文档库 最新最全的文档下载
当前位置:文档库 › 巧用椭圆的第二定义解题

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题

《普通数学课程标准》在圆锥曲线这一章较过去增加一种要求:即学生要根据方程的形式和图形特征等进行类比猜想,培养直觉思维与合情推理能力。增加这一要求是很科学的,因为很多圆锥曲线问题用代数法运算非常繁杂,而一旦抓住图形特征后,运用数形结合,则可以简化运算,大幅度提高解题效率,下面以椭圆为例说明。

例:已知椭圆的中心在原点,其左焦点为F (-2,0),左准线l 的方程为x =-22

3

,PQ 是过F 且与x 轴不垂直的弦,PQ 的中点M 到左准线l

1:求椭圆的方程2:求证:

d

PQ

为定值 3:在l 上是否存在点R ,使?PQR 为正三角形

若存在,求出点R 的坐标,若不存在,说明理由 1:解析:易得椭圆的方程

11

32

2=+y x 2:证明:如图,作PP /⊥l 与P ,QQ /⊥l 与Q ,则由椭圆的第二定义,易得

e PP PF =/,e QQ

QF =/

;于是PQ=PF+QF=ePP /+eQQ /

=2ed=362=定值 3:解析:此题若从代数角度入手,设直线的方程,联立的方程再用韦达定理,则运算繁杂,很多同学会丧失信心;若能抓住图形特征,运用椭圆的第二定义和正三角形的性质,则可化难为易。假设存在点R ,使?PQR 为正三角形,且椭圆固定,则PQ 确定,于是PQ 的垂直平分线RM 也确定,所以RM 的斜率确定,可以考虑先求RM 即求倾斜角π-/

/MM Q ∠的大小, 而COS /

/

MM Q ∠=M

Q MM //

,由第2问的结论可得:

COS //MM Q ∠=

M

Q MM

/

/

=PQ

PQ e 321=

2

2

31=

e

,//MM Q ∠为45○

,根据对称性,RM 的斜率应为1±,进而可得PQ 的方程及中点M 的坐标,再由点斜式求得RM 的方程,再联立左准线l 的方程x =-

223变题:已知椭圆)0(122

22>>=+b a b

y a x ,PQ 是过

F 且与x 轴不垂直的弦,若在其左准线l 上存在点

R 使?PQR 为正三角形,求椭圆的离心率的范围。

解析:同上,由椭圆的第二定义和正三角形的性质, RM 3

椭圆的常见题型及解法(一).

椭圆的常见题型及其解法(一) 椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助. 一、椭圆的焦半径 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 1.公式的推导 设P (,)是椭圆上的任意一点, 分别是椭圆的左、右焦点,椭圆 ,求证,。证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知1 1 PF e d ,又,所 以, 而 。

∴,。 2.公式的应用 例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4, 0)的距离成等差数列,则 12 x x + . 解:在已知椭圆中,右准线方程为 25 4x = ,设A 、B 、C 到右准线的距离为 , 则、、。 ∵ , , ,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 例2.12,F F 是椭圆22 14x y +=的两个焦点,P 是椭圆上的动点,求 的最大值和最 小值。 解:设 ,则10202,2.PF x PF x =+ =-2 12034.4 PF PF x ?=- P 在椭圆上,022x ∴-≤≤,12PF PF ?的最大值为4,最小值为1. 变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。 解:由已知 可得 ,所以直线AB 的方程 为 ,代入椭圆方程 得 设 ,则 ,从而 变式练习2. 设Q 是椭圆22 221(0)x y a b a b +=>>上任意一点,求证:以2QF (或1QF )为

习题课:椭圆第二定义的应用(精)

人教版高二数学上册§8.2 椭圆第二定义的应用(习题课 班级姓名自我学习评价 :优良还需努力 【学习目标】1. 进一步加深对椭圆第二定义及其性质的认识,会熟练运用椭圆的几何性质和第二定义解决有关问题; 2. 通过对椭圆的第二定义的应用,体会和感悟“方程思想”和“数形结合”,“分类讨论”的数学思想方法。 【学习重点】灵活运用椭圆的第二定义及性质解决有关问题。 【学习过程】 一、学习准备(知识准备) 请独立完成下列填空: 1.椭圆的第一定义为:;其中的两点为椭圆的 ;常数等于椭圆的; 2.椭圆第二定义:若平面内的动点M(x,y)到定点F(c,0)的距离和它到定直线 的距离的比是常数,则点M 的轨迹为;定直线叫做,准线与长轴所在直线____,椭圆的准线有条. 常数,()是的离心率。e1时,椭圆趋于;e0时,椭圆趋向于。 3.由椭圆第二定义我们得到了焦半径公式。设为椭圆上任意一点,对于标准方程 的焦半径;;对于标准方程的焦半径; .

椭圆第二定义及其性质在解题中有何价值和作用?你知道吗?通过本节课的学习你就会知道了! ●基础练习:试一试,你能根据已知很快独立完成下列问题吗?有困难的题可与小组同学讨论。 1、椭圆的准线方程是()A.; B.; C.; D. 2 椭圆的一个焦点到相应准线的距离为,离心率为,则短轴长为()A B C. D. 3 设点P为椭圆上一点,P到左准线的距离为10,则P到右准线的距离为() A . 6 ; B .8 ; C.10 ; D.15 4 已知点A(2,y)是椭圆上的点,F是其右焦点,则∣AF∣=; 5.椭圆与椭圆〉0)的形状怎样?它们的离心率有何关系?你 能否快速求出与椭圆有相同的离心率且经过点(,)的椭圆的方程?其方程为 你是用什么方法求解的?。 二、典型例析 【探究一】利用椭圆第二定义解题

椭圆第二定义教学活动设计

椭圆第二定义教学设计 一、背景分析: 本节课是在学生学习完了椭圆定义及其标准方程、椭圆简单几何性质的基础上进行的;是对椭圆性质(离心率)在应用上的进一步认识;着重引出椭圆的第二定义、准线方程,掌握椭圆定义的应用。教学中力求以教师为主导,以学生为主体,充分结合多媒体技术,以“形”为诱导,以椭圆的二个定义为载体,以培养学生的思维能力、探究能力、归纳总结的能力以及等价转化思想为重点的教学思想. 二、教材的地位和作用: 圆锥曲线是解析几何的重要内容,而椭圆又是高考的热点问题之一;能否学好椭圆的定义、标准方程及其简单的几何性质,是学生能否比较系统地学好另外两种圆锥曲线的基础,甚至是学生能否学好解析几何的关键。而椭圆在教材中具有“承上启下”的作用,从图形和第一定义来看椭圆与圆比较接近,从而对于学生来说学习完圆后再学习椭圆比较容易接受;而椭圆的第二定义即“到定点的距离与到定直线的距离的比是常数的点的轨迹”,正好可以把椭圆、双曲线、抛物线这三种圆锥曲线有机地统一起来,使学生对圆锥曲线有个整体知识体系,所以说这个定义在整章起到了一种“纽带”的作用. 三、学法指导: 以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化. 四、教学目标

知识目标:椭圆第二定义、准线方程; 能力目标: 1、使学生了解椭圆第二定义给出的背景; 2、了解离心率的几何意义; 3、使学生理解椭圆第二定义、椭圆的准线定义; 4、使学生掌握椭圆的准线方程以及准线方程的应用; 5、使学生掌握椭圆第二定义的简单应用; 情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值. 五、教学重点:椭圆第二定义、准线方程; 六、教学难点:椭圆的第二定义的简单运用; 七、教学方法:创设问题、启发引导、探究活动、归纳总结. 八、教学过程 (一)、引入课题(上一节的例题得出的结果) 例、椭圆的方程为 116 252 2=+y x ,M 1为椭圆上的点,若点M 1为(4,y 0)不求出点M 2的纵坐标,你能求出这点到焦点F (3,0)的距离吗? 解:2 2 )34(||y MF +-=且 116 2542 02=+y 代入消去2 0y 得51325169||==MF 【推广】根据上面这个问题的解题思路你能否将椭圆122 22=+b y a x 上任一点),(y x M 到焦点 )0)(0,(>c c F 的距离表示成点M 横坐标x 的函数吗?

椭圆的第二定义应用

椭圆的第二定义应用 班级 姓名 基础梳理 1.椭圆第二定义:___________________________距离之比是常数 e c a e M =<<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e 是椭圆的离心率。 注意: ①对对应于右焦点,的准线称为右准线,x a y b a b F c 22222100+=>>()() 方程是,对应于左焦点,的准线为左准线x a c F c x a c =-=-212 0() ②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 自测自评 1、椭圆125 92 2=+y x 的准线方程是( ) A 、425± =x B 、516±=y C 、516±=x D 、4 25±=y 2、椭圆的一个焦点到相应的准线的距离为45,离心率为32,则短轴长为( ) A 、2 5 B 、5 C 、52 D 、1 3、设P 为椭圆136 1002 2=+y x 上一点,P 到左准线的距离为10,则P 到右准线的距

离为()

A 、6 B 、 8 C 、 10 D 、15 4、已知P 是椭圆2 100 x + 236y =1上的点,P 到右准线的距离是8.5,则p 到左焦点的距离是______ 5、已知动点M 到定点(3,0)的距离与到定直线x= 253,的距离之比是35,则动点M 的轨迹方程是_________________。 6、.已知P 点在椭圆225x +216y =1上,且P 到椭圆左、右焦点距离的比是1:4,则P 到两准线的距离分别为_________________。 7、求中点在原点、焦点在x 轴上、其长轴端点与最近的焦点相距为1,与相近的一条准线距离是53 的椭圆标准方程。 8、 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 9、已知,,是椭圆的右焦点,点在椭圆上移动,当A F x y M ()-+=231612 122 |MA|+2|MF|取最小值时,求点M 的坐标。

利用椭圆的对称性解题

专题三、用椭圆中的对称性解题 一、知识点 椭圆是关于_____________________________________________对称. 二、例题讲解 例题1.方程 所表示的图形的面积 变式1:画出方程 表示的图形 例题2.如图所示,已知椭圆的方程为 + =1(a >b >0),A 为椭圆的左顶点,B 、C 在椭 圆上,若四边形OABC 为平行四边形,且∠OAB=30°,则椭圆的离心率等于_________. 变式1.(2016.10)如图,在平面直角坐标系xOy 中,F 是椭圆()22 2210x y a b a b +=>>的右焦 点,直线2 b y =与椭圆交于,B C 两点,且90BFC ∠=?,则该椭圆的离心是 .

例题3.(1)过原点的直线与椭圆2 214 x y += 交于,A B 两点,F 是椭圆的右焦点,则ABF ?面积的最大值为_____________. (2)过原点的直线与椭圆2 214 x y += 交于,A B 两点,F 是椭圆的右焦点,则ABF ?周长的最小值为_____________. 变式1:已知椭圆的C :x 2a 2+y 2 b 2=1(a >b >0)左焦点为F ,椭圆与过原点的直线相交于A,B 两点, 连接AF,BF,若AB=10,BF=8,4 cos 5 ABF ∠= ,求椭圆的离心率. 变式2:已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆C 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于4 5,则椭圆E 的离 心率的取值范围是__________.

椭圆定义及应用

一、椭圆第一个定义的应用 1.1 椭圆的第一个定义平面内有两个定点F1、F2,和一个定长2a。若动点P到两个定点距离之和等于定长2a,且两个定点距离|F1F2|<2a.则动点轨迹是椭圆。两个定点F1、F2称为椭圆的焦点。 由此定义得出非常重要的等式,其中P为椭圆上一个点。此等式既表明作为椭圆这个点的轨迹的来源,也说明椭圆上每一个具有的共同性质。即椭圆上每一个点到两个焦点距离之和等于定长2a .在有关椭圆的问题中,若题设中含有有关椭圆上一点到两个焦点距离的信息,首先考虑的就是能否用上这个关系式。 1.2 应用举例 例1.已知点 1(3,0) F-,2(3,0) F,有 126 PF PF +=,则P点的轨迹是 . 例2.求证以椭圆 (a>b>0) 上任意一点P的 焦半径为直径画圆,这个圆必与圆相切. 解评:此题若用一般方法解或用椭圆参数方程解答,计算量都很大,解题过程冗长,属于中档题。我们若抓住PF2为一个圆直径,PF1为另一个圆半径的2倍,用公式,很容易得出正确解答。

例3. F 1、F 2是椭圆的两个焦点,P 是椭圆上一点, 求的面积.24 解评:题设中有椭圆上一点到两个焦点间距离的信息,即可试探是否能用 解决 例4.P 是椭圆2 2 145 20 x y + =上位于第一象限内的点, F 1、F 2是椭圆的左、右焦点, 若 则12PF PF -的值为( ) A. D. 3 例5. 在圆C:22(1)25x y ++=内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线线段CQ 的交点为M,求M 点的轨迹方程. 练:一动圆与圆⊙o 1:x 2+y 2+6x+5=0外切,同时与⊙o 2 : x 2+y 2_ 6x _ 91=0 内切, 求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

椭圆的第二定义及简单几何性质

二、椭圆的简单几何性质 一、知识要点 椭圆的第二定义:当点M 与一个定点的距离和它到一条定直线的距离的比是常数 )10(<<= e a c e 时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义. e d MF =| |∴ 准线方程:对于椭圆12222=+b y a x ,相应于焦点)0,(c F 的准线方程是c a x 2 =.根据对 称性,相应于焦点)0,(c F ′的准线方程是c a x 2-=.对于椭圆122 22=+b x a y 的准线方程是c a y 2 ±=. 焦半径公式: 由椭圆的第二定义可得: 右焦半径公式为ex a c a x e ed MF -|-|||2 ===右; 左焦半径公式为ex a c a x e ed MF +===|)-(-|||2 左 二、典型例题 例1、求椭圆 116 252 2=+y x 的右焦点和右准线;左焦点和左准线; 练习:椭圆8192 2 =+y x 的长轴长为_________,短轴长为_________,半焦距为_________,

离心率为_________,焦点坐标为_________,顶点坐标为__________________,准线方程为____________. 例2、已知椭圆方程136 1002 2=+y x ,P 是其上一点,21,F F 分别为左、右焦点,若81=PF , 求P 到右准线的距离. 例3、已知点M 为椭圆116 252 2=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A 求 ||3 5 ||1MF MA +的最小值. 变式、若椭圆:3 \* MERGEFORMAT 13 42 2=+y x 内有一点3 \* MERGEFORMAT )1-,1(P ,3 \* MERGEFORMAT F 为右焦点,椭圆上有一点3 \* MERGEFORMAT M ,使3 \* MERGEFORMAT MF MP 2+值最小,求:点3 \* MERGEFORMAT M 的坐标。

椭圆经典解题思路

椭圆标准方程典型例题 例1 已知椭圆0632 2 =-+m y mx 的一个焦点为(0,2)求m 的值. 分析:把椭圆的方程化为标准方程,由2=c ,根据关系2 2 2 c b a +=可求出m 的值. 解:方程变形为 1262 2=+m y x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2 262=-m ,5=m 适合.故5=m . 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法, 求出参数a 和b (或2 a 和2 b )的值,即可求得椭圆的标准方程. 解:当焦点在x 轴上时,设其方程为()0122 22>>=+b a b y a x . 由椭圆过点()03, P ,知10922=+b a .又b a 3=,代入得12=b ,92 =a ,故椭圆的方程为1922=+y x . 当焦点在y 轴上时,设其方程为()0122 22>>=+b a b x a y . 由椭圆过点()03, P ,知10922=+b a .又 b a 3=,联立解得812=a ,92 =b ,故椭圆的方程为198122=+x y . 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 分析:(1)由已知可得20=+GB GC ,再利用椭圆定义求解. (2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求A 的轨迹方程. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b , 故其方程为 ()0136 1002 2≠=+y y x . (2)设()y x A ,,()y x G '',,则 ()0136 1002 2≠'='+'y y x . ① 由题意有??? ????='='33 y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

巧用椭圆的第二定义解题

巧用椭圆的第二定义解题 《普通数学课程标准》在圆锥曲线这一章较过去增加一种要求:即学生要根据方程的形式和图形特征等进行类比猜想,培养直觉思维与合情推理能力。增加这一要求是很科学的,因为很多圆锥曲线问题用代数法运算非常繁杂,而一旦抓住图形特征后,运用数形结合,则可以简化运算,大幅度提高解题效率,下面以椭圆为例说明。 例:已知椭圆的中心在原点,其左焦点为F (-2,0),左准线l 的方程为x=-22 3 ,PQ 是过F 且与x 轴不垂直的弦,PQ 的中点M 到左准线l 1:求椭圆的方程2:求证: d PQ 为定值 3:在l 上是否存在点R ,使?PQR 为正三角形 若存在,求出点R 的坐标,若不存在,说明理由 1:解析:易得椭圆的方程11 32 2=+y x 2:证明:如图,作PP / ⊥l 与P ,QQ / ⊥l 与Q ,则由椭圆的第二定义,易得 e PP PF =/ ,e QQ QF =/;于是PQ=PF+QF=ePP /+eQQ / =2ed=362=定值 3:解析:此题若从代数角度入手,设直线的方程,联立的方程再用韦达定理,则运算繁杂,很多同学会丧失信心;若能抓住图形特征,运用椭圆的第二定义和正三角形的性质,则可化难为易。假设存在点R ,使?PQR 分线RM 也确定,所以RM 的斜率确定,可以考虑先求RM 即求倾斜角π-/ /MM Q ∠的大小, 而COS / / MM Q ∠=M Q MM //,由第2问的结论可得: COS / / MM Q ∠=M Q MM // = PQ PQ e 2 321= 2 231= e ,//MM Q ∠ 为45○ ,根据对称性,RM 的斜率应为1±,进而可得PQ 的方程及中点M 的坐标,再由点斜式求得RM 的方程,再联立左准线l 的方程x=- 223

椭圆的第二定义含解析

课题:椭圆的第二定义 【学习目标】 1、掌握椭圆的第二定义; 2、能应用椭圆的第二定义解决相关问题; 一、椭圆中的基本元素 (1).基本量: a 、b 、c 、e 几何意义: a-半长轴、b-半短轴、c-半焦距,e-离心率; 相互关系: a c e b a c =-=,222 (2).基本点:顶点、焦点、中心 (3).基本线: 对称轴 二.椭圆的第二定义的推导 问题:点()M x y ,与定点(0)F c ,的距离和它到定直线2:a l x c =的距离的比是常数(0)c a c a >>,求点M 的轨迹. 解:设d 是点M 到直线l 的距离,根据题意,所求轨迹就是集合MF c P M d a ????==?????? | ,由此得c a =. 将上式两边平方,并化简得22222222()()a c x a y a a c -+=-. 设222 a c b -=,就可化成22221(0)x y a b a b +=>>. 这是椭圆的标准方程,所以点M 的轨迹是长轴长为2a ,短轴长为2b 的椭圆. 由此可知,当点M 与一个定点的距离和它到一条定直线的距离的比是常数(01)c e e a =<<时,这个点的轨迹是椭圆,一般称为椭圆的第二定义,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e 是椭圆的离心率. 对于椭圆22221(0)x y a b a b +=>>,相应于焦点(0)F c ,的准线方程是2a x c =.根据椭圆的对称性,相 应于焦点(0)F c '-,的准线方程是2a x c =-,所以椭圆有两条准线.

可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线的距离的比,这就是离心率的几何意义. 【注意】:椭圆的几何性质中,有些是依赖坐标系的性质(如:点的坐标\线的方程),有些是不依赖坐标系、图形本身固有的性质(如:距离\角),要注意区别。 中心到准线的距离:d=c a 2 焦点到准线的距离:d=c a 2-c 两准线间的距离:d=2c a 2 三.第二定义的应用 1、求下列椭圆的焦点坐标和准线 (1)136 1002 2=+y x (2)8222=+y x 2、椭圆 136 1002 2=+y x 上一点P 到右准线的距离为10,则:点P 到左焦点的距离为( ) .12 C 3、若椭圆的两个焦点把两准线间的距离三等分,则:离心率e=______; 4、离心率e= 2 2,且两准线间的距离为4的椭圆的标准方程为________________________; 5、若椭圆的短轴长为2,长轴是短轴的2倍,则:中心到准线的距离为____________; 6、求中心在原点,一条准线方程是x=3,离心率为 3 5 的椭圆标准方程.

高中高二数学椭圆的第二定义

高二数学椭圆的第二定义、参数方程、直线与椭圆的位置关系知识精 讲 一. 本周教学内容: 椭圆的第二定义、参数方程、直线与椭圆的位置关系 [知识点] 1. 第二定义:平面内与一个定点的距离和它到一条定直线的距离之比是常数 e c a e M =<< () 01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e是椭圆的离心率。 注意:①对对应于右焦点,的准线称为右准线,x a y b a b F c 2 2 2 22 100 +=>> ()() 方程是,对应于左焦点,的准线为左准线 x a c F c x a c =-=- 2 1 2 () ②e的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。 2. 焦半径及焦半径公式: 椭圆上一个点到焦点的距离叫做椭圆上这个点的焦半径。 对于椭圆,设,为椭圆上一点,由第二定义:x a y b a b P x y 22 2 10 2 +=>> ()() 左焦半径∴· 左 左 r x a c c a r ex c a a c a ex 20 2 + ==+=+ 右焦半径右 右 r a c x c a r a ex 2 - =?=- 3. 椭圆参数方程 问题:如图以原点为圆心,分别以a、b(a>b>0)为半径作两个圆,点B是大圆半径OA 与小圆的交点,过点A作AN⊥Ox,垂足为N,过点B作BN⊥AN,垂足为M,求当半径OA绕

O 旋转时点M 的轨迹的参数方程。 解:设点的坐标是,,是以为始边,为终边的正角,取为M x y ()??Ox OA 参数。 那么∴x ON OA y NM OB x a y b ======?? ?||cos ||sin cos sin ()?? ?? 1 这就是椭圆参数方程:为参数时,称为“离心角”?? 说明:<1> 对上述方程(1)消参即 x a y b x a y b ==?? ??????+=cos sin ??22221普通方程 <2>由以上消参过程可知将椭圆的普通方程进行三角变形即得参数方程。 4. 补充 名称 方程 参数几何意义 直线 x x t y y t t =+=+?? ?00cos sin ()αα为参数 P x y 000(),定点,α倾斜角,t P P =0, P (x ,y )动点 圆 x a r y b r =+=+?? ?cos sin ()θ θθ为参数 A (a ,b )圆心,r 半径, P (x ,y )动点,θ旋转角 椭圆 x a y b ==?? ? cos sin ()? ??为参数 a 长半轴长,b 短半轴长 ?离心角不是与的夹角()OM Ox 一般地,θ?π、取,[]02 5. 直线与椭圆位置关系: (1)相离

椭圆第二定义应用及经典例题解析

高考数学-椭圆第二定义应用 一、随圆的第二定义(比值定义): 若),e e d MF 为常数10(,<<=则M 的轨迹是以F 为焦点,L 为准线的椭圆。 注:①其中F 为定点,F (C ,0),d 为M 到定直线L :c a x 2=的距离 ②F 与L 是对应的,即:左焦点对应左准线,右焦点对应右准线。 二、第二定义的应用 [例1]已知112 16,)3,2(2 2=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标。 分析:此题主要在于MF 2的转化,由第二定义:2 1==e d MF ,可得出d MF =2,即为M 到L (右准线)的距离。再求最小值可较快的求出。 解:作图,过M 作l MN ⊥于N , L 为右准线:8=x , 由第二定义,知: 2 1==e d MF , MN d MF ==∴2 ,2MN MA MF MA +=+Θ 要使MF MA 2+为最小值, 即:MF MA +为“最小”, 由图知:当A 、M 、N 共线,

即:l AM ⊥时,MF MA 2+为最小; 且最小值为A 到L 的距离=10, 此时,可设)3,(0x M ,代入椭圆方程中, 解得:320=x 故当)3,32(M 时, MF MA 2+为的最小值为10 [评注]: (1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。 (2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。 [例2]:设),(00y x P 为椭圆)0(,12222>>=+b a b y a x 的一点,离心率为e ,P 到左焦点F 1和右焦点F 2的距离分别为r 1,r 2 求证:0201,ex a r ex a r -=+= 证明:作图, 由第二定义:e c a x PF =+ 201 即:a ex c a x e c a x e PF r +=+=+?==02 02011)( 又a PF PF 221=+ 0012)(22ex a ex a a r a r -=+-=-=∴ 注:①上述结论01ex a r +=,02ex a r -=称为椭圆中的焦半径公式 ②a x a ex a r PF ≤≤-+==0011由 得出 c a a e a r c a ea a r -=-?+≥+=+≤)(11且 即c a PF c a +≤≤-1 当)a , (,P c a PF 01--=为时

椭圆的解题方法和技巧

椭圆的解题方法和技巧 安徽省宿州市褚兰中学海平 一、椭圆的定义的应用椭圆的定义是用椭圆上的点到焦点的距离来描述的,因此在解题中凡涉及曲线上的点到焦点的距离时,应先想到用定义求解,常会有事半功倍之效。 例1 的三边、、成等差数列且满足,、两点的坐标分别是、。求顶点的轨迹。 分析:数列与解析几何相联系,往往构成综合性较大的题目,历来是高考考查的热点之一。 解析:∵ 、、成等差数列,∴ ,即,又,∴ 。 根据椭圆的定义,易得点的轨迹方程为。 又∵ ,∴ ,即, ∴ ,∴ 。 故点的轨迹是椭圆的一半,方程为()。又当时, 点、、在同一条直线上,不能构成三角形,∴ 。 ∴点的轨迹方程为。评注:该例是先由条件找到动点所满足的几何关系,寻找出满足椭圆定义的条件,然后确定椭圆的方程。解题时,易忽略这一条件,因此易漏掉这一限制;由于、、三点构成三角形,故应剔除使、、共线的点。 例2 、椭圆上一点到两焦点、的距离之差为2 ,试判断的形状。 分析:由椭圆定义知,的和为定值,且二者之差为题设条件,故可求出的两边。解析:由,解得。

又,故满足。 ∴为直角三角形。 评注:由椭圆上一点与两个焦点构成的三角形,称作焦点三角形。利用焦点三角形能有意识地考查定义、三角形正(余)弦定理、内角和定理及面积公式能否灵活运用。 二、利用待定系数法确定椭圆的标准方程。 例3 、已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点 P1( 6,1), P2 ( 3, 2),求椭圆的方程. 【解析】设椭圆方程为mx 2ny21(m>0,n>0 且m≠n). ∵椭圆经过P1,P2点,∴ P1,P2点坐标适合椭圆方程,则① 6m+n=1 ,② 3m+2n=1 ,①②两式联立,解 得m= 1, n= 1. 93 22 ∴所求椭圆方程为x y 1 93 评注:运用待定系数法求椭圆标准方程,即设法建立关于a,b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1 (m >0,n>0,m≠n),由题目所给条件求出m,n 即可.

2014年高考椭圆综合题做题技巧与方法总结

2014年高考椭圆综合题做题技巧与方法总结 知识点梳理: 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x )0(12 22 2>>=+b a b x a y 性 质 参数关系 222c b a += 焦点 )0,(),0,(c c - ),0(),,0(c c - 焦距 c 2 范围 b y a x ≤≤||,|| b x a y ≤≤||,|| 顶点 ),0(),,0(),0,(),0,(b b a a -- )0,(),0,(),,0(),,0(b b a a -- 对称性 关于x 轴、y 轴和原点对称 离心率 )1,0(∈=a c e

准线 c a x 2 ±= c a y 2 ±= 考点1 椭圆定义及标准方程 题型1:椭圆定义的运用 [例1 ] 椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4a B .2(a -c) C .2(a+c) D .以上答案均有可能 [解析]按小球的运行路径分三种情况: (1)A C A --,此时小球经过的路程为2(a -c); (2)A B D B A ----, 此时小球经过的路程为2(a+c); (3)A Q B P A ----此时小球经过的路程为4a,故选D 总结:考虑小球的运行路径要全面 练习 1.短轴长为5,离心率3 2 = e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A.3 B.6 C.12 D.24 [解析]C. 长半轴a=3,△ABF 2的周长为4a=12 2.已知P 为椭圆22 12516 x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆 22(3)4x y -+=上的点,则PM PN +的最小值为( ) A . 5 B . 7 C .13 D . 15 [解析]B. 两圆心C 、D 恰为椭圆的焦点,10||||=+∴ PD PC ,PM PN +的最小值为10-1-2=7 题型2 求椭圆的标准方程 [例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程. 【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来 [解析]设椭圆的方程为122 22=+b y a x 或)0(12222>>=+b a a y b x , O x y D P A B C Q

巧用圆锥曲线定义解题教学设计

巧用圆锥曲线定义解题(教学设计) 南浔中学沈爱华 一、教材分析:圆锥曲线作为高中数学的一个重要内容,是历年高考的必考点,同时它又是高中数学各骨干知识的交汇点,与函数、平面向量、方程、不等式、三角函数等均有紧密联系。圆锥曲线的定义是根本,是相应标准方程和几何性质的“源”,不能正确的理解定义,对圆锥曲线方程和几何性质就不能深入。而且圆锥曲线的定义反映着它特有的几何特征,这些定义在解题中起着不可忽视的作用。对圆锥曲线的定义的教学我们往往注重它的理解而忽略它的运用,恰当地运用定义解题,有助于使问题得到更清晰、简洁的解决。同时理解圆锥曲线的定义,是学生掌握椭圆、双曲线、抛物线的标准方程和几何性质的基础;熟练运用定义解题,可以培养学生运用方程研究曲线几何性质的能力。 二、学生情况分析:作为普通中学的高三学生,对圆锥曲线的定义已有一定的理解,但在运用圆锥曲线定义解题的方法、题型没有掌握好,圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。恰当地利用定义解题, 许多时候能以简驭繁。因此,在高三数学复习课的教学过程中,我认为有必要再一次回到定义,熟悉“巧用圆锥曲线定义解题”这一重要的解题策略。 三、设计思想:由于这部分知识较为抽象,难以理解.如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,我首先复习圆锥曲线的定义,使学生进一步理解定义;然后有意识地引导学生运用定义解题来分类研究学习,利用一般解题方法处理习题, 针对学生练习中产生的问题,进行点评,强调“双主作用”的发挥.引导学生主动发现问题、解决问题,主动参与教学,以使学生提高运用知识解决问题的能力。 四、教学目标:1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、渐近线等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。 2.通过对练习,强化对圆锥曲线定义的理解,培养思维的深刻性、创造性、科学性和批判性,提高学生分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法及联想、类比、猜测、证明等合情推理方法. 3.借助导学案辅助教学,激发学生学习数学的兴趣。在课堂教学氛围中,努力培养学生敢想、敢说、勇于探索、发现、创新的精神. 五、教学重点:圆锥曲线定义的理解,运用该定义解题的方法与题型的掌握。 六、教学方法:讲授法、讲练结合 七、教学过程: (一)、复习圆锥曲线的定义 椭圆定义:平面内与两个定点距离的和等于定值的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,

椭圆第二定义

椭圆第二定义 学法指导:以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化. 教学目标 知识目标:椭圆第二定义、准线方程; 能力目标:1使学生了解椭圆第二定义给出的背景; 2了解离心率的几何意义; 3使学生理解椭圆第二定义、椭圆的准线定义; 4使学生掌握椭圆的准线方程以及准线方程的应用; 5使学生掌握椭圆第二定义的简单应用; 情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值. 教学重点:椭圆第二定义、焦半径公式、准线方程; 教学难点:椭圆的第二定义的运用; 教具准备:与教材内容相关的资料。 教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取 的精神. 教学过程: 学生探究过程:复习回顾 1.椭圆81922=+y x 的长轴长为 18 ,短轴长为 6 ,半焦距为26,离心率为 3 2 2,焦点坐标为)26,0(±,顶点坐标为)9,0(±)0,3(±,(准线方程为4 2 27± =y ). 2.短轴长为8,离心率为 5 3 的椭圆两焦点分别为1F 、2F ,过点1F 作直线l 交椭圆于A 、B 两点,则2ABF ?的周长为 20 . 引入课题 【习题4(教材P50例6)】椭圆的方程为 116 252 2=+y x ,M 1,M 2为椭圆上的点 ① 求点M 1(4,2.4)到焦点F (3,0)的距离 2.6 . ② 若点M 2为(4,y 0)不求出点M 2的纵坐标,你能求出这点到焦点F (3,0)的距离吗? 解:2 2 )34(||y MF +-=且1162542 02=+y 代入消去2 0y 得5 1325169||==MF

好用的高中数学椭圆解题方法

一些好用的高中数学椭圆解题方法 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。其中点可以设为 , 等,如果是在椭圆 上的点,还可以设为 。一般来说,如果题目中只涉及到唯一一个椭圆上的的动点,这个点可以设为 。还要注意的是,很多点的坐标都是设而不求的。对于一条直线,如果过定点 并且不与y轴平行,可以设点斜式 ,如果不与x轴平行,可以设 ,如果只是过定点,可以设参数方程 ,其中α是直线的倾斜角。一般题目中涉及到唯一动直线时可以设直线的参数方程。二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极降低运算量。比如点在圆上可以转化为向量点乘得零,三点共线可以转化成两个向量平行,某个角的角平分线是一条水平或竖直直线则这个角的两条边斜率和是零。 有的题目可能不需要转化直接带入条件解题即可,有的题目给的条件可能有多种转化方式,这时候最好先别急着做题,多想几种转化方法,估计一下哪种方法更简单。 三、代数运算 转化完条件就剩算数了。很多题目都要将直线与椭圆联立以便使用一元二次方程的韦达定理,但要注意并不是所有题目都是这样。有的题目可能需要算弦长,可以用弦长公式 ,设参数方程时,弦长公式可以简化为 解析几何中有时要求面积,如果O是坐标原点,椭圆上两点A、B坐标分别为 和 ,AB与x轴交于D,则

(d是点O到AB的距离;第三个公式是我自己推的,教材上没有,解答题慎用)。 解析几何中很多题都有动点或动直线。如果题目只涉及到一个动点时,可以考虑用参数设点。若是只涉及一个过定点的动直线,题目中又涉及到求长度面积之类的东西,这时设直线的参数方程会简单一些。 在解析几何中还有一种方法叫点差法,设椭圆上两个点的坐标,将两点在椭圆上的方程相减,整理即可得到这两点的中点的横纵坐标与这两点连线的斜率的关系式。 四、能力要求 做解析几何题,首先对人的耐心与信心是一种考验。在做题过程中可能遇到会一大长串的式子要化简,这时候,只要你方向没错,坚持算下去肯定能看到最终的结果。另外运算速度和准确率也是很重要的,在真正考试的时候肯定不像平时做题的时候能容你慢慢做题,因此需要有一定的做题速度,在做题的时候运算准确也是必须要保证的,因为一旦算错数,就很可能功亏一篑。 五、理论拓展 这一部分主要说一些对做题有帮助的公式、定理、推论等容 关于直线: 1、将直线的两点式整理后,可以得到这个方程: 。据此可以直接写出过 和 两点的直线,至于这两点连线是否与x轴垂直,是否与y轴垂直都没有关系。对于一些坐标很复杂的点,可以直接代入这个方程便捷的得到过两点的直线。 2、直线一般式Ax+By+C=0表示的这条直线和向量(A,B)垂直;过定点 的直线的一般式可以写为 。根据这两条推论可以快速地写出两点的垂直平分线的方程。 关于椭圆: 3、椭圆 的焦点弦弦长为 (其中α是直线的倾斜角,k是l的斜率)。右焦点的焦点弦中点坐标为 ,将横纵坐标都取相反数可得左焦点弦的中点坐标。 4、根据椭圆的第二定义,椭圆上的点到焦点的距离与到同一侧的准线的距离之商等于椭圆的离心率。椭圆 的准线是

椭圆第一定义与第二定义的统一

高中二年级数学(人教版) 椭圆第一定义与第二定义 的统一

椭圆第一定义与第二定义的统一 一、学习目标与任务 学习目标描述 知识方面: 1.复习巩固椭圆的第一定义; 2.认识椭圆的第二定义,椭圆的准线,离心率等概念; 3.通过“几何画板”的实际操作,了解离心率对椭圆扁平程度的影响; 4.通过椭圆构造实验,引入双曲线,初步理解圆锥曲线的统一定义; 能力方面: 1.学会利用软件“几何画板”以不同的方法探求椭圆的轨迹; 2.学会改变模拟数据进行数学实验; 3.学会在网络环境下的合作学习与交流。 学习内容与学习任务说明 问题1:如图,点B是半径为r的圆A的一个定点,点C是圆A上的一个动点,线段BC的垂直平分线l交直线AC于点N,求点N的轨迹。 实验1:将点B在圆A内部左右拖动,观察点N的轨迹有哪些变化。 深入:由实验1继续利用“几何画板”作图,观察椭圆的几何性质,作出椭圆的准线,理解椭圆的第二定义。 实验2:将点B拖到圆外离点A不同距离的地方,观察点N的轨迹有哪些变化。 二、学习者特征分析 (说明学生的学习特点、学习习惯、学习交往特点等) 学生已经掌握了椭圆的第一定义,以及相关的一些“几何画板”简单操作。高中的学生具有较抽象的思维能力,喜欢自己探索、发现问题和解决问题。 三、学习环境选择与学习资源设计 1、学习环境选择(打√)

(1)Web教室(2)局域网 (3)城域网 (4)校园网√(5)Internet √(6)其它 2、学习资源类型(打√) (1)课件(网络课件)(2)工具√(3)专题学习网站 (4)多媒体资源库(5)案例库√ 6)题库 (7)网络课程(8)其它√ 3、学习资源内容简要说明(说明名称、网址、主要内容) 教师设计制作了多个椭圆的构造实验,把它放在校园网上。利用几何画板让学生自己探索构造椭圆,并深入思考是否可以推广变化为圆锥曲线的统一定义。 四、学习情境创设 1、学习情境类型(打√) (1)真实情境(2)问题性情境√ (3)虚拟情境(4)其它 2、学习情境设计 以具体的数学问题结合“几何画板”有趣的数学实验引起学生的学习兴趣和探究欲望。下面的每一个具体的问题都结合动态的数学实验,让学生利用“几何画板”自己动手“做”,探究椭圆构造的方法,以及和其他圆锥曲线(双曲线、抛物线)的联系。 五、学习活动组织 1.学生学习设计

相关文档
相关文档 最新文档