文档库 最新最全的文档下载
当前位置:文档库 › 第八章 三角函数式的变换

第八章 三角函数式的变换

第八章 三角函数式的变换
第八章 三角函数式的变换

第八章 三角函数式的变换

一、两角和与差的正弦,余弦,正切公式及其二倍角公式,辅助角公式。 1、公式的回忆 2、公式的应用 例1、1tan()4

2

π

α+=

,(1)求tan α的值;(2)求

2

sin 2cos 1cos 2ααα

-+的值。

答案;15,3

6

-

-

例2、(1)cos 43cos 77sin 43cos167??+??=

(2)cot 20cos103sin 10tan 702cos 40??+

??-?=

答案:1,22

-

例3、5tan cot ,(

,)242

ππ

ααα+=

∈,求cos 2α和sin(2)4

π

α+

的值。

答案:3

2

,510

-

,切化弦,或者直接正切求解。

例4、化简:(1)315sin 35cos x x +;(2)2sin()2sin()3cos(

)3

3

3

x x x π

π

π+

+-

--

答案:(2)0,直接展开,或者诱导公式变化。(结束)

可补充:点(3cos ,4sin )P x x ,直线4350x y ++=,求点P 到该直线的最小距离及P 点坐标。

注意范围的一些三角恒等变换题 1、4sin 5

α=

,α在第二象限,求cos

2

α

的值。

答案:55

2、5sin 5

α=,10sin 10

β=

,且,αβ为锐角,求αβ+

答案:

4

π

3、A B C 中,3sin 4sin 1A B +=,4cos 3cos 1B A +=,则C = 。

答案:30?

4、A B C 中,2sin()3

A B +=

,3cos 4

B =-

,求cos A 的值。

答案:7235

12

+错

5、04

π

α<<,04

π

β<<

,且3sin sin(2)βαβ=+,2

4tan

1tan

2

2

α

α

=-,求αβ+的

值。 答案:

4

π

二、综合应用(结合三角函数,其它的一些公式)

化简三角函数式的常用方法:“切化弦”,“弦化切”来减少函数的种类,采用“配方法”,“降幂公式”来逐步降低各项的次数。 三角函数最值问题归类:

1、三角方法,利用正弦,余弦的有界性;

2、代数方法,先变为代数问题,再选用配方法、不等式法,判别式法,单调性法等求解;

3、解析法,利用点线距离公式,斜率公式,直线方程 类型:

(1)sin y a x b =+,一次函数; (2)sin cos y a x b x c =++,辅助角;

(3)2sin sin y a x b x c =++,给定区间上的二次函数最值问题; (4)sin cos (sin cos )y a x x b x x c =+±+,化为二次函数;

(5)tan cot y a x b x =+,化为2

at b y t

+=,判别式;

(6)sin ,sin a x b y c x d

+=+,三角函数的有界性,分离常数求最值,不等式法求最值,也可以数

形结合。 (7)sin cos a x b y c x d +=

+,三角函数的有界性,或者万能公式,判别式求解 半角公式1cos 1cos sin sin

,cos

,...tan

...2

2

2

2

sin 1cos αα

ααααα

α

--=±===

=

+

1、化简

4

2

2

12cos 22

2tan(

)sin ()

4

4

x cos x x x ππ-+

-+

= 。 答案:

1cos 22

x

2、已知函数5sin 12

()(0)2

2sin

2

f θθθπθ=-

+

<<。

(1)将()f θ表示成关于cos θ的多项式;

(2)a R ∈,试求使曲线cos y a a =+与曲线()y f θ=至少有一个交点时,a 的取值范围。 答案:(1)2()2cos cos 1f θθθ=+-;(2) 31a -<<(约分) 3、设函数2

()cos(2)sin 3

f x x x π

=+

+

(1)求函数()f x 的最大值和最小正周期; (2)设,,A B C 为A B C 的三个内角,若1cos 3

B =

,1()4

f C =-

,且C 不为钝角,求sin A .

答案:13()sin 22

2

f x x =-,2

C π

=

,sin A =1cos 3

B =。

作业反馈:

合一变形公式和有关角的范围的问题,值域问题要加强。 1、当04

x π

<<

时,函数2

2

cos ()cos sin sin x f x x x x

=

-的最小值是 。

答案:4,弦化切。

2、判断:若,αβ是第一象限角,且αβ>,则cos cos αβ<。错

3、A B C 中,3sin 4cos 1A B +=,4cos 3cos 1B A +=,则C = 。 答案:30?

4、函数(cos sin )cos y a x b x x =+有最大值2,最小值1-,则实数a = ,b = 。 答案:1,22±

5、在锐角三角形ABC 中,sin (sin cos )sin 0A B B C +-= (1)若sin cos 20B C +=,求,,A B C 的大小;

(2)已知向量(sin ,cos )m B B = ,2(sin ,cos )n C C =

,求||m n -

的取值范围。

答案:(1)5,,4

3

12

A B C π

π

π=

=

=

,(2)[21,1)-

6、已知函数2

3

()sin cos 3cos ,(0)2

f x a x x a x a b a =-+

+>,若[0,]2x π

∈,()f x 的最

小值是2-,最大值为3,求实数,a b 的值。 答案:2,23a b ==-+

。合一变形和注意角的范围问题。

三角函数公式及其图像

初等函数 1、基本初等函数及图形 基本初等函数为以下五类函数: (1) 幂函数μx y=,μ是常数; 1.当u为正整数时,函数的定义域为区间 ) , (+∞ -∞ ∈ x,他们的图形都经过原点,并当u>1时 在原点处与X轴相切。且u为奇数时,图形关于原点对称;u为偶数时图形关于Y轴对称; 2.当u为负整数时。函数的定义域为除去x=0的所有实数。 3.当u为正有理数m/n时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n图形于x轴相切,如果m

(2) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; 1. 当a>1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点.

(3) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; (4) 三角函数 正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方,在区 间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数.a<1在实用中很少用到/

三角函数图像的平移变换专项练习

三角函数图像的平移变换专项练习 1.为了得到函数)6 3sin(π +=x y 的图象,只需把函数x y 3sin =的图象 ( ) A 、向左平移 6π B 、向左平移18π C 、向右平移6π D 、向右平移18 π 6、将函数)(sin )(R x x x f y ∈?=的图象向右平移4 π 个单位后,再作关于x 轴的对 称变换,得到函数x y 2sin 21-=的图象,则)(x f 可以是_______。 1、要得到函数)4 2sin(3π +=x y 的图象,只需将函数x y 2sin 3=的图象( ) (A )向左平移 4π个单位 (B )向右平移4π 个单位 (C )向左平移8π个单位 (D )向右平移8 π 个单位 2、将函数y=sin3x 的图象作下列平移可得y=sin(3x+ 6 π )的图象 (A) 向右平移 6π 个单位 (B) 向左平移6π 个单位 (C )向右平移18π 个单位 (D )向左平移18 π 个单位 3.将函数sin y x =的图象上每点的横坐标缩小为原来的1 2 (纵坐标不变),再把 所得图象向左平移6π 个单位,得到的函数解析式为( ) ()sin 26A y x π?? =+ ?? ? ()sin 23B y x π? ?=+ ?? ? ()sin 26x C y π??=+ ??? ()s i n 212x D y π??=+ ??? 4、把函数x y cos =的图象上所有的点的横坐标缩小到原来的一半,纵坐标保持不变,然后把图象向左平移4 π 个单位长度,得到新的函数图象,那么这个新函数的解析式为 (A )??? ??+=42cos πx y (B )??? ??+=42cos πx y (C )x y 2sin = (D )x y 2sin -= 5.要得到函数x y cos 2=的图象,需将函数)42sin(2π +=x y 的图象( ) (A)横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π 个单位长度 (B)横坐标缩短到原来的 21倍(纵坐标不变),再向右平行移动4 π个单位长度

三角函数公式及图像

锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边/ ∠α的邻边 cot α=∠α的邻边/ ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-sin²a)cosa =4cos³a-3cosa sin3a=3sina-4sin³a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换 一、单选题(共8道,每道12分) 1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整 个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( ) A.2 B.3 C.4 D.5 答案:C 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( ) A.π B. C. D. 答案:D

三角函数图像变换顺序详解

《图象变换的顺序寻根》 题根研究 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩: 将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移:

将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2中有的变 换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了. 如将例1中的变成 它们的变换“方向”就“统一”了. 对于疑问(1):在不同的变换顺序中,为什么“伸缩量不变”,而“平移量有变”?这是因为在“一次”替代:x→中,平移是对x进行的. 故先平移(x→)对后伸缩(→)没有影响; 但先收缩(x→)对后平移(→)却存在着“平移”相关. 这

三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|οββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180|ο οββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈°=57°18ˊ. 1°=180 π≈(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α 原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

三角函数的图像的变换口诀解读

三角函数的图像的变换口诀解读 变T 数倒系数议,变A 伸压 y 无疑, 变φ 要把系数提,正φ 左进负右移. 周期变换是通过改变x 的系数来实现的,即周期T 的变化只与ω有关而与φ无关.这是因为ω π 2=T ,故要使周期扩大或缩小m (m >0) 倍,则须用 x m 1去代原式中的x (纵坐标不 变),故有“变T 数倒系数议”之说. 相位φ变换实质上就是将函数的图像向左或向右平移.当先作周期变换后作相位变换时,须提出系数ω,这是因为周期变化时改变了x 的值,此时其初相位(非0初相)同时也改变相应得到改变,且改变的倍数相同.当先作相位变换后作周期变换,由于此时x 的系数为1,系数提不提无影响,为了统一记忆我们也视为提出系数“1”.因而有“变φ要把系数提”之说. 三角函数图像的周期﹑振幅﹑相位等变换的问题是历年高考中常考查的内容.对此类命题的求解,无论三种变换怎样摆设,先要弄清哪是原函数的图像,哪是新函数的图像,再据本歌诀所述,很快就可得到解决. 例1 为了得到 y =) 62sin(π-x 的图像,可以将函数 y = cos2x 的图像 (2004年高考) ( ) (A)向右平移6 π 个单位长度 (B)向右平移3 π 个单位长度 (C)向左平移 6 π 个单位长度 (D) 向左平移 3 π 个单位长度 解法1 ∵ y = cos2x =) 4 (2sin )2 2sin(π π + =+ x x , 而 y =] 3 )4 [(2sin )6 2sin(π π π - + =- x x , 由此可得 只须将函数y = cos2x 的图像向右平移3 π 个单位长度即可.故选(B). 解法2 ∵ y =)62sin(π - x ) 6 22 cos( ππ x + -=,即y ) 3(2cos π - = x , 而已知的函数为y = cos2x , 由此可得,须将函数y = cos2x 的图像向右平3 π 个单位即可.故选(B). 点评 由于当ω ?- =x 时, 相位0 =+?ω x .因而,我们可称此时的相位为零相位.由此可 见,在作相位变换时,其平移的数值与方向是由两个0相位对应的x 值的差来决定的.对于本题而言,由于两个0相位对应的x 的值分别为12 π与4 π - ,故所作的平移就是要将已知函数 的0相位对应的点) 0 ,4(π - 移到点)0 12 ( ,π 处.易知要平移的数值是: 3 )4 (12 π π π = - -,方向是向 右的.显然这一方法就是“五点作图法”中的第一零点判断法. 例2 已知函数 f (x ) =) 5 sin( 2π + x (x ∈R ) 的图像为C, 函数 y = ) 5 2sin(π - x (x ∈R ) 的图 像为C 1, 为了得到C 1,只需把C 上所有的点先向右平移 ,再将 . ( ) (A) 5 2π个单位,横、纵坐标都缩短到原来的2 1 (B) 5 2π个单位,横、纵坐标都伸

三角函数图像的变换

1、函数y=sin(x+π),x∈R和y=sin(x- 6- O 3 ),x∈R的图象与y=sin x的图象有什么联系?2 个单位所得的曲线是 2 sin x的图象,试求y=f(x)的解析式。 3 )y=sin2x 3 ) 3 ) 3 ) 3 ) 3 ),x∈R的简图。 π2 3 ),x∈R 6 ),x∈R 三角函数图像的变换 题型归纳: 系? π 34 ),x∈R的图象与y=sin x的图象有什么联 - π-π 3 1y π5ππ 6 34x 2、函数y=3sin(2x+π (1)y=sin x(2)y=sin x y=sin(x+π 4、函数f(x)的横坐标伸长为原来的2倍,再向左平移 π y=1 5、函数y=Asin(ωx+φA>0,ω>0,|φ|<π) 的图象如图,求函数的表达式. y=sin(2x+π y=3sin(2x+π y=sin(2x+π y=3sin(2x+π ★☆作业:(A组) 1、画出下列函数在长度为一个周期的闭区间上的简图: 3、画出函数y=3sin(2x+π y 2x+ 3 x 3sin(2x+π) 3 (3)y=4sin(x- π (4)y=sin(2x+π 第1页共2页

6 ) ,x ∈R (2) y = 1 sin( 3 x - (1) y = 5 sin( 1 x + 4 ) ,x ∈R 6、把函数 y =cos(3x + π A.向右平移 π 4 C.向右平移 12 (3) y = 3sin(2 x - ) ,x ∈R (4) y = 2 cos( x + π ) ,x ∈R 3 ,φ =- 6 B.A =1,T= 2 3 ,φ =- 4 D.A =1,T= 3 sin(2x + 3 sin(2x + (1) y = 8sin( - ) ,x ∈[0,+∞) (2) y = 1 7 ) ,x ∈[0,+∞) 2 的图象的一部分,求这个函数的解析式。 4、(1)y =sin(x + π (2)y =sin(x - π (3)y =sin(x - π 4 )是由 y =sin(x + 4 )向 5、若将某函数的图象向右平移 π 10、设函数 y = sin (x - π A.y =sin(x + 3π B.y =sin( x + π C.y =sin(x - π D.y =sin(x + π 2、说明下列函数的图像由正弦函数或余弦函数经过了怎样的变换。 π 2 2 π 4 )的图象适当变动就可以得到 y =sin(-3x )的图象,这种变动 可以是( ) π π π 4 B.向左平移 D.向左平移 12 ★★☆☆作业( B 组): 7、如图:是函数 y =A sin(ω x +φ )+2 的图象的一部分,它 的振幅、周期、初相各是 ( ) π 1 1 6 4 A.A =3,T= 4π π 4π 3π 3 ,φ =- 4 C.A =1,T= 2π 3π 4π π 3 ,φ =- 6 8、如左下图是函数 y =A sin (ω x +φ )的图象的一段,它的 解析式为 ( ) A. y = 2 π 2 x 3 ) B. y = 3 sin( 2 + π 2 π 4 ) C. y = 3 sin(x - 3 ) D. y = 2 2π 3 ) 3、不画简图,直接 写出下列函数的振幅、周期和初相,并说明这些 函数的图象可由正弦曲 线经过怎样的变化得出(注意定义域): x π 4 8 3 cos(3x + π 4 )是由 y =sin x 向 平移 个单位得到的. 4 )是由 y =sin x 向 平移 个单位得到的. π 平移 个单位得到的. 2 以后所得到的图象的函数式是 y =sin(x + 表达式为( ) 4 ) 2 ) π 4 )- 4 4 ) π 4 ),则原来的函数

三角函数图像变换顺序详解全面

《图象变换的顺序寻根》 题根研究? 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩:

将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移: 将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2 中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了.

三角函数图像及其变换

高一数学第十四讲 三角函数图像及其变换 一、知识要点: ππ ππ ?ω2,2 3, ,2 , 0=+x 列表求出对应的x 的值与y 的值,用平滑曲线连结各点,即可得到其在一个周期内的图象。 3.研究函数R x x A y ∈+=),sin(?ω(其中0,0>>ωA )的单调性、对称轴、对称中心仍然是将?ω+x 看着整 体并与基本正弦函数加以对照而得出。它的最小正周期||2ωπ =T 4.图象变换 (1)振幅变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x y ∈=,s i n A

(2)周期变换 R x x y ∈=,s i n ??????????????→ ?<<>倍 到原来的或伸长所有点的横坐标缩短ω ωω1 1)(01)(R x x y ∈=,s i n ω (3)相位变换 R x x y ∈=,s i n ????????????→?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? (4)复合变换 R x x y ∈=,s i n ????????????→ ?<>个单位长度平移或向右所有点向左||0)(0)(???R x x y ∈+=,)(s i n ? ?? ????????????→?<<>倍 到原来的 或伸长所有点的横坐标缩短ω ωω11)(01)(R x x y ∈+=),sin(?ω ??????????????→ ?<<>倍到原来的或缩短所有点的纵坐标伸长A 1)A (01)(A R x x A y ∈+=),sin(?ω 5.主要题型:求三角函数的定义域、值域、周期,判断奇偶性,求单调区间,利用单调性比较大小,图 象的平移和伸缩,图象的对称轴和对称中心,利用图象解题,根据图象求解析式,已知三角函数值求角。 二.基础练习 1. 函数1π2sin()23 y x =+的最小正周期T = . 2.函数sin 2x y =的最小正周期是 若函数tan(2)3y ax π=-的最小正周期是2π,则a=____. 3.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是 4.函数2 2cos()()363 y x x ππ π=- ≤≤的最小值是 5.将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 6.已知简谐运动ππ()2sin 32f x x ????? ?=+< ??????? 的图象经过点(01), ,则该简谐运动的最小正周期T 和初相?分别为 7.已知a=tan1,b=tan2,c=tan3,则a,b,c 的大小关系为______. 8.给出下列命题: ①存在实数x ,使sin cos 1x x =成立; ②函数5sin 22y x π?? =- ???是偶函数; ③直线8x π=是函数5sin 24y x π? ?=+ ??? 的图象的一条对称轴; ④若α和β都是第一象限角,且αβ>,则tan tan αβ>. ⑤R x x x f ∈+ =),32sin(3)(π 的图象关于点)0,6 (π - 对称; 其中结论是正确的序号是 (把你认为是真命题的序号都填上). 三、例题分析: 题型1:三角函数图像变换 例1、 变为了得到函数)62sin(π-=x y 的图象,可以将函数1 cos 2 y x =的图象怎样变换?

三角函数图像变换顺序详解

《图象变换的顺序寻根》 题根研究? 一、图象变换的四种类型 从函数y二f (x)到函数y二A f ( : "「)+m其间经过4种变换: 1. 纵向平移——m变换 2. 纵向伸缩——A变换 3.横向平移一一变换 4. 横向伸缩一一总变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y二sin x到y二A sin ( ' :」)+m为例,讨论4种变换的顺序问题 V:= / (x)= 1+ 3sin( 2x- [例1】函数 ' -的图象可由y二sin x的图象经过怎 样的平移和伸缩变换而得到 【解法1】第1步,横向平移: 将y二sin x向右平移:,得 第2步,横向伸缩: L-1—A ——J — 将. 二的横坐标缩短二倍, 第3步:纵向伸缩: v 二s£n( 2x——''i 将. -的纵坐标扩大3倍,得 第4步:纵向平移: v = 3sin(2x——) v = 1 + —— 将二向上平移1,得

【解法2】第1步,横向伸缩:

2 将y 二sin x 的横坐标缩短二倍,得 y 二sin 2 x 第2步,横向平移: 第3步,纵向平移: y — sinC2x ——) 将, -向上平移】;,得 第4步,纵向伸缩: v = — 4- sinf 2x — 将1 1的纵坐标扩大 71 【说明】 解法1的“变换量”(如右移:)与参数值(「对应,而解法2 71 71 中有的变换量(如右移1)与参数值(一)不对应,因此解法1的“可靠性” 大, 而解法2的“风险性”大. 【质疑】 对以上变换,提出如下疑问: (1) 在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有 变 (2) 在横向平移和纵向平移中,为什么它们增减方向相反一一 如当匚<0时对应右移(增方向),而m < 0时对应下移(减方向) (3) 在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反一一 如1^1 > 1时对应着“缩”,而| A | >1时,对应着“扩” 【答疑】 对于(2),(3)两道疑问的回答是:这是因为在函数表达式 y 二A f (-八i )+m 中x 和y 的地位在形式上“不平等”所至.如果把函数式变为方 程式 -r (y^' ) = f (一」),则x 、y 在形式上就“地位平等”了 v = 1 + 2x- — (v — 1) = sinf 2x -—) 71 将y 二sin 2 x 向右平移;一:,得 尸二 sin ( 2孟一— .-I + 3sin( 2x —— 3倍,得. - 71

三角函数图像与性质_图像变换习题

考点测试20 三角函数的图象和性质 一、基础小题 1.已知f(x)=sin ? ????x +π2,g(x)=cos ? ????x -π2,则f(x)的图象( ) A .与g(x)的图象相同 B .与g(x)的图象关于y 轴对称 C .向左平移π2个单位,得到g(x)的图象 D .向右平移π 2 个单位,得到g(x)的图象 解析 因为g(x)=cos ? ????x -π2=cos ? ????π2-x =sinx ,所以f(x)向右平移π2个单位,可得到g(x)的图象,故选 D. 2.函数y =sin 2x+sinx -1的值域为( ) A .[-1,1] B .??????-54,-1 C .???? ? ?-54,1 D .? ?????-1,54 答案 C 解析 (数形结合法)y =sin 2x+sinx -1,令sinx =t ,则有y =t2+t -1,t ∈[-1,1],画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t2+t -1可得y ∈???? ??-54,1. 3.函数y =2sin ? ????π6-2x (x ∈[-π,0])的单调递增区间是( ) A .??????-π,-5π6 B .??????-π3,0 C .??????-2π 3 ,-π6 D .??????-π 3 ,-π6 答案 C 解析 因为y =2sin ? ????π6-2x =-2sin ? ????2x -π6,所以函数y =2sin ? ????π6-2x 的单调递增区间就是函数y =sin ? ????2x -π6的单调递减区间.由π2+2kπ≤2x -π6≤3π2+2kπ(k ∈Z),解得π3+kπ≤x ≤5π6+kπ(k ∈Z), 即函数y =2sin ? ????π6-2x 的单调递增区间为? ?? π3 +kπ, ? ??5π 6+kπ(k ∈Z),又x ∈[-π,0],所以k =-1,故函数y =2sin ? ????π6-2x (x ∈[-π,0])的单调递增区间为???? ??-2π3,-π6. 4.使函数f(x)=sin(2x +φ)为R 上的奇函数的φ的值可以是( ) A .π4 B .π2 C .π D .3π 2 答案 C 解析 若f(x)是R 上的奇函数,则必须满足f(0)=0,即sinφ=0.∴φ=kπ(k ∈Z),故选C. 5.已知函数f(x)=sin ? ????x +π6,其中x ∈??????-π3,a ,若f(x)的值域是??????-12,1,则a 的取值围是( ) A .? ????0,π3 B .??????π3,π2 C .??????π2 ,2π3 D .???? ??π3,π 解析 若-π3≤x ≤a ,则-π6≤x +π6≤a +π6.因为当x +π6=-π 6 或x

三角函数图像变换

三角函数图像及其变换 一、 知识梳理 1、sin y x =与cos y x =的图像与性质 2、sin y x =与sin()y A x ωφ=+ (1) 形如sin()y A x ωφ=+的函数图像的画法 (2) sin y x =与sin()y A x ωφ=+图像的关系 二、 典型例题 1、把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的1 2 倍(纵坐标不变),得到的图象所表示的函数是 (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π =+,x R ∈ (C )sin(2)3y x π=+,x R ∈ (D )sin(2)3 2y x π =+,x R ∈ 2、为得到函数πcos 23y x ? ?=+ ???的图像,只需将函数sin 2y x =的图像( ) A .向左平移 5π 12个长度单位 B .向右平移 5π 12个长度单位 C .向左平移5π 6 个长度单位 D .向右平移5π 6 个长度单位

3、函数πsin 23y x ??=- ?? ?在区间ππ2??-???? ,的简图是( ) 4、下面有五个命题: ①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a = Z k k ∈π ,2 |. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36 )32sin(3的图象得到的图象向右平移x y x y =π π+= ⑤函数.0)2 sin(〕上是减函数,在〔ππ - =x y 其中真命题的序号是 (写出所言 ) 5、将函数3sin()y x θ=-的图象向右平移3 π 个单位得到图象F ',若F '的一条对称轴是直线4 x π =,则θ的一个可能取值是 A. π125 B. π125- C. π12 11 D. 1112π- 三、高考再现 1、已知函数2 π()sin sin 2 f x x x x ωωω?? =++ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03?????? ,上的取值范围.

三角函数图像公式大全

幂函数的图形 指数函数的图形 对数函数的图形 三角函数的图形

各三角函数值在各象限的符号 sin α·csc α cosα·secα tan α·cot α 三角函数的性质 函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x ∈R 且 x≠kπ+ ,k ∈Z } 2 {x |x ∈R 且 x≠kπ,k ∈Z } 值域 [-1,1]x=2k π+ 时 2 y max =1 x=2kπ- 时 y min =-1 2 [-1,1] x=2kπ 时 y max =1 x=2kπ+π 时 y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为 2π 周期为 2π 周期为 π 周期为 π 奇偶性 奇函数 偶函数 奇函数 奇函数

在[2kπ - 2 ,2kπ+ 2 ]在(kπ- 2 ,kπ+ 2 )内都 上都是增函数;在是增函数(k∈Z) [2kπ+ 2 ,2kπ+ 2 3 π]上 都是减函数(k∈Z) 反三角函数的图形 反三角函数的性质 名称反正弦函数反余弦函数反正切函数反余切函数 定义 y=sinx(x∈〔- , 22 〕的反函数,叫做反 正弦函数,记作 x=arsiny y=cosx(x∈〔0,π〕) 的反函数,叫做反 余弦函数,记作 x=arccosy y=tanx(x∈(- , ) 22 的反函数,叫做反正切 函数,记作x=arctany y=cotx(x∈(0,π))的 反函数,叫做反余 切函数,记作 x=arccoty 理解 arcsinx表示属于[- , ] 22 且正弦值等于x的角 arccosx表示属于 [0,π],且余弦 值等于x的角 arctanx表示属于(- , 2 ),且正切值等于x 2 的角 arccotx表示属于 (0,π)且余切值等于 x 的角 性 质 定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞) 值域[- ,] 22 [0,π](- ,) 22 (0,π) 单调性 在〔-1,1〕上是增函 数 在[-1,1]上是减 函数 在(-∞,+∞)上是增数在(-∞,+∞)上是减 函数 奇偶性 arcsin(-x)=-arcsinx arccos(-x)=π- arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx 周期性都不是同期函数 单调性 在[2kπ-π,2kπ]上都是 增函数;在 [2kπ,2kπ+π]上都是 减函数(k∈Z) 在(kπ,kπ+π)内都 是减函数(k∈Z)

三角函数的图像和变换以及经典习题和答案

【典型例题】 [例1](1)函数3sin()226 x y π = +的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 . (1) 32; 14π;26x π+;6 π (2)函数2sin(2)3 y x π =- 的对称中心是 ;对称轴方程是 ;单调增区间是 . (2)( ,0),26k k Z ππ+∈;5,212 k x k Z ππ=+∈; ()5,1212k k k z ππππ?? -++∈???? (3) 将函数sin (0)y x ωω=>的图象按向量 ,06a π?? =- ??? 平移,平移后的图象如图所示,则平移后的图 象所对应函数的解析式是( ) A .sin()6y x π =+ B .sin()6 y x π =- C .sin(2)3y x π=+ D .sin(2)3 y x π =- (3)C 提示:将函数sin (0)y x ωω=>的图象按向量 ,06a π?? =- ??? 平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知, 73()1262 πππω+=,所以2ω=. (4) 为了得到函数R x x y ∈+=),6 3sin(2π 的图像,只需把函数R x x y ∈=,sin 2的图像 上所有的点 ( ) (A )向左平移6π 个单位长度,再把所得各点的横坐标缩短到原来的3 1 倍(纵坐标不变) (B )向右平移6π 个单位长度,再把所得各点的横坐标缩短到原来的31 倍(纵坐标不变) (C )向左平移6 π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移 6 π 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (4)C 先将R x x y ∈=,sin 2的图象向左平移 6 π 个单位长度,得到函数2sin(),6 y x x R π =+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标 不变)得到函数R x x y ∈+=),6 3sin(2π 的图像

三角恒等变换及三角函数图象性质

三角恒等变换及三角函数图象性质 一例题讲解 1.快速写出下列各式的值: (1)? ? ? ? -43cos 13sin 13cos 43sin (2)? ? ? ? -26cos 56sin 64cos 56cos (3)2sin15cos15??=_________; (4)2 2 cos 15sin 15?-?=_________; (5)2 2sin 151?-=_________; (6)2 2 sin 15cos 15?+?=________ (7)) 15tan(1195tan 1?? -++ (8) 2cos 6sin x x -=________ 2化简:(1)4221 2cos 2cos 22tan()sin ()44x x x x ππ-+ -+;(2)(1sin cos )(sin cos )22(0)22cos θθθθθπθ++-<<+.3 设4cos()5αβ-=-,12cos()13αβ+=,且(,)2παβπ-∈,3(,2)2 π αβπ+∈,求c o s 2α,cos 2β. 4若3cos()45x π +=,177124x ππ<<,求2sin 22sin 1tan x x x +-的值. 5已知函数()2sin (sin cos )f x x x x =+. (Ⅰ)用五点法画出函数在区间,22ππ??-???? 上的图象,长度为一个周期; (Ⅱ)说明()2sin (sin cos )f x x x x =+的图像可由sin y x =的图像经过怎样变换而得到. 6为得到)6 2sin(π - =x y 的图象,可以将x y 2cos =的图象向右平移____个单位长度. 7已知正弦函数sin()y A x ω?=+(0,0)A ω>>的图像如右图所示. (1)求此函数的解析式1()f x ; (2)求与1()f x 图像关于直线8x =对称的曲线的解析式2()f x ; -2 2 2 x =8 x y O

三角函数图像的平移、变换练习题

三角函数图像的平移、变换练习题 1、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4 π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2 π个长度单位 2、将函数sin y x =的图像上所有的点向右平行移动10 π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=- (B )sin(2)5 y x π =- (C )1sin()210y x π=- (D )1sin()220y x π=- 5y Asin x x R 66ππω???=∈???? 右图是函数(+)()在区间-,上的图象,为了得到这个 函数的图象,只要将y sin x x R =∈()的图象上所有的( ) (A)向左平移 3π个单位长度,再把所得各点的横坐标缩短到原来的12 倍,纵坐标不变 (B) 向左平移3 π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移 6 π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 4、若将函数()tan 04y x πωω? ?=+> ???的图像向右平移6 π个单位长度后,与函数tan 6y x πω??=+ ?? ?的图像重合,则ω的最小值为( ) A .16 B. 14 C. 13 D. 12 5、已知函数()sin()(,0)4f x x x R π ??=+∈>的最小正周期为π,为了得到函数 ()cos g x x ?=的图象,只要将()y f x =的图象( )

三角函数,反三角函数公式大全

三角函数公式 倍角公式 2ta nA tan 2A = 2 Sin 2A=2Si nA?CosA 1-ta n 1 2A 2 2 2 2 Cos2A = CoS 2A-Si n 2A=2Cos 2 A-1=1-2si n 2A 三倍角公式 3 3 sin3A = 3sinA-4(sinA) cos3A = 4(cosA) -3cosA π π tan3a = tana? tan(—+a) ? tan(--a) 3 3 半角公式 积化和差 SinaSinb = 1 1 -[cos(a+b)-cos(a-b)] cosacosb = 一 [cos(a+b)+cos(a-b)] 2 2 1 COSA tan(A)=^°^=^n ^ Sina=— 两角和公式 sin( A+B) = Sin AcosB+cosAs inB cos(A+B) = cosAcosB-si nAsinB sin( A-B) = Sin ACOSB-COSAS inB COS(A-B) = cosAcosB+si nAsinB tan( A+B)= tanA tanB 1- ta nAta nB tan( A-B)= tanA 「tanB 1 tan Ata nB cot(A+B)= cotAcotB -1 cotB cotA COt(A-B)= cotAcotB 1 COtB-COtA .z A * -cos A Sin(I ) ^ 2 A cos()= 2 1 cos A tan 自 =J≡≡ A COt q ) = Sin a+s in b=2s in a 「b cos — 2 Sin a-s in b=2cos Sin a 「 b 2 cosa+cosb = 2co a —b cos — 2 COSa-COSb = -2sin Sin tan A+ta nB=si n(A+B)∕cosAcosB tan A-ta nB=si n(A-B)∕cosAcosB ctgA+ctgB=si n(A+B)∕si nAsi nB -ctgA+ctgB=si n(A+B)∕si nAsi nB a b

相关文档
相关文档 最新文档