实施辅助工法。

加泥式土压平衡盾构可以适用于冲积砂砾、砂、粉土、黏土等固结度比较低的软弱地层,洪积地层以及软硬不匀地层;在土质方面的适用性最为广泛。但在高水压下(大于0.3Mpa),仅用螺旋输送机排土难以保持开挖面的稳定性,还需安装保压泵或进行切削土的改良。

5.2泥水盾构

泥水盾构通过施加高于开挖水土压力的泥浆压力开挖的稳定。除泥浆压力外,合理地选择泥浆的状态也可增加开挖面的稳定性。泥水盾构比较适合于河底、江底、海底等高水压条件下的隧道施工。

泥水盾构使用送排泥泵通过管道从地面直接向开挖面进行送排泥,开挖面完全封闭,具有高安全性和良好的施工环境,既不对围岩产生过大的压力也不会受到围岩压力的反压,对周围地基影响较小,一般不需辅助施工。特别是在开挖断面较大时,控制地表沉降方面优于土压平衡盾构。

根据控制开挖面泥浆压力方式的不同,泥水盾构有两种:一种是日本体系的直接控制型;另一种是德国体系的间接控制型(即气压复合控制型)。直接控制型的泥水仓为单

仓结构形式;间接控制型的泥水仓为双仓结构,前仓称为开挖仓,后仓称为气垫调压仓,开挖仓内完全充满受压的泥浆后平衡外部水土压力。开挖仓内的受压泥浆通过沉浸的下面与气垫仓相连。

隧道开挖过程中,直接控制型泥水盾构开挖仓内的泥水压力波动较大,一般在±(0.5~1.0)×105Pa之间变化。

间接控制型泥水盾构的气垫调压仓通过压缩空气系统精确地进行控制和调节压力,开挖仓内的压力波动较小,一般为±(1~2)×104Pa,泥浆管路内的浮动变化将被准确、迅速平衡,减少了外界压力的变化对开挖的稳定造成的影响。

6、刀盘结构形式的选择

6.1刀盘的主要功能

刀盘主要功能具有以下三大功能:

①开挖功能。刀盘旋转时,刀具切削隧道掌子面的土体,对掌子面的地层进行开挖,开挖后的渣土通过刀盘的开口进入土仓。

②稳定功能。支撑掌子面,具有稳定掌子面的功能。

③搅拌功能。对于土压平衡盾构,刀盘对土仓内的渣土具有一定的塑性,然后通过螺旋输送机将渣土排出;对于泥水盾构,通过刀盘和旋转搅拌作用,将切削下来的渣土与膨润土泥浆充分混合,优化了泥水压力的控制和改善了泥浆的

均匀性,然后通过排泥管道将开挖渣土以流体的形式泵送到设在地面上的泥水分离站。

6.2刀盘的结构形式

刀盘的结构形式一般有面板式和辐条式两种,具体应用时应根据施工条件和土质条件等因素决定。泥水盾构一般都采用面板式刀盘;土压平衡盾构则根据土质条件不同可采用面板式、辐条式二种。对于土压平衡盾构,采用面板式刀盘时,由于泥土流经刀盘面板的开口进入土仓,盾构掘进时土仓内的土压力与开挖面的土压力之间产生压力降,且压力降的大小受面板开口的影响不易确定,从而使得开挖面的土压力不易控制。面板式刀盘的优点是通过刀盘的开口限制直入土仓的卵石粒径,其缺点是由于受刀盘面板的影响,开挖面土压不等于测量土压,因而土压管理困难,由于受面板开口率的影响,渣土进入土仓不顺畅、易黏结和易堵塞,且刀具负荷大,使用寿命短。在黏土层施工时,如果采用面板式刀盘,则由于刀盘支承将土仓分隔成两个区域,当刀盘旋转切削土体时,中心区域以外部分的土体流动顺畅,易于搅拌;中心区域内的土体流动较差,当切削土体黏性较大并长期积聚于中心区域时,中心区域土体逐渐增多并最终形成泥饼,会完全丧失流动性,造成出土不畅、阻力增大、开挖面压力控制不稳定,对控制地面沉降不利。

辐条式刀盘仅有几根辐条,土、砂流动顺畅,有利于

防止黏土附着,不易黏结和堵塞;由于没有面板的阻挡,渣土从开挖面进入土仓时没有土压力的衰减,开挖面土压等于测量土压,因而能对土压进行有效的管理,能有效地控制地面沉降;同时刀具负荷小,寿命长。辐条式刀盘仅有几根辐条,切削下来的土体直接进入土仓,没有压力损失,同时辐条后设有搅拌叶片,土、砂流动顺畅,土压平衡容易控制。因此辐条式刀盘对砂、土等单一软土地层的适应性比面板式刀盘较强;辐条式刀盘也能安装滚刀在风化岩及软硬不均地层或硬岩地层掘进时,也可采用辐条式刀盘。

辐条式刀盘上的滚刀一般设计成与先行刀可互换式,可根据地质的需要将滚刀换装成先行刀。同时,辐条式刀盘也可换成面板式刀盘,在辐条之间安装可拆卸的面板,即可变为面板式刀盘。

7刀具的种类与破岩机理

7.1刀具的种类

盾构的掘进刀具一般按以下进行分类。

1)滚刀

滚刀分齿形滚刀和盘形滚刀。齿形滚刀主要有球齿滚刀和楔齿滚刀两种,常用于软岩;盾构上应用较广的是盘形滚刀。盘形滚刀圈的数量公有单刃、双刃、多刃等三种形式。

在风化的砂岩及泥岩等较软岩地层时,一般采用双刃滚刀,较硬岩采用单刃滚刀。盘形滚刀按刀圈材质分为耐磨层

表面刀圈、标准钢刀圈、重型钢刀圈、镶齿硬质合金刀圈滚刀等,并分别适应于不同的地层。

①耐磨层表面刀圈:适用于掘进硬度40MPa的紧密地层,硬度80~100Mpa的断裂砾岩、砂岩、砂黏土等地层。

②标准钢刀圈:适用于掘进硬度50~100Mpa的砾岩、大理石、灰岩地层。

③重型钢刀圈:适用于掘进硬度120~250Mpa的硬岩,硬度80~150Mpa的高磨损岩层,如花岗岩、闪长岩、斑岩、蛇纹石及玄武岩等地层。

④镶齿硬质合金刀圈:适用于掘进硬度高达150~250Mpa的花岗岩、玄武岩、斑岩及石英岩等地层。

2)切刀

切刀安装在刀盘开口槽的两侧,也称刮刀。用来切削未固定的土壤,并把切削土刮入土仓中,刀具的形状和位臵按便于切削地层和便于将土仓来设计,在同一个轨迹上一般有多把切刀同时开挖。切刀的宽度使得每把刀的切割削轨迹之间有一定的重叠。目前最有效的切刀为双层耐磨设计,配有双层碳钨合金刀齿以提高刀具的耐磨性,在第一排刀齿磨损后,第二排刀齿可以代替第一排刀齿继续发挥作用。同时地刀具的背部设有双排碳钨合金柱齿。切刀在刀盘上的安装采用背装式,可以从开挖仓内拆卸和更换。

3)先行刀

先行刀一般安装在辐条中间的刀箱中。采用背装式,可从土仓进行更换。先行刀超前切刀布臵,使得先行刀超前先切削地层,从而保护切刀并避免其先切削到砾石或块石地层。先行刀主要有三种形式:贝壳刀、撕裂刀、齿刀。日本盾构较常采用贝壳刀,德国海瑞克公司盾构较常采用齿刀,加拿大罗威特公司和法国NFM公司盾构较常采用撕裂刀。

先行刀在切刀接触地层之前特别是较硬的地层之前先松动地层。一般切削宽度较窄,从而使得先行刀在砾石地层中有更高的切削率。先行撕裂刀除先行将致密的土层松动外,同时还起击碎砂卵石的作用,先行刀还能起到延长切刀寿命的作用。

先行刀按刀盘双向转动设计,齿刀和撕裂刀可安装在一个特殊设计的刀箱中,允许根据刀盘的转动方向做适当的微动,这种微动的设计主要用来减少先行刀侧面的磨损。必要时,齿刀和撕裂刀的刀座可设计成与滚刀可互换的结构。

4)周边刮刀

也称铲刀,安装在刀盘的外圈,用于清除边缘部分的开挖渣土防止沉积、确保刀盘的开挖直径以及防止刀盘外缘的间接磨损。该刀的切削面上设有一排连续的碳钨合金齿和一个双排碳钨合金柱齿,用于增强刀具的耐磨。确保即使在掘进几公里之后刀盘仍然有一个正确的开挖直径。周边刮刀采用背装式,可从土仓内进行更换。对于周边刮刀而言,单排

连续碳钨合金刀齿是足够的,因为周边刮刀仅其端部切削地层,而切刀在整个宽度范围切削地层。

5)仿形刀

仿形刀安装在刀盘的外缘上,通过液压油缸动作,采用可编程控制,通过刀盘回转传感器来实现。驾驶员可以控制仿形刀开挖的深度(即超挖的深度),以及超挖的位臵。例如:决定要对左侧进行扩挖以便盾构向左转弯时,那么仿形刀只需在左侧伸出,扩挖左侧水平直径线上、下45°的范围便可以了。

8、刀盘驱动方式的选择

刀盘的驱动方式有三种:一是变频电机驱动;二是液压驱动;三是定速电机驱动。鉴于定速电机驱动,刀盘转速不能调节,目前一般不采用。变频驱动与液压驱动的比较见下表。

刀盘驱动方式比较表

液压驱动具有调速灵活,控制简单、液压马达体积小、安装方便等特点,但液压驱动效率低、发热量大。

变频驱动具有发热量小、效率高、控制精确等优点,在工业领域应用较广。虽然目前的中小型盾构的刀盘驱动较常用液压驱动,大直径盾构较常用变频驱动,但由于变频驱动效率高,从节能方向及发展趋势来看,变频电机驱动方式是刀盘驱动今后的发展方向。

9、施工辅助设备的选择

盾构及后配套拖车上设备以外的设备称为施工辅助设备。施工辅助设备因围岩条件、施工环境及施工方法的不同而不同。一般包括材料堆放场、渣土运输设备、材料运输设备、电力设备、照明设备、通信设备、通风设备、竖井升降设备、给排水设备、消防设备、砂浆拌和设备、地基加固设备、起重设备、始发(到达)与调头设备、泥水处理设备等。施工辅助设备应结合工程的特点和施工环境进行优化配备。

通风设备应符合以下要求:一次通风宜采用压入式通风,风管采用软管,管径根据隧道断面、长度、出渣方式确定。根据计算风量和风压,结合通风方式及通风设备的布臵,宜采用轴流式通风机。长距离通风时,为满足风压的要求,宜采用相同型号的风机等距离间隔串联方式。施工区域的风速不宜低于0.3m/s。

三、盾构设备的监造

盾构机结构件要在工厂加工制造、进行组装、调试和验收,验收合格才可以出厂,运输到工地组装调试。其进口零部件、液压和气路管线、电气元器件等数以万计,盾构机的正常设计制造周期长达8、9个月,有的甚至一年半以上。在盾构机采购合同中对工厂监造作了相关规定,因此,它是履行合同的一项重要工作,监造技术牵涉金属加工工艺、机电、液压、PLC等多个专业,要使盾构机监造改造起到好的效果必须加强理论学习,使图纸、制造、工地情况有机结合。特别对于大型、异型盾构机的监造工作施工单位更应该引起足够的重视。

(一)监造的主要目的和意义

1、监控盾构机制造质量。

按照合同规定对进口或国产部件质量检验,对钢结构加工工艺、制造质量进行检验,以确保符合合同和产品质量要

求。

2、监控制造工期、进度。

监控盾构机加工、到货、组装等各阶段工期进度,及时发现工厂在加工制造安排方面的问题,督促安排生产。

3、加强与施工项目技术联络。

对工地、厂家架设起联络的技术和业务桥梁,对于双方技术改进的联络沟通、确认至关重要。

4、发现并协调解决盾构机内部质量问题。

盾构机的制造如同工程建设,存在许多内部的“隐蔽性工程”如果不及时学习、及时监造,内部情况就不掌握,一旦遇到内部故障只能束手无策,乱加猜测,或者拆东拆西。如果监造不到位,则内部各部件的加工、安装质量没有记录,给今后盾构机进洞掘进留下故障隐患。

5、对技术人员进行培训学习。

设备技术人员通过现场制造、组装过程,结合理论组织学习和培训,有利于对盾构机的理解、操作、维保等专业技术水平得以提高。

6、利于组织工地组装和掌握盾构组装配件情况。

通过工厂监造、组装、调试的学习,可以熟悉组装部件和到货情况,便于盾构机工地组装、调试和质量检验,对今后配件管理、故障分析诊断有积极意义。

(二)监造的三个阶段和各阶段工作任务

盾构机监造一般分三个阶段,即工厂开始刀盘、盾体等钢结构件生产加工到主轴承运输到工厂为第一阶段;80%以上主要部件到达工厂并开始组装为第二阶段;组装行将结束到调试、解体为第三阶段。人员安排视盾构机和项目进展实际情况而定,主要是机械、电气、液压技术工程师和安装、维护保养、操作人员。

1、第一阶段工作任务。

熟悉图纸;了解加工工艺;了解工厂制造工期各阶段安排;了解和督促外购件、外协件合同签订及履行情况(尤其主轴承等大型、关键性部件);对到厂部件进行工厂检验。

2、第二阶段工作任务。

监控部件到场情况,对部件进行检验;对加工件进行质量监控和检验;严格监控各部件把合质量;对质量问题进行跟踪;了解组装工艺和安排。

3、第三阶段工作任务。

对工厂组装质量进行监控;记录发现的问题并限期进行整改;对盾构机进行工厂调试和验收;拆机时记录各部件位臵、装箱单,以便运输和工地组装有序;对缺件进行总结,以便督促到货。

(三)对监造工作的要求

对于大型设备监造工作,要求人员有组织地按专业分组、分工明确,量化工作任务,与工厂建立良好而有效的联

过江地铁隧道盾构机选型

过江地铁隧道盾构机选型 陈珊东 (广东华隧建设股份有限公司,广州510635) 摘要:根据江底的工程地质条件和水文条件,以及江底隧道施工的特点,提出了使用于江底隧道施工用盾构机的型号和基本配置要求。同时还就泥水式平衡盾构机的体系选择、刀盘配置做了讨论。关键词:盾构机选型;泥水盾构;过江 中图分类号:U 455.3+ 9 文献标志码:B 文章编号:1672-741X (2009)增刊1-0069-04 Model Selection of Shield Machine for River -crossing Metro Tunnel CHEN Shandong (Guangdong Huasui Construction Stock Co.,Ltd.,Guangzhou 510635,China ) Abstract :According to engineering geological conditions and hydrologic conditions at the bottom of the river and con-struction characteristic of river -crossing tunnel ,the mode of shield machine for river -crossing tunnel construction and fundamental configuration requirements are put forward.Meanwhile ,a discussion on the selection of soil water balance shield machine and cutter heads configuration has also been made. Key words :model selection of shield machine ;soil water shield machine ;river -crossing 0引言 随着城市交通拥挤程度的增加和轨道交通技术的 发展成熟,对城市地下铁道发展的要求越来越高,城市地下铁道网络也不断增加。而在地铁隧道施工过程中,常常遇到穿江过河的工程,特别是在华南地区施工中,几乎每条地铁隧道都要从江底下穿过,甚至多次穿越。江底施工常伴随着浅覆土、江水潮汐变化、透水性强的淤泥和沙层等不利因素,因此在选择盾构机这一关键的施工设备时应该充分考虑开挖面的稳定性和适用性。盾构机的掘进模式由最初的手掘式到全机械式,到现在的土压平衡和泥水式平衡盾构机。现代盾构机已在控制系统、开挖面压力控制、数据采集等方面发展很快。地层适应性也从开始的单一地层到现在的复杂地层。隧道形状也从圆形发展到双圆、椭圆、矩形等多 种形式。盾构直径尺寸也不断向超大、 微小2个方向发展。直径18m 的盾构机已在研制生产,小到直径 200mm 的微型盾构(顶管)已在工程中得到应用[1]。盾构技术的应用越来越广,如水工隧道、地铁隧道、市政管道等。而且随着压气换刀技术的发展,一次掘进距离也不断拉长。也正因为盾构机规格型号的多样性和专业型,所以选择时要特别注意适用于江底施工。本文从盾构机的机型,刀盘形式和环流体系等方面介 绍了盾构机的选型。 1 选型考虑要素以及注意点 1.1 工程地质和水文条件 对于过江隧道,其地质条比较复杂,富水沙层和淤 泥较多,自稳性较差,通常是由多种地层复合而成。由于地铁线路设计的原因,在江底覆土较薄,最小可能还小于盾构机直径, 并且通常还伴随着江水涨潮和落潮。如广州地铁三号线沥大区间穿越的三支香水道,覆土厚度为7.4 8.6m ,仅略大于盾构直径,隧道穿越该水道初始51m 为全断面中风化层,其余则为上软下硬地层,隧道上方存在淤泥及淤泥质土等软弱地层(盾构穿越该水道期间河水深度涨潮时为6.5m ,退潮时为4.7m )。因此要有很好的江底适应能力,能够很好地保持开挖面的压力平稳。1.2 曲线或者小半径转弯的需要根据交通网络规划原则,地铁隧道肯定存在转弯 部分;车站也通常设计为上坡进站下坡出站,同样存在曲线部分;地铁隧道在过江的时候,必然也是一个锅底型的线路。因此盾构机性能,应满足曲线推进和小半径转弯的要求。1.3 同一台盾构机多次解体、搬运、组装调试与掘进盾构机的使用寿命一般可达8 10km (按照主轴 收稿日期:2009-04-01;修回日期:2009-04-03 作者简介:陈珊东(1984—),男,广东梅州人,2006年毕业于华南农业大学电气化专业,助理工程师,现从事隧道及地下工程施工机械管理。 第29卷增刊12009年4月 隧道建设 Tunnel Construction Vol.29Sup.1Apr.2009

成都地区管片选型技术

成都地铁管片选型技术 一、成都地铁管片设计参数 1、衬砌环构造 成都地铁采用的衬砌环外径6000mm,内径5400mm。管片幅宽分为1500mm,1200mm,管片厚度300mm。混凝土强度等级C50,抗渗等级P12。每环衬砌环由6块管片组成,其中1块封顶块、2块邻接块、3块标准块。为了满足与曲线段线路的拟合及施工纠偏的需要,设计了标准环、左转弯楔形环和右转弯楔形环,通过合理的组合来拟合不同的曲线。成都地铁采用的楔形环为双面楔形,单面楔形量为19mm,转角为0.1814°,整环楔形总量为38mm,转角为0.363°。 2、管片连接 衬砌环纵、环缝连接采用弯螺栓连接,其中1500mm幅宽的管片每环纵缝采用12根M27螺栓,每个环缝采用10根M27螺栓;1200mm幅宽的管片每环纵缝采用12根M24螺栓,每个环缝采用10根M24螺栓。 二、管片选型的分析 根据设计线路进行掘进,避免产生不必要的偏差。在实际掘进过程中,盾构机因为地质不均、推力不均等原因,盾构机的姿态经常会偏离隧道设计线路,当盾构机偏离设计线路进行纠偏时,要特别注意管片选型,避免因盾尾间隙过小而造成管片破损等事故。 1、管片拼装点位的分析

管片的拼装点位表示每一环管片中封顶块所在的位置。根据成都地区管片的设计构造图,将管片拼装分为10个点位,分别是1点(封顶块右偏18°)、2点(封顶块右偏54°)、3点(封顶块右偏90°)、4点(封顶块右偏126°)、5点(封顶块右偏162°)、6点(封顶块左偏162°)、7点(封顶块左偏126°)、8点(封顶块左偏90°)、9点(封顶块左偏54°)、10点(封顶块左偏18°)。 管片点位的划分是以管片的分块形式和螺栓孔的位置为依据,合适的点位才能确保两环之间所有的纵向螺栓孔的位置能够重合。在成都地铁盾构隧道管片采用错缝拼装,拼环时点位尽量优先选用ABA (1点、10点)形式,其中第一环的封顶块管片从正上方右偏18°,第二环的封顶块管片从正上方左偏18°。根据相邻两环管片不能通缝的原则,对每一环管片的点位进行选择,并优选合理的点位来拟合隧道的线形与盾构机的纠偏。管片的拼装点位有一定的规律性,现为了保证隧道的美观和防水效果,将管片的点位划分为两类:上半区点位(1点、2点、3点、8点、9点、10点),下半区点位(4点、5点、6点、7点)。其中上半区点位位于隧道中线以上(含中线),有利于管片拼装和隧道的防水质量,因此上半区作为管片点位选择的主要区域。从管片拼装点位的位置模拟看出成都地铁的管片点位可分位奇数和偶数点位。相邻的两环管片不能为同类型的点位。即,如果上一环封顶块的位置在奇数点位上,则下一环管片选择时只能选择封顶块位置在偶数点位上,只有这样才可确保拼装的相邻管片不通缝;反之,如果上一环封顶块的位置在偶数点位上,则下一环管片选择时只能选择封顶块位置在奇数点位上。例如:上一环选择3点,则下一环就可优先选择2点、8点、10点。

盾构机管片选型和安装

盾构管片选型和安装 林建平 在盾构法施工中,管片的选型和安装好坏直接影响着隧道的质量和使用寿命。本文根据广州地铁三号线客~大区间的实际施工情况,就盾构管片选型和安装技术做总结分析。 一、工程概况 客~大盾构区间分为两条平行的分离式单线圆形盾构隧道,总长度为3016.933米,管片生产与安装2011环。管片外径6000mm,内径5400mm,宽度1500mm,防渗等级S10,砼C50。依据配筋将管片分为A、B、C三类,C类配筋最高、B类配筋最低;管片的楔形量38mm,分左转、右转、标准三类。 二、管片的特征 1、管片的拼装点位 本区间的管片拼装分10个点位,和钟表的点位相近,分别是1、2、3、4、5、7、8、 9、10、11。 管片划分点位的依据有两个:管片的分块形式和螺栓孔的布置。拼环时点位尽量要求ABA(1点、11点)形式。在广州盾构隧道管片要求错缝拼装,相邻两环管片不能通缝。管片拼装点位有很强的规律,管片的点位可划分为两类,一类为1点、3点、5点、8点、10点;二类为11点、2点、4点、7点、9点。同一类管片不能相连,例如1点后不能跟3、5、8、10这四个点位,只能跟11、2、4、7、9五个点位。在成型隧道里两联络通道之间的奇数管片是同一类,偶数管片是同一类。 选管片的规律如下图1:图1 (竖列表示拼装好的管片,横向:√-表示可选后续的管片;×-表示不可选后续的管片)

2、隧道管片排序 鉴于管片拼装的规律性,所以盾构施工前必须对隧道管片做好排序,并根据设计,模拟出联络通道和泵房位置,管片拼到联络通道处时,点位要正好和设计点位符合,否则联络通道位置会被改变。在本工程中,是从左线始发,第325、326环处是联络通道,此处拼装点位是11点,将标准块A3块拼到洞门位置。盾构始发时的负环是6环,1环零环。从负环到325环共332环,第325环是11点,相当于第332环是11点,那么负环第一环点位应该是1点,或3点、5点、8点、10点。 管片排序时,要优化洞门的长度,在广州洞门长度要求在400mm以上,一环管片的长度是1500mm,在条件允许的条件下,通过调整始发负环的位置,把每节隧道两端的洞门长度之和控制在1500mm以内,当隧道长度除以管片长度的余数大于两倍最小洞门宽

盾构管片的选型和拼装2018.6

管片的选型和拼装(2018年6月) 一、管片的选型原则 1、管片选型符合隧道设计线路; 2、管片选型要适合盾构机的姿态; 3、管片选型尽量采用ABA的拼装型式; 说明: 1、管片选型如何符合隧道设计线路 根据隧道中线的平曲线和竖曲线的走向,管片分为标准环、左转弯、右转弯三类。直线上选标准环,左转曲线上选左转环,右转曲线上选右转环。其中转弯环数量的计算公式如下: θ=2γ=2*arctg(δ/D) 式中: θ——转弯环的偏转角 δ——转弯环的最大楔型量的一半 D——管片直径 每条曲线上的转弯环个数为 N=(α0+β)/θ 式中: α0——曲线上切线的转角 β——缓和曲线偏角 经计算本标段所需左转弯环131环,右转弯环131环。 根据圆心角的计算公式

α=180L/(πR) 式中: L——段线路中心线的长度 R——曲线半径 而θ=α,将之代入的到L=6.33m,所以在圆曲线上每隔6.33m一个转弯环(N=6.33/1.5=4.2环,即平均4.2环一个转弯环)。经过实际计算,在缓和曲线上,也近似于6m一个转弯环。 2、管片选型要符合盾构机的姿态 管片是在盾尾内拼装,所以不可避免的受到盾构机姿态的约制。管片平面尽量垂直于盾构机轴线,让盾构机的推进油缸能垂直地推在管片上,这样使管片受力均匀,掘进时不会产生管片破损。同时也要兼顾管片与盾尾之间的间隙,避免盾构机与管片发生碰撞而破损管片。当因地质不均、推力不均等原因,使盾构机偏离线路设计轴线时,管片的选型要适宜盾构机的姿态,尤其在曲线段掘进时更要注意。 3、根据现有的管模数量和类型,及生产能力 现有管模四套,两套标准环管模,一套左转环管模,一套右转环管模,每套管模每天能生产两环管片。为了满足每天掘进8~9环的进度要求,用转弯环代替标准环,例如用一套左转环和一套右转环来代替两个标准环。 二、影响管片选型的因素 1、盾构机的盾尾间隙的影响 盾尾与管片之间的间隙叫盾尾间隙。 盾尾间隙是管片选型的一个重要的一个重要依据。如果盾尾间隙过

地铁施工用盾构机选型及施工组织

地铁施工用盾构机选型及施工组织 .、八、一 一. 前言新世纪的发展使得我国在地铁建设方面也得到了迅猛发展,地铁逐步成为人们生活和工作中必须的交通工具。地铁高效、节能、环境好,不仅能解决城市交通拥挤的问题,还能反映出城市的发展水平,在我国持续发展道路中起到了很大的作用。经济越发展,地铁的发展前景就越广阔。要使得地铁能够安全可靠,就要在其施工方面多加注意,同时在施工时要选购合适的机型才能完全保证在整个过程中地铁顺利建成。 二. 盾构机概述盾构机全名为盾构隧道掘进机,其主要集中了控制、遥控、传感器、导向、测量、探测、通讯等技术,是一种隧道掘进的专用工程机械,广泛用于地铁、铁路、公路、市政、水电等隧道工程。盾构机是由动力机构、切削刀盘、液压顶进机构、岩土排运机构及检测导向机构等多个相互配合的部分组成的一种隧道掘进机械。它较适用于砾石、软土、硬岩等不同地质构造的隧道暗挖,具有较好的施工稳定性和掘进性能。 盾构机在一个可以有效支撑地层压力,并且可以在地层中推进的 圆形、矩形或马蹄形等特殊形状的钢筒结构的掩护下,完成挖掘、出土、隧道支护等工作。这种施工方式具有施工速度快、自动化程度高、 节省人力、经济合理、减少对地面建筑物的影响 和不影响地面交通等特点 三. 盾构法的介绍我国应用盾构法修建隧道始于二十世纪五六十年 代的上海。最初是用于修建城市地下排水隧道,采用的是比较老式的盾构机(如网格式、压气式、插板式等),八十年代末、九十年代初开始

采用土压式、泥水式等现代盾构修筑地铁区间隧道。盾构法具有安全、可靠、快速、环保等优点,目前,该方法已经在我国的地铁建设中得到了迅速的发展。据不完全统计,我国各城市地铁采用的盾构机已有近300 多台,只要掌握在中国中铁、中国铁建等国有大型企业手中,大多是土压平衡盾构机。 随着盾构法研究的深入、工程应用的增多,盾构法施工技术及盾构机修造配套技术也得到了发展提高:上海地铁隧道基本全部采用盾构法修建,除区间单圆盾构外,目前正在使用双圆盾构一次施工两条平行的区间隧道,此外还试验采用了方形断面盾构修建地下通道;采用直径15.43m 的泥水盾构建成了上海长江隧道,这也是目前我国最大直径乃至世界最大直径的盾构机。广州地铁采用具有土压平衡、气压平衡和半土压平衡模式的新型复合式盾构机成功应用于既有软土又有坚硬岩石,以及断裂破碎带的复杂地层的地铁区间隧道修筑,大大拓展了盾构法的应用范围。深圳、南京、北京、天津等城市虽然地质、水文条件各不相同,但采用盾构法修建区间隧道均取得了成功。 除了上述几点外,我国盾构技术的进步还表现在以下四个方 面。 (一)掌握了盾构机的选型和配套技术,与外国合作设计生产盾构机,配套施工设备包括管片模具完全能够自行设计制造; (二)掌握了盾构隧道的设计和结构计算技术,以及防水技术; (三)掌握了盾构掘进控制技术,如盾构掘进参数选择控制、碴土和压力管理、地表沉降控制、盾构机姿态和隧道轴线控制、管片防

(完整版)地铁盾构的选型和使用

地铁盾构的选型及现场管理和使用 一、概述 1、概念 盾构是一种用于隧道暗挖施工,具有金属外壳,壳内装有主机和辅助设备,既能支承地层的压力,又能在地层中整体掘进,进行土体开挖,碴土排运和管片安装等作业,使隧道一次成形的机械。 盾构是相对复杂的集机、电、液、传感、信息技术于一体的隧道施工专用工程机械,主要用于地铁、铁路、公路、市政、水电等工程。 盾构的工作原理就是一个钢结构组件依靠外壳支承,沿隧道轴线一边对土壤进行切削一边向前推进,在盾壳的保护下完成掘进、排碴、衬砌工作,最终贯通隧道。 盾构施工主要由稳定开挖面、掘进及排土、管片衬砌和壁后注浆三大要素组成。 盾构是根据工程地质、水文地质、地貌、地面建筑物及地下管线和构筑物等具体特征来“量身定做”的一种非标设备。盾构不同于常规设备,其核心技术不仅仅是设备本身的机电工业设计,还在于设备通过不同的设计如何满足工程地质施工的需求。因此,盾构的选型正确与否决定着盾构施工的成败。

2、盾构的类型 盾构的类型是指与特定的施工环境、基础地质、工程地质和水文地质特征相匹配的盾构种类。 一般掘进机的类型分为软土盾构、硬岩掘进机(TBM)、复合盾构三种。软土盾构的特点是仅安装切削软土用的切刀和括刀,无需开岩的滚刀。TBM主要用于山岭隧道。复合盾构是指既适用于软土,又适应于硬岩的一类盾构,主要用于复杂地层的施工。地铁盾构就是一种复合盾构。主要特点是刀盘既安装用于软土切削的切刀和括刀,又安装破碎岩石的滚刀,或安装破碎砂卵石和漂石的撕裂刀。 复合盾构分为土压平衡盾构和泥水加压平衡盾构。 3、盾构的组成 地铁施工可供选择的复合盾构机机型只有两种,即土压平衡盾构机或泥水平衡盾构机。 一台盾构按外观结构形式分为刀盘部分、前盾、中盾、尾盾、后配套部分和辅助设备(管片和砂浆运输设备、泥水站等)。 土压平衡盾构由以下十一部分组成:⑴、刀盘(分为面板式、辐条式、复合式三种),⑵刀盘驱动(分为电机和液压两种),⑶刀盘支承(主轴承),⑷膨润土添加系统和泡沫系统,⑸螺旋输送机,⑹皮带输送机,⑺同步注浆系统,⑻盾尾密封系统,⑼管片安装机,⑽数据采集系统,⑾导向系

如何进行盾构法施工隧道管片选型排版

进一步减小。通常我们以各组油缸行程的差值的大小来判断是否应该拼装转弯环,在两个相反的方向上的行程差值超过40mm时,就应该拼装转弯环进行纠偏,拼装一环转弯环对油缸行程的调整量见表1,也就是拼装1环10点左转弯环,可以使左、右两组的油缸行程差缩小38mm。 德国海瑞克公司的土压平衡式盾构机,如图3所示,10对推进油缸分为A、B、C、D四组,分别代表上、右、下、左四个方向。油缸行程可以通过位移传感器反映在显示屏上,通过计算各组油缸之间的差值,就能进行正确的管片选型。下面举例说明: 现有一组油缸行程的数据如下: B组(右):1980mm C组(下):1964mm D组(左):1934mm A组(上):1943mm 左右行程差为:D-B=1934-1980=-46mm 上下行程差为:A-C=1943-1964=-21mm 图油缸分区图 由上可以看出,盾构机的轴线相对于管片平面向左上方倾斜。在对这环管片进行选型的时候,就应选择一环左转弯环且还要有向上的偏移量。对照表1后得出,此环应选择左转弯环在1点拼装。拼装完管片后掘进之前油缸行程的初始数据理论为:A组(上):454mm B组(右):465mm C组(下):453m D组(左):450mm。这样左右与上下的油缸行程差值基本控制在20mm之内,有利于盾构掘进及保护管片不受破坏。(如果上述数据在左转弯曲线上,下一环管片仍安装一环左转弯环管片,那么盾构姿态基本调整过来)。 4、盾构间隙与油缸行程之间的关系 在进行管片选型的时候,既要考虑盾尾间隙,又要考虑油缸行程的差值。而油缸行程的差值更能反映盾构机与管片平面的空间关系,通常情况下应把油缸行程的差值作为管片选型的主要依据,只有在盾尾间隙接近于警戒值(25mm)时,才根据盾尾间隙进行管片选型。 3、影响管片选型的其他因素 3.1 铰接油缸行程的差值 目前地铁盾构工程中大多采用的是铰接式盾构机,即盾构机不是一个整体,而是在盾构机中体与盾尾之间采用铰接油缸进行连接,铰接油缸可以收放,这样就更加有利于盾构机在曲线段的掘进及盾构机的纠偏。铰接油缸利用位移传感器将上、下、左、右四个方向的行程显示在显示屏上,当铰接油缸的上下或左右的行程差值较大时,盾构机中体与盾尾之间产生一个角度,这将影响到油缸行程差的准确性。这时应当将上下或左右的行程差值减去上下或左右的铰接油缸行程的差值,最后的结果作为管片选型的依据。(海瑞克盾构铰接油缸有三种模式,锁、收和自由放开,当盾构在直线上,盾构姿态很好,可以使用锁定模式,当

地铁隧道常用管片特点与选型计算

地铁隧道常用管片特点与选型计算 (王国义中铁十三局集团第二工程有限公司,广东深圳 518083) 内容提要:盾构作为地铁隧道施工的主要设备在中国迅速发展,管片作为地铁隧道的永久衬砌应用非常广泛,管片选型的好坏直接影响到地铁隧道的精度和质量,甚至达到隧道重新修改设计线路的严重后果。从现在最常用管片的特点开始着手,着重讲述现今应用普遍的等腰梯形转弯环管片的楔形量计算、管片排版计算及盾构管片选型依据,首次提出根据实际拼装管片和设计隧道中心线的偏离值与盾构自动导向系统生成管片的偏差相比较,校核人工测量和盾构自动导向测量的准确性理论,对地铁盾构施工有一定的指导作用。 关键词:管片;转弯环;楔形量;选型;校核 1 引言 在国内各大城市地铁隧道工程中,目前已越来越多地开始使用盾构来掘进区间隧道,用预制钢筋混凝土管片[1]作为永久衬砌。成型管片的质量直接关系到隧道的质量,而隧道的成型质量直接受到管片选型好坏的影响。这就需要在盾构施工中掌握管片技术参数及管片楔形量计算知识,达到能够灵活选用盾构[2]管片,保证盾尾间隙和管片成型质量之目的,同时实际成型隧道位置是否正常直接影响到隧道的最终验收及使用。 2 常用地铁管片的特点 目前在地铁隧道盾构施工中,各个大中城市主要采用标准环和转弯环管片对设计隧道平纵曲线拟合,管片一般分为标准环、左转弯环、右转弯环三种管片,每环管片一般由六块管片组成,三块标准块,两块邻接块,一块封顶块,由盾构上的拼装机[3]拼装成一个整环(如图1)。 2.1 地铁常用管片技术参数(如表1) 表1 地铁常用管片技术参数

图1 右转弯环管片示意图 2.2 管片拼装点位的分布 管片成型的隧道为了能够达到很好的线形,完成隧道的左转弯、右转弯、上坡、下坡等功能,需要使用不同的楔形量管片[4],这就要求转弯环管片有不同的位置来达到此目的。 现在常用的地铁管片一般采用错缝拼装,有10个点位,来达到转弯所需要的不同楔形量。管片拼装点位是以封顶块的中线位置来叙述的(管片拼装点位如图2),转弯环不同的拼装点位在平曲线中有不同的楔形量,达到不同的转弯半径[5]。 为了能够顺利拼装管片,左转弯环或右转弯环一般拼装1、2、3、8、9、10这六个点位。 83 图2 管片拼装点位图 2.3 管片楔形量的计算

盾构机的设计选型依据

盾构机的选型 盾构法以其具有较高的可靠性及对周边环境适应性强的特点而在国内外地铁建设中得到了广泛应用,盾构法涉及多门学科,专业性强,尤其是其施工过程完全是工厂化的流水作业,机械化、自动化程度高,其施工效率较其他方法非常明显的优势。在国内地铁工程中,我国上海市六十年代开始盾构法的试验研究工作,并随着城市建设的发展,特别是近几年来科学技术的进步,新技术、新工艺、新材料、新设备的发展广泛应用,盾构法施工技术也取得较大的发展,至今已使用过近五十余台盾构。配套施工技术也相应在逐步完善,工程规模和应用范围也相应扩大。 地铁施工条件复杂,涉及城市建筑、管线水网、交通环境、污染控制严格,盾构施工在城市地铁施工中越来越显出其无可比拟的优越性,但是城市施工的首先要保证的前提条件是,由施工造成的地面隆起和沉降不能超出限制标准,否则将破坏地面和其它建筑物,造成巨大的经济损失,甚至人员伤亡的严重后果。这是城市施工和山岭隧道施工的根本区别,同时也是盾构施工首先需要解决的技术和组织问题。在围岩状况不佳的地质条件下,采用土压平衡和泥水式盾构开挖能起到保证安全的作用。 盾构施工,首先需要决定盾构机的类型,盾构的形式取决于地质条件。按结构模式盾构机分为泥水式盾构、敞开式、土压平衡式盾构、硬岩盾构四类。 敞开式盾构用于整个地层稳定,透水率低,涌水能够不采取其它辅助措施则能被控制的区段。 硬岩盾构用于硬度较大,且能够自稳、涌水不大的岩石地层开挖。 土压平衡盾构和泥水式盾构都是利用控制推进的速度和出料的速度来使推进所产生的压力同掌子面的压力相平衡,从而达到维持掌子面稳定,继而维持地面沉降和隆起在控制范围内的作用。这两类盾构的最大区别是泥水式盾构需要有昂贵的泥浆制备和分离设备,将泥浆通过管路注入到盾构机混合仓内,与开挖下来的碴土进行混合,通过泥浆泵将混合后的碴土抽出到地面以后进行分离处理,泥浆再循环利用。而土压平衡盾构则不需要进行分离处理,只是在涌水较大,但透水率不超过一定数值,掌子面不稳的地段才需要使用土压平衡开挖模式,也不需要专门的分离设备进行碴土分离。 盾构设计选型的主要依据取决于如下几个因素:碴土的粘合系数,渗透系数。 盾构选型设计的一个重要依据,是碴土的渗透系数,按照盾构设计的理论,碴土的渗透

广州地铁盾构机选型参考

广州地区地铁隧道施工用盾构机选型 1.1选型依据 本标段的盾构选型主要依据广州地铁三号线【AA站—BB站盾构区间】(以下简称【A-B】区间)盾构工程招标文件和岩土工程勘察报告,参考国内外已有盾构工程实例及相关的盾构技术规范,按照适用性、可靠性、先进性、经济性相统一的原则进行盾构机的选型。 1.1.1工程条件 AA站~BB站区间隧道左右线总长6002.210m,其中盾构隧道左线长3000.010m,右线长3002.200m,最小转弯半径800m,最大坡度29.2‰;隧道内径φ5400mm,管片外径φ6000mm、管片环宽1500mm。本标段隧道采用两台盾构机施工,先后由AA站始发,向BB站掘进,施工隧道右、左线,掘进到达BB站后拆除。右、左线隧道盾构始发时间相差一个月。 1.1.2地质概况 (1)岩性特点 )厚根据岩土工程勘测报告,本区地层由第四系、白垩系下统组成,中间缺失第三系,第四系(Q 4 8~18米。上部为第四系人工填土,厚0~4米,全新统海陆交互相沉积的淤泥或淤泥质土、淤泥质砂,厚0~7.9米;下部为上更新统陆相冲洪积形成的砂土层,厚0~8.2米;底部基岩残积形成的粘性土层, b2)厚400~450米,由紫红色钙质粉砂岩,泥质粉砂岩、厚0~17.3米。白垩系下统白鹤洞组广岗段(K 1 粉砂质泥岩夹浅灰色泥灰岩、泥岩组成,微层理发育,含方解石,常见钙质斑块及少量斑点状石膏。 洞身穿过的围岩有<3-2>、<4-1>、<4-2>、<5-1>、<5-2>、<6>、<7>、<8>、<9>各岩土层,洞身范围内主要为<7>、<8>、<9>岩土层,稳定性较好。 在隧道靠车站两端的YK13+824.2~YK15+950及YK12+250~YK14+344.7段隧道直接穿越淤泥层和砂层,隧道在该段埋深最浅(约为6.4m),且YK13+870~YK13+950段地表有淋砂涌通过,隧道在该段埋深最浅,与涌河内地表水存在较强的水力联系,在掘进过程中极易坍塌,还可能发生喷砂、喷涌,是盾

盾构机选型

第1章. 第34章. 第35章. 第36章. 第37章. 第38章. 第39章. 第40章. 第41章.

第42章. 盾构、配套设备与管模 42.1. 盾构机选型 42.1.1. 选型原则盾构机的性能及其对地质条件的适应性是盾构隧道施工成败的关键。本合同段盾构区间工程的盾构机选型按照性能可靠、技术先进、经济适用相统一的原则,依据招标文件、颐和园站-圆明园站和圆明园站-成府路站区间岩土工程勘察报告等资料,并参考国内外已有盾构工程实例及相关的技术规范进行。 42.1.2. 选型依据 盾构机选型具体依据如下: (1)本合同段盾构工程施工条件 隧道长度:3032+2044.286 单线延米; 线路间距:8?19m; 隧道覆土厚度最小:6m,最大:15.4m; 平面最小曲线半径:350m; 最大坡度:20.801%。; 隧道衬砌管片内径:5400mm 外径:6000mm (2)工程施工环境特点本工程施工环境具有如下特点对盾构机施工有一定的影响:本合同段区间隧道沿线地下管线、建(构)筑物密集。颐和园-圆明园区间线路下穿颐和园、圆明园,与万泉河高架桥相交;圆明园?成府路站区间线路通过成府小学、化工研究 院,下穿万泉河。区间线路与万泉河高架桥相交时,隧道外轮廓与桩基距离最小为5m,下穿 圆明园一座池塘时覆土厚度仅6m,万泉河底部区域隧道覆土厚度为9m。 本合同段区间线路主要沿颐和园路、清华西路布置,与中关村北大街相交,所经道路尤其是中关村

北大街交通繁忙、车流量大。 (3)区间地质特点 本合同段区间隧道穿越地层主要有粉质粘土、粉土层,局部夹有砂层、卵石圆砾等。具 体的地质统计表见表10-1-1和图10-1-1。 表10-1-1 盾构区间洞身地质统计表 ■③□⑥□⑥2 口⑦□⑦2■③□⑥□⑥]□⑥2 颐和园一圆明园站区间圆明园一成府路站区间 图10-1-1盾构区间隧道洞身主要地质比例图 42.1.3. 本工程地质特点对盾构机功能的要求 针对以上工程地质条件及特点,盾构应具备以下功能: (1)盾构机对地层条件的适应性要求本合同段隧道地层主要由粉质粘土、粉土层、卵石圆砾层组成,局部夹有砂层,所以盾构对软土地层的适应性应是重点考虑的问题。盾构在软土地段的施工时应重点考虑以下功能:

地铁盾构施工技术试题

地铁盾构施工技术 试题

地铁盾构施工技术试题 (含选择题80道,填空题25道,简答题10道) 一、选择题:(共80题) 1、刚性挡土墙在外力作用下向填土一侧移动,使墙后土体向上挤出隆起,则作用在墙上的水平压力称为()。 A.水平推力B.主动土压力C.被动土压力 2、混凝土配合比设计要经过四个步骤,其中在施工配合比设计阶段进行配合比调整并提出施工配合比的依据是()。 A.实测砂石含水率 B.配制强度和设计强度间关系 C.施工条件差异和变化及材料质量的可能波动 3、盾构掘进控制“四要素”是指()。 A.始发控制、初始掘进控制、正常掘进控制、到达控制 B.开挖控制、一次衬砌控制、线形控制、注浆控制 C.安全控制、质量控制、进度控制、成本控制 4、盾构施工中,()保持正面土体稳定 A.可 B.易C.必须 5、土压平衡盾构施工时,控制开挖面变形的主要措施是控制:() A.出土量B.土仓压力C.泥水压力 6、开挖面稳定与土压的变形之间的关系,正确的描述是:() A.土压变动大,开挖面易稳定 B.土压变动小,开挖面易稳定

C.土压变动小,开挖面不稳定 7、土压平衡式盾构排土量控制中国当前多采用()方法 A.重量控制B.容积控制C.监测运土车 8、隧道管片中不包含()管片 A.A型B.B型C.C型 9、拼装隧道管片时,盾构千斤顶应() A.同时全部缩回B.先缩回上半部C.随管片拼装分别缩回10、向隧道管片与洞体之间间隙注浆的主要目的是() A.抑制隧道周边地层松弛,防止地层变形 B.使管片环及早安定,千斤顶推力能平滑地向地层传递 C.使作用于管片的土压力均匀,减小管片应力和管片变形,盾构的方向容易控制 11、多采用后方注浆方式的场合是:() A.盾构直径大的B.在砂石土中掘进 C.在自稳性好的软岩中掘进 12、当二次注浆是以()为目的,多采用化学浆液。 A.补足一次注浆未填充的部分 B.填充由浆液收缩引起的空隙 C.防止周围地层松弛范围的扩大 13、盾构方向修正不会采用()的方法 A.调整盾构千斤顶使用数量 B.设定刀盘回转力矩

北京地区地铁隧道施工用盾构机选型

北京地区地铁隧道施工用盾构机选型(上) 摘要:根据北京地区工程地质和水文条件,以及北京市地铁施工的特点,提出适用于北京地区地铁隧道施工用的盾构机型和盾构机基本配置的技术要求,同时还就盾构机扭矩、刀具形状与布置及作用等技术关键点进行了讨论。此外还提出,施工企业、国内重工业企业及科研单位三看联合起来共同攻关,可以设计和制造出满足北京地区地铁隧道施工用的盾构机。 关键词:北京地铁盾构机造型砂卵石磨损 1 前言 为承接北京地铁隧道施工任务,我集团公司于2002年10 月参加了北京市地铁五号线盾构法施工标段的投 标,由笔者执笔编写投标书中盾构机选型部分内容。在完成此任务的过程中,笔者对北京地区地质特征、盾构机机型及适应工程地质的特点等进行了思考,感到国内大型重工业企业如果深刻认识到北京地区地质的特点,在设计方面针对关键问题有正确的解决办法,再加上精心制造,完全有能力设计和制造出满足北京地区地铁隧道施工用的盾构机。为此,笔者将北京地区地铁隧道施工用盾构机选型的有关资料进行整理,同时结合我集团公司购买北京市地铁五号线施工用盾构机(外径①6.14 m)时的一些基本考虑,勉凑一文, 供国内同行参考,为促进我国盾构技术的发展贡献一点微薄之力。 2 北京地区地质情况简介及地铁隧道结构形式 2.1工程地质及水文条件 北京市地处永定河洪冲积扇的中上部,第四系松散土层及砂卵石层遍布全区,其地质沉积层的"相变"十分明显,如西部单一的砂卵石层向东很快渐变成粘性土和粉细砂互层的多层状态。在北京市采用盾构法进行隧道施工时,将碰到以下几类极具北京地质特征的地层: (1)粘性土及粉土层(粉质粘土、粘质粉土)。 (1)砂性土层(粉细砂、中细砂、中砂、中粗砂,部分石英含量大)。 ⑶砂卵石地层(一般粒径3~ 5mm,西部5~ 15mm,最大层厚超过40m以上)。 (4)粘质粉土、砂质粉土、中细砂互层,中砂、粉质粘土、砂卵石互层。 北京市的地下水一般指上层滞水、潜水和浅层地下水,另有一类景观、河期渗漏水以及城市上下水管道的漏失水等城市特殊水。 2.2地铁隧道结构形式 北京市地铁隧道覆土厚度约为8?16m,埋深约为14?22m。一般考虑采用节能型车站,隧道线形既有平曲 线又有竖曲线。地下水位高低不一,甚至隧道位于地下水位之上。隧道结构可分为普通环和通用环两种形式(图1,图2)。

盾构机选型标准

1、盾构机选型依据 地铁区间,线路总长:隧道埋深9~13米。 隧道洞身大部分处于残积层中,局部地段穿越花岗岩、辉绿岩全、强风化带或断层破碎带,结构松散,易软化、变形,产生坍塌。花岗岩层面起伏大,存在差异风化现象。 地下水按赋存条件分为第四系孔隙潜水和基岩裂隙水,砂层中具承压性。主要补给来源为大气降水。地下水埋深5.2~8.4米。 盾构隧道内径:5400mm,管片厚度:300mm,隧道外径:6000mm。标准管片宽度:1200mm,分块数:6块。 本盾构隧道区间采用两台盾构机。盾构机由站西端下井始发,推进至站东站起吊出井。 隧道地质情况、工程要求、环境保护要求、经济比较、地面施工场地大小等因素是盾构选型的基本依据。根据国内外盾构施工经验与实例,我们认为,盾构机的选型必须满足以下几个要求: 必须确保开挖空间的安全和稳定支护; 保证隧道土体开挖顺利; 保证永久隧道衬砌的安装质量; 保证隧道开挖碴土的清除; 确保盾构机械的作业可靠性和作业效率; 保证地面沉降量在要求范围内; 满足施工场地及环保要求。 2、不同开挖模式的工作原理 2.1 盾构机的型式与工作特点 目前世界上流行的盾构机按开挖模式主要可以分为两大类:敞开式与密闭式。 敞开式指盾构机的开挖面与机内的工作室间无隔板或隔板的某处设置可调节开口面积的出土口。开挖面基本依靠开挖土体的自立保持稳定。敞开式适用于

地层条件简单、自立性好且无地下水的地层。 密闭式盾构机是在盾构机的开挖面与机内的工作室间设置隔板,刀盘旋转将开挖下来的碴土送入开挖面和隔板间的刀盘腔内,由泥水压力或土压或气压提供足以使开挖面保持稳定的压力。密闭式盾构机适用于地层变化复杂、自立条件较差、地下水较丰富的地层,因为采用密闭式掘进可以有效地保证开挖面的自立与稳定,保证施工安全。 密闭式盾构机主要分为泥水平衡式、土压平衡式两类,代表了不同的出土方式和不同工作面土体平衡方式的特点,但适用地质与范围有一定的区别。 泥水平衡式盾构机是在盾构机的前部设置隔板,装备刀盘面板、输送泥浆的送排泥管和推进盾构机的盾构千斤顶。在地面上还配有分离排出泥浆的泥浆处理设备。开挖面的稳定是将泥浆送入泥浆室内,在开挖面上用泥浆形成不透水的泥膜,通过该泥膜保持水压力,以对抗作用于开挖面的土压力和水压力。开挖的碴土以泥浆形式输送到地面,通过处理设备离析为土粒和泥水,分离后的泥水进行质量调整,再输送到开挖面。泥浆处理设备设在地面,需占用较大的施工场地。另外泥水式盾构机及其配套系统价格较高。 土压平衡式盾构机是在盾构机的前部设置隔板,隔板与刀盘之间形成一个用于土压平衡、碴土搅拌、碴土排出的碴土仓。装配有各种刀具的刀盘不断旋转切削土体,切削下来的碴土通过刀盘进料槽进入碴土仓。碴土仓内和排土用的螺旋输送机内充满开挖碴土,依靠盾构机千斤顶的推力给土仓内的开挖土砂加压,使碴土仓的土压作用于刀盘开挖面以使其稳定。土压式盾构机占用场地较小,价格较低。 土压平衡式盾构机又可分为纯土压平衡式与加泥型土压平衡式。 纯土压平衡式盾构机单纯依靠开挖下来的碴土压力稳定开挖面。这种盾构机较适用于开挖含砂量小的塑性流动性软粘土。 加泥型土压平衡盾构机装备有注入添加材料促进开挖砂土塑性流动的机构。对于含砂量、含水量较大的土层,盾构机的加泥装置可以根据土质,选用泡沫、膨润土、高吸水树脂等添加材料,将其注入开挖面和泥土仓。通过搅拌机构将添加材料与开挖下来的碴土强力搅拌,将开挖碴土变成具有可塑性、流动性、防渗性的泥土,这种泥土充满土仓和螺旋输送机内。当土仓内压力小于开挖面压力时,

地铁施工用盾构机选型及施工组织

地铁施工用盾构机选型及施工组织 发表时间:2017-04-18T15:22:55.443Z 来源:《基层建设》2017年2期作者:姚伟楷 [导读] 摘要:随着人们生活水平的提升,越来越多的人开始购买汽车,使交通环境不堪重负、路面拥堵。为了缓解这一问题,一些城市开始修建地铁进而缓解交通压力。 广东华隧建设股份有限公司广东广州 510000 摘要:随着人们生活水平的提升,越来越多的人开始购买汽车,使交通环境不堪重负、路面拥堵。为了缓解这一问题,一些城市开始修建地铁进而缓解交通压力。地铁具有容量大、便利、噪声小等特点,在人们生活出行中起到至关重要的作用。地铁的顺利施工,首先借助盾构机施工,盾构机的机型选择和施工组织对隧道施工具有决定性作用,与施工安全有着直接联系。对此,笔者根据实际工程经验,就地铁施工盾构机选型和施工组织,进行简要分析。 关键词:地铁施工;盾构机;选型和施工组织 现如今,在暗挖隧道施工中常用盾构机施工,盾构机也是现阶段最为先进的施工方法。使用盾构机施工具有噪声小、进度快、无振动损害等特点。即使在施工过程中,居民生活不受干扰、路面交通、出行顺畅。但在施工前,需要选择当合的盾构机机型,才能确保暗挖隧道施工的顺利进行。 一、盾构机分析 (一)盾构机原理 盾构机是集光、电、机、传感为一体的现代施工设备,运送土渣、开挖切削土体、测量导向纠偏等。由切削刀盘、液压顶进、岩土排运、动力等众多机构组件组合而成。应用在不同土质、硬岩层中进行隧道暗挖,有较强的稳定性与掘进性。 盾构机能够支撑地层压力,在地层中由不同形状钢筒保护,推动挖掘、支护等。使用盾构机施工不仅节省经济投入,同时取缔人工挖掘,省时省力,自动化技术水平高,地面交通运行不会受到影响。 (二)盾构施工参数选择 盾构施工是现阶段常用的挖掘形式,根据各土层状态选择匹配的盾构机,系统的进行数据精算,推进施工;尾部安装能够承载较大压力管片,构成圆形隧道。使用这样施工方式。首先,极大的保障了施工安全,在施工阶段通过有关技术进行操作控制,安全稳定,相对于传统人工挖掘方法,确保了施工人员人身安全,降低风险指数;其次,施工速度快。据有关资料统计:一天内,盾构机可以挖掘30m;传统矿山挖掘方法一天只能推进2m;最后,高质量,施工盾构机施工依靠自动化技术,具有高质量特点,延长使用时间。 1、盾构直径 盾构直径是盾壳外径。盾构直径需要结合管片外径、盾尾风险、钢板厚度等因素精确计算,盾尾缝隙结合管片大小、隧道形态等确定。盾尾孔隙为盾壳钢板中外层和管片外层的缝隙。参照一定尺寸标准,根据施工要求确定盾构直径。 D=d+2(x+ ),公式中:D是盾构直径mm;d是隧道外径mm;x为盾尾缝隙mm;则是盾尾钢板厚度mm。 2、盾构长度 盾构长度主要根据土层情况、开挖方法、衬砌方法、隧道形状等确定。通常情况下,当盾构直径确定后,其灵活度可以根据下面数据确定。 小型盾构(D=2-3m)L/D=1.50;中型盾构(D=3-6m)L/D=1.00;大型盾构(D>6m)L/D=0.75。 二、盾构机选型 盾构机类型通常可以划分为:挤压式盾构、手掘式、半机械式、机械式等多种盾构类型(如图一)。在地铁施工过程前,根据实际情况,选择盾构机机型、配置,是其第一环节也是最为重要部分。由于不同的地下环境不同、土质情况不一,因此,选择不同类型的盾构机。盾构机施工具有多样化特点,是不断变化的。在选择过程中,需要根据地质情况,选择适合的盾构机类型。 选择盾构机盾构机主要分为几点:首先,盾构机出土形式、工作面的平衡方法选择;第二,盾构机在工作面稳定时,盾构机机封闭情况的选择。针对复合的盾构施工,主要参考地质层状况。 三、盾构机机型选择影响因素 选择盾构机机型需要结合施工状态、特点、实践、地质等方面进行综合考量。因此,盾构机影响条件众多,其中分为:隧道长和线性、地下水含量、水压、地质层等方面。 根据土质层中的渗透性、流动性等状态,作为主要参考标准;盾构机在施工阶段,对建筑、环境等能够产生影响。所以,在选择盾构机时,环境影响因素也是其考量之一;21世纪发展下,建筑工程施工质量较低,承载力有限。在盾构机选择过程中,既要确保施工效果理

盾构机选型资料

第1章.第2章.第3章.第4章.第5章.第6章.第7章.第8章.第9章.

第10章.盾构、配套设备与管模 10.1.盾构机选型 10.1.1.选型原则 盾构机的性能及其对地质条件的适应性是盾构隧道施工成败的关键。 本合同段盾构区间工程的盾构机选型按照性能可靠、技术先进、经济适用相统一的原则,依据招标文件、颐和园站-圆明园站和圆明园站-成府路站区间岩土工程勘察报告等资料,并参考国内外已有盾构工程实例及相关的技术规范进行。 10.1.2.选型依据 盾构机选型具体依据如下: (1)本合同段盾构工程施工条件 隧道长度:3032+2044.286单线延米; 线路间距:8~19m; 隧道覆土厚度最小:6m,最大:15.4m; 平面最小曲线半径:350m; 最大坡度:20.801‰; 隧道衬砌管片内径:5400mm 外径:6000mm (2)工程施工环境特点 本工程施工环境具有如下特点对盾构机施工有一定的影响: 本合同段区间隧道沿线地下管线、建(构)筑物密集。颐和园-圆明园区间线路下穿颐和园、圆明园,与万泉河高架桥相交;圆明园~成府路站区间线路通过成府小学、化工研究院,下穿万泉河。区间线路与万泉河高架桥相交时,隧道外轮廓与桩基距离最小为5m,下穿圆明园一座池塘时覆土厚度仅6m,万泉河底部区域隧道覆土厚度为9m。 本合同段区间线路主要沿颐和园路、清华西路布置,与中关村北大街相交,所经道路尤其是中关村北大街交通繁忙、车流量大。 (3)区间地质特点 本合同段区间隧道穿越地层主要有粉质粘土、粉土层,局部夹有砂层、卵石圆砾等。具体的地质统计表见表10-1-1和图10-1-1。

10.1.3. 本工程地质特点对盾构机功能的要求 针对以上工程地质条件及特点,盾构应具备以下功能: (1)盾构机对地层条件的适应性要求 本合同段隧道地层主要由粉质粘土、粉土层、卵石圆砾层组成,局部夹有砂层,所以盾构对软土地层的适应性应是重点考虑的问题。盾构在软土地段的施工时应重点考虑以下功能: 具备土压平衡掘进功能; 足够的推力和刀盘驱动扭矩; 良好的加泥、加泡沫等碴土改良能力; 合理的刀盘及刀具设计; 具有完善的防喷涌功能; 能够有效防止中心泥饼的生成; 较好的人员仓条件; 圆明园-成府路站区间 颐和园-圆明园站区间 图10-1-1 盾构区间隧道洞身主要地质比例图

相关文档