文档库 最新最全的文档下载
当前位置:文档库 › 瑞士赛制配对算法研究

瑞士赛制配对算法研究

瑞士赛制配对算法研究
瑞士赛制配对算法研究

基于谱图理论的特征匹配方法研究

基于谱图理论的特征匹配方法研究 【摘要】:特征匹配是计算机视觉和模式识别中的一个基本问题,是三维重建,图像配准,图像检索,目标识别与分类等很多具体应用中必不可少的重要环节。作为特征匹配中的一类代表性方法,基于谱图理论的匹配方法的基本思想是将特征匹配问题转化图匹配问题,其中特征之间的关系采用矩阵形式来描述,通过分析这些矩阵的谱特性,从而达到特征匹配的目的。基于谱图理论的匹配方法,为复杂变形情况下的特征匹配问题提供了一种较好的解决途径,而且计算简单,有效地克服了图匹配中的组合爆炸问题。本文围绕基于谱图理论的特征匹配方法做了一些相关研究,主要研究内容和研究成果如下:1.对基于谱图理论的特征匹配算法进行了较为系统的探索,在总结以往文献中典型算法的基础上,以数学理论为依据,对典型算法中所用谱方法的原理和本质进行了研究。2.在对文献中两种经典算法分析的基础上,给出了一种新邻接谱图像特征点匹配算法。该方法构造的亲和矩阵不仅考虑了同一幅图像内和不同图像之间特征的几何相似性,另外还加入了特征之间的纹理相似性权重因子。实验结果表明,该方法在图像发生旋转、平移、缩放变换和扭曲的情况下要优于文献中的方法。3.给出了一种边缘相似性加权方法。基本思想是,对辨别能力较强的边缘给予更大的权重系数,而对重复比较多,辨别能力较弱的边缘降低权重系数,这样,亲和矩阵的谱特性能更可靠地反应特征之间的匹配关系。实验结果表明,这种加权方法能有效改善谱匹配方法的性能。【关键词】:谱图理

论特征匹配亲和矩阵计算机视觉模式识别 【学位授予单位】:山西大学 【学位级别】:硕士 【学位授予年份】:2013 【分类号】:TP391.41 【目录】:中文摘要8-9ABSTRACT9-11第一章绪论11-151.1研究背景及选题意义11-121.2国内外研究现状12-131.3图像特征匹配13-141.4本文主要内容及结构安排14-15第二章谱图理论相关知识15-242.1谱图理论15-182.2奇异值分解(SVD)18-212.3特征值分解21-222.4Raleigh’sration理论和Perron-Frobenius理论22-24第三章基于一种新邻接谱的图像特征匹配算法24-423.1算法回顾24-293.1.1Scott和Longuet-Higgins算法24-273.1.2Shapiro和Brady算法27-293.2基于一种新邻接谱的图像特征匹配算法29-313.2.1算法描述29-313.2.2算法原理分析313.3实验结果及分析31-413.4本章小结41-42第四章基于谱方法的特征点对匹配算法研究42-594.1算法回顾42-444.1.1Leordeanu和Hebert算法42-444.2基于谱方法的特征点对匹配算法44-484.2.1算法描述45-474.2.2算法原理分析47-484.3实验结果及分析48-574.4本章小结57-59第五章全文总结59-61参考文献61-65攻读学位期间取得的研究成果65-66致谢66-67个人简况及联

模式匹配算法的设计与实现

五、详细设计 #include #include #include #include using namespace std; #define MAX 100000 #define M 69 class String { private: int n; char *str; int *count; //记录子串在主串中出现的位置 int Find(int i,String &P); // 简单匹配算法找到最近的匹配串后立即停止,而不向下继续且缺乏一个数组记录位置 int *f ; //记录失败函数 void Fail(); int KMPFind(int i,String &P); //改进的失败函数 void ImproveFail(); int KMPFindImprove(int i,String &P); public: String(); //建立一个空串 String(const char *p); String(const String &p); //拷贝函数 ~String(); int Length() {return n;}; //返回当前串对象长度 void Output() {cout<

int KMPFindImprove(String &P); //改进的KMP匹配算法 void Output2(); //输出子串在主串中出现的位置 }; int String::KMPFindImprove(String &P) { int sum=0; int j=KMPFindImprove(0,P); while(j!=-1) { count[sum++]=j; if(j<=n-P.n) j=KMPFindImprove(j+P.n,P); } return sum; } void String::Output2() //输出子串在主串中的位置 { int i=0; while(count[i]!=count[i+1] && i

模式匹配的KMP算法详解

模式匹配的KMP算法详解 模式匹配的KMP算法详解 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KMP算法。大概学过信息学的都知道,是个比较难理解的算法,今天特把它搞个彻彻底底明明白白。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?回溯,没错,注意到(1)句,为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 为什么会发生这样的情况?这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为abcdef这样的,大没有回溯的必要。

基于特征的图像匹配算法毕业设计论文(含源代码)

诚信声明 本人声明: 我所呈交的本科毕业设计论文是本人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成果。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。本人完全意识到本声明的法律结果由本人承担。 申请学位论文与资料若有不实之处,本人承担一切相关责任。 本人签名:日期:2010 年05 月20日

毕业设计(论文)任务书 设计(论文)题目: 学院:专业:班级: 学生指导教师(含职称):专业负责人: 1.设计(论文)的主要任务及目标 (1) 了解图象匹配技术的发展和应用情况,尤其是基于特征的图象匹配技术的发展和应用。 (2) 学习并掌握图像匹配方法,按要求完成算法 2.设计(论文)的基本要求和内容 (1)查阅相关中、英文文献,完成5000汉字的与设计内容有关的英文资料的翻译。(2)查阅15篇以上参考文献,其中至少5篇为外文文献,对目前国内外图象匹配技术的发展和应用进行全面综述。 (3)学习图象匹配算法,尤其是基于特征的图象匹配算法。 (4)实现并分析至少两种基于特征的图象匹配算法,并分析算法性能。 3.主要参考文献 [1]谭磊, 张桦, 薛彦斌.一种基于特征点的图像匹配算法[J].天津理工大学报,2006, 22(6),66-69. [2]甘进,王晓丹,权文.基于特征点的快速匹配算法[J].电光与控制,2009,16(2), 65-66. [3]王军,张明柱.图像匹配算法的研究进展[J].大气与环境光学学报,2007,2(1), 12-15.

模式匹配KMP算法实验报告

实验四:KMP算法实验报告 一、问题描述 模式匹配两个串。 二、设计思想 这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KM P算法。 注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法: int Index(String S,String T,int pos)//参考《数据结构》中的程序 { i=pos;j=1;//这里的串的第1个元素下标是1 while(i<=S.Length && j<=T.Length) { if(S[i]==T[j]){++i;++j;} else{i=i-j+2;j=1;}//**************(1) } if(j>T.Length) return i-T.Length;//匹配成功 else return 0; } 匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?为什么要回溯,看下面的例子: S:aaaaabababcaaa T:ababc aaaaabababcaaa ababc.(.表示前一个已经失配) 回溯的结果就是 aaaaabababcaaa a.(babc) 如果不回溯就是 aaaaabababcaaa aba.bc 这样就漏了一个可能匹配成功的情况 aaaaabababcaaa ababc 这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为a bcdef这样的,大没有回溯的必要。 改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。 如果不用回溯,那T串下一个位置从哪里开始呢? 还是上面那个例子,T为ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样:

关于快速高效的模式匹配算法的剖析与改进

关于快速高效的模式匹配算法的剖析与改进 摘要:模式匹配算法是现代化网络入侵检测中的关键环节,本文主要介绍了几种常用的模式匹配算法,并在此基础上,提出一种更快捷、更高效的改进方法,以提高模式匹配的效率与质量,确保网络安全。 关键词:模式匹配入侵检测改进 随着我国计算机与网络技术的飞速发展,网络应用已涉及到人们生产、生活的各个领域,其重要性日益凸显。随之而来的网络攻击问题也备受关注,给网络安全性带来挑战。传统的网络防御模式,主要采取身份认证、防火墙、数据加密等技术,但是与当前网络发展不适应。在此背景下,入侵检测技术营运而生,并建立在模式匹配基础上,确保检测的快捷性、准确性,应用越来越广泛。 1、模式匹配原理概述 模式匹配是入侵检测领域的重要概念,源自入侵信号的层次性。结合网络入侵检测的底层审计事件,从中提取更高层次的内容。通过高层事件形成的入侵信号,遵循一定的结构关系,将入侵信号的抽象层次进行具体划分。入侵领域大师kumar将这种入侵信号划分为四大层次,并将每一个层次与匹配模式相对应。以下将分别对四大层次进行分析: (1)存在。只要存在审计事项,就可以证明入侵行为的发生,并深层次挖掘入侵企图。存在主要对应的匹配模式就是“存在模式”。可以说,存在模式就是在固定的时间内,检查系统中的特定状态,

同时判断系统状态。 (2)序列。一些入侵的发生,是遵循一定的顺序,而组成的各种行为。具体表现在一组事件的秩序上。序列对应的是“序列模式”,在应用序列模式检测入侵时,主要关注间隔的时间与持续的时间。 (3)规则。规则表示的是一种可以扩展的表达方式,主要通过and 逻辑表达来连接一系列的描述事件规则。一般适用于这种模式的攻击信号由相关活动组成,这些活动之间往往不存在事件的顺序关系。 (4)其他。其他模式是不包含前面几种方法的攻击,在具体应用过程中,难以与其他入侵信号进行模式匹配,大多为部分实现方式。 2、几种常用的模式匹配算法 2.1 ac算法 ac算法(aho-corasick)是一种可以同时搜索若干个模式的匹配算法,最早时期在图书馆书目查询系统中应用,效果良好。通过使用ac算法,实现了利用有限状态自动机结构对所有字符串的接收过程。自动机具有结构性特征,且每一个前缀都利用唯一状态显示,甚至可同时应用于多个模式的前缀中。如果文本中的某一个字符不属于模式中预期的下一个字符范围内,或者可能出现错误链接的指向状态等,那么最长模式的前缀同时也可作为当前状态相对应的后缀。ac算法的复杂性在于o(n),预处理阶段的复杂性则在于o(m)。在采取ac算法的有限状态自动机中,应该在每一个字符的模式串中分别建立节点,提高该算法的使用效率与质量。目前,应用有限

字符串的模式匹配算法

在前面的图文中,我们讲了“串”这种数据结构,其中有求“子串在主串中的位置”(字符串的模式匹配)这样的算法。解决这类问题,通常我们的方法是枚举从A串(主串)的什么位置起开始与B串(子串)匹配,然后验证是否匹配。假设A串长度为n,B串长度为m,那么这种方法的复杂度是O(m*n)的。虽然很多时候复杂度达不到m*n(验证时只看头一两个字母就发现不匹配了),但是我们有许多“最坏情况”,比如: A=“aaaaaaaaaaaaaaaaaaaaaaaaab”,B=“aaaaaaaab”。 大家可以忍受朴素模式匹配算法(前缀暴力匹配算法)的低效吗?也许可以,也许无所谓。 有三位前辈D.E.Knuth、J.H.Morris、V.R.Pratt发表一个模式匹配算法,最坏情况下是O(m+n),可以大大避免重复遍历的情况,我们把它称之为克努特-莫里斯-普拉特算法,简称KMP算法。 假如,A=“abababaababacb”,B=“ababacb”,我们来看看KMP是怎样工作的。我们用两个指针i和j分别表示,。也就是说,i是不断增加的,随着i 的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前j个字符(j当然越大越好),现在需要检验A[i+1]和B[j+1]的关系。 例子: S=“abcdefgab” T=“abcdex” 对于要匹配的子串T来说,“abcdex”首字符“a”与后面的串“bcdex”中任意一个字符都不相等。也就是说,既然“a”不与自己后面的子串中任何一字符相等,那么对于主串S来说,前5位字符分别相等,意味着子串T的首字符“a”不可能与S串的第2到第5位的字符相等。朴素算法步骤2,3,4,5的判断都是多余,下次的起始位置就是第6个字符。 例子: S=“abcabcabc” T=“abcabx”

图像匹配搜索算法

本文基于相关性分析来实现图像匹配 第一步:读取图像。 分别读取以下两幅相似的图片,显示效果如下: 第二步:选择一副图像的子区域。用户可以通过鼠标选择需要截取的图像部分,用于匹配。随机选取图片的一块区域,如下图:

第三步:使用相关性分析两幅图像 采用协方差的方式计算相关系数,分析图片的相似性。 1.协方差与相关系数的概念 对于二维随机变量(,)X Y ,除了关心它的各个分量的数学期望和方差外,还需要知道这两个分量之间的相互关系,这种关系无法从各个分量的期望和方差来说明,这就需要引进描述这两个分量之间相互关系的数字特征——协方差及相关系数。 若X Y 与相互独立,则()( )0 Y E X EX Y EY σ--???? =≠;若()()0E X EX Y EY --≠????,则表 示X 与Y 不独立,X 与Y 之间存在着一定的关系 设 (,)X Y 是二维随机变量, 则称()()E X EX Y EY --????为X 与Y 的协方差(Covariance ),记为 ()cov ,X Y 或XY σ,即 ()()()cov ,XY X Y E X EX Y EY σ==--???? 若 0X σ≠ 且0Y σ=≠,则称 XY XY X Y σρσσ== 为X 与Y 的相关系数(Correlation Coefficient )。()c o v ,X Y 是 有量纲的量,而XY ρ则是无量纲的量.协方差常用下列公式计算

()() =-? cov,X Y E XY EX EY 2.用全搜索和协方差计算截取图片与另外一幅图片的各点的相似度。c=normxcorr2(sub_I1(:,:,1),I2(:,:,1)); 第四步:找到整幅图像的偏移。 [max_c,imax]=max(abs(c(:))); [ypeak,xpeak]=ind2sub(size(c),imax(1)); [m,n]=size(sub_I1); xbegin=xpeak-n+1; ybegin=ypeak-m+1; xend=xpeak; yend=ypeak; 从原图像提取匹配到的图像 extracted_I1=I2(ybegin:yend,xbegin:xend,:); 第五步:显示匹配结果。 相关性匹配图: 找出峰值即最相似区域的中心

广义立体像对匹配方法研究

广义立体像对匹配方法研究 王赫1徐克红2王永富1 沈阳金土科技有限公司,辽宁沈阳110032辽宁省国土资源厅信息中心,辽宁沈阳110032 摘要:遥感影像匹配是遥感技术中的热点和难点问题,是三维重建、导航、模式识别、DEM自动提取等工作的基础。传统的匹配方法通常是针对同源数据的,文中研究基于广义立体像对的匹配方法,设计并实现了基于小波变换的特征匹配和灰度匹配相结合的匹配方法,并结合现有的遥感数据,人工选取40对同名控制点对匹配点的精度进行检验,实验结果表明该算法具有较快的运行速度和较好的匹配精度。 广义立体像对;特征匹配;金字塔分层;角点;小波 P237A1006-7949(2011)04-0026-05 The matching method based on generalized stereopair  WANG HeXU Ke-hongWANG Yong-fu 2010-04-13 王赫(1982-),男,硕士研究生.

?27?

?28?

29?

学,1999. @@[2]王伟玺.基于广义立体像对的三维重建方法研究[D].阜 新:辽宁工程技术大学,2007. @@[3]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉大学出 版社,2010. @@[4]李峰,周源华.采用金字塔分解的最小二乘匹配算法[J]. 上海交通大学学报,1999,33(5):513-515. @@[5]范永宏.立体影像匹配和DTM自动生成技术的研究与 实践[D].郑州:信息工程大学,2000. @@[6]姜挺,江刚武.基于小波变换的分层影像匹配[J].测绘学 报,2004,33(3):244-248. @@[7]AP APHANT PAKOM, BETHEL JAMES. Integration  of object and feature matching for object surface-extrac tion[J]. XI Xth Congress of the International Society for  Photogrammetry and Remote Sensing (ISPRS), July,  2000. @@[1]李峰.关于立体匹配技术的研究[D].上海:上海交通大 程中的应用[M].武汉:长江出版社,2009. @@[2]李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大 学出版社,2005. @@[3]卢献健,任超.GPS数据处理科研软件与商业软件对比分 析[J].全球定位系统,2007(5):29-32. @@[4] Trimble Navigation Limited. Trimble Geomatics Office  User Guide Version 1.6[R]. 2002  @@[5]LOUIS H. ESTEY, CHARLES M. MEERTENS. TE QC:The multi-purpose toolkit for GPS/GLONASS data  [J]. GPS Solutions, 1999,3 (1) : 42-49 @@[6]中国标准出版社.GB/T 18314-2009全球定位系统 (GPS)测量规范[S].北京:中国标准出版社,2009. @@[7]张兵,赵瑞.GPS控制网起算点兼容性分析方法研究与实 践[J].测绘科学,2010,35(5):65-67. @@[8]中华人民共和国铁道部.TB 10101-2009/J961-2009铁路 工程测量规范[S].北京:中国铁道出版社,2009. @@[1]田雪冬,郭际明,郭麒麟,等.GPS定位技术在水利水电工

串的模式匹配算法实验报告

竭诚为您提供优质文档/双击可除串的模式匹配算法实验报告 篇一:串的模式匹配算法 串的匹配算法——bruteForce(bF)算法 匹配模式的定义 设有主串s和子串T,子串T的定位就是要在主串s中找到一个与子串T相等的子串。通常把主串s称为目标串,把子串T称为模式串,因此定位也称作模式匹配。模式匹配成功是指在目标串s中找到一个模式串T;不成功则指目标串s中不存在模式串T。bF算法 brute-Force算法简称为bF算法,其基本思路是:从目标串s的第一个字符开始和模式串T中的第一个字符比较,若相等,则继续逐个比较后续的字符;否则从目标串s的第二个字符开始重新与模式串T的第一个字符进行比较。以此类推,若从模式串T的第i个字符开始,每个字符依次和目标串s中的对应字符相等,则匹配成功,该算法返回i;否则,匹配失败,算法返回0。 实现代码如下:

/*返回子串T在主串s中第pos个字符之后的位置。若不存在,则函数返回值为0./*T非空。 intindex(strings,stringT,intpos) { inti=pos;//用于主串s中当前位置下标,若pos不为1则从pos位置开始匹配intj=1;//j用于子串T中当前位置下标值while(i j=1; } if(j>T[0]) returni-T[0]; else return0; } } bF算法的时间复杂度 若n为主串长度,m为子串长度则 最好的情况是:一配就中,只比较了m次。 最坏的情况是:主串前面n-m个位置都部分匹配到子串的最后一位,即这n-m位比较了m次,最后m位也各比较了一次,还要加上m,所以总次数为:(n-m)*m+m=(n-m+1)*m从最好到最坏情况统计总的比较次数,然后取平均,得到一般情况是o(n+m).

实验三____串的模式匹配

实验三串的模式匹配 一、实验目的 1.利用顺序结构存储串,并实现串的匹配算法。 2.掌握简单模式匹配思想,熟悉KMP算法。 二、实验要求 1.认真理解简单模式匹配思想,高效实现简单模式匹配; 2.结合参考程序调试KMP算法,努力算法思想; 3.保存程序的运行结果,并结合程序进行分析。 三、实验内容 1、通过键盘初始化目标串和模式串,通过简单模式匹配算法实现串的模式匹配,匹配成功后要求输出模式串在目标串中的位置; 2、参考程序给出了两种不同形式的next数组的计算方法,请完善程序从键盘初始化一目标串并设计匹配算法完整调试KMP算法,并与简单模式匹配算法进行比较。 参考程序: #include "stdio.h" void GetNext1(char *t,int next[])/*求模式t的next值并寸入next数组中*/ { int i=1,j=0; next[1]=0; while(i<=9)//t[0] { if(j==0||t[i]==t[j]) {++i; ++j; next[i]=j; } else j=next[j]; } } void GetNext2(char *t , int next[])/* 求模式t 的next值并放入数组next中 */ { int i=1, j = 0; next[1]= 0; /* 初始化 */ while (i<=9) /* 计算next[i+1] t[0]*/ { while (j>=1 && t[i] != t[j] ) j = next[j]; i++; j++;

if(t[i]==t[j]) next[i] = next[j]; else next[i] = j; } } void main() { char *p="abcaababc"; int i,str[10]; GetNext1(p,str); printf("\n"); for(i=1;i<10;i++) printf("%d",str[i]); GetNext2(p,str); printf("\n"); for(i=1;i<10;i++) printf("%d",str[i]); printf("\n\n"); }

算法学习:图论之二分图的最优匹配(KM算法)

二分图的最优匹配(KM算法) KM算法用来解决最大权匹配问题:在一个二分图内,左顶点为X,右顶点为Y,现对于每组左右连接XiYj有权wij,求一种匹配使得所有wij的和最大。 基本原理 该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。 KM算法的正确性基于以下定理: 若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。 首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是 Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。 这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。 初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。 我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现: 1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。 2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。 3)X端不在交错树中,Y端在交错树中的边(i,j),它的A[ i ]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。 4)X端在交错树中,Y端不在交错树中的边(i,j),它的A[ i ]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。(针对之后例子中x1->y4这条边) 现在的问题就是求d值了。为了使A[ i ]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于: Min{A[i]+B[j]-w[i,j] | Xi在交错树中,Yi不在交错树中}。 改进 以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A[ i ]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y 顶点的slack值中的最小值作为d值即可。但还要注意一点:修改顶标后,要把所有的不在交错树中的Y顶点的slack值都减去d(因为:d的定义为 min{ (x,y)| Lx(x)+ Ly(y)- W(x,y), x∈ S, y? T }

计算机视觉中的图匹配方法研究

无线互联科技 Wireless Internet Technology No.13 July,2019 第13期 2019年7月 计算机视觉中的图匹配方法研究 张新强 (大连东软信息学院智能与电子工程学院,辽宁大连116023) 摘要:计算机视觉在各行各业得到广泛的运用,在图片转化中常常会使用到图匹配的方式来降低误差,提升视觉效果。通过将两张或两张以上的图进行对比分析,来提高计算机视觉分析的精密度和准确性。在长期的研究过程中出现了多种图匹配的方法,文章就不同的匹配方法进行综合论述,以期从中找到一些共同之处和创新点,为计算机的图匹配领域提供新的理论资料。 关键词:计算机视觉;图匹配方法;计算机 现阶段,计算机视觉要求的精密度和智能化水平越来越高。影响计算机视觉效果的因素有很多,既有硬件方面的,也有软件方面的问题。就硬件水平而言,目前,专业摄像头的像素己经达到一个很高的标准,因此,想要实现视觉效果的提升就必须在软件上下功夫,即在算法、系统和图匹配方式上进行优化升级。本文重点就图匹配的方式进行详细论述,在此之前,关于匹配方式的问题少有论述,本文将弥补图匹配方面理论研究的不足,丰富相关科研资料。 1匹配方式对计算机视觉效果的影响 1.1矢量特征描述法 矢量特征描述法简而言之就是对线条的描述和刻画,这种技术被广泛地运用于零件制造行业。这种描述方式更适合对线性指标进行处理,在对色彩丰富、图形复杂的图片进行处理时其精确度就会明显下降。这是由其工作原理所导致的,不同的工作原理决定了它独有的服务对象和工作效率。在使用矢量特征描述的方式对现实生活中的图片进行处理时,常常会出现失误率高、系统运行负荷过大等情况。矢量描述的方法更适合传统的零件加工行业,在节约成本的同时,也能够满足零件生产过程中的基本要求。对于精密度高、较为复杂的图纸,使用矢量特征表述的方法缺乏专业性,尤其是对产品的精度要求严格的企业,这时就需要使用更为立体、全面的图模型方法。 1.2图模型法 图模型法是现阶段最常用的图匹配方法,通过对图片进行精细化处理,对图片的内容进行建模,通过对两种模型具体情况的对比来提高匹配的准确性。图模型法能够将平面的照片立体化、层次化,使图片不局限于平面上,使用批次对照的方式,使图片对比更加细致化,即使用图模型的方式能够细化像素、曝光、白平衡等因素对照片质量的影响,通过数字化智能处理的方式,让图形中的内容“活起来”。这种方式适用于多个领域对图片进行匹配的要求。第一步通过智能化程序快速对图片内容进行扫描;第二步进行建模;第三步根据层次化的模型分层对比或匹配,通过科学合理的匹配方案让图匹配更加高效、便捷 2计算机视觉中图匹配方法的组成要点 2.1特征空间 在图片的拍摄过程中,极易受到人为因素的影响,导致图片的质量存在误差,在构图、亮度、对比度、光照等各个方面,任何一个环节的参数变动都会导致照片存在或多或少的差异,导致匹配过程难度提升。所谓特征空间就是指在图片匹配环节,图片的具体参数及情况。不同的图片有不同的参数,在处理时,把握不同图片参数之间的关系,通过电脑进行整体性分析,既要凸显相同点、相似率,更要明确不同点。图片特征问题是对图片进行处理的第一步,在匹配时,为匹配对象确定一个大致的特征区间,是区间内图片的各项参数保持相对平均的基本方法。 2.2相似性度量 在匹配的过程中,依据的是相似度的高低。相似度既是衡量相似性也是衡量匹配准确性的重要表现形式之一。在匹配时,应当通过随机的方式,保证不同组都有分工,保证每一组内的图片在特征上的相似度大致满足。通过数字化的结果保证相似性度量。通过函数进行相似度的分析,将复杂的数据使用函数表现出来。相似性的度量方式是建立在函数相似性基础上的,因此,在这一过程中,选择正确的函数公式和回归方程是基础,也是相似性匹配的基本保障0。 2.3搜索空间 搜索空间即带估计参数组成的空间。对参数内容进行初步归纳,从而形成一个一定范围的空间,最后将不同图的参数区间进行匹配。这种匹配方式使匹配过程更加直观、更富有科学依据。根据参数的不同,能够反映的不仅是图片的质量,更包含了图片的色彩、内容等因素。随着互联网技术的发展和计算机成像技术的成熟,电脑显示器也存在失真的情况,因此,使用参数进行匹配的方式更符合计算机的运行特点。通过细微参数的匹配方式能够反应出肉眼所无法直观看到的差异。使用参数作为搜索更适合计算机的工作模 作者简介:张新强(1980—),男,山东德州人,讲师,硕士;研究方向:智能机器人与自主系统,嵌入式智能系统。 -115-

高效的多模式匹配算法

东方企业文化·百家论坛 2011年9月 163 高效的多模式匹配算法 马 力 (重庆青年职业技术学院,重庆,400712) 摘 要:本文提出一种新的多模式匹配算法,以提高匹配检测的执行速度和效率。该算法采用了基于集合的多模式匹配思想,重新构造了HASH 函数以便在处理大规模模式集时执行时间能比传统的匹配算法的执行时间要少。经过实验证明,运用该算法不仅具有时间复杂度较低的优点,且与传统算法相比具有更为优越的性能,同时在实际工作状态下的检测能力也更强大。 关键词:多模式匹配 HASH 函数 中图分类号:TP393 文献标识码:A 文章编号:1672—7355(2011)09—0163—01 一、算法描述 通常在自然文本中,经常会发生所谓的坏字符移动。此时会极大提高Boyer-Moore 算法的检测效率。但是当文本与多个模式进行匹配时,文本中的多数字符都可能与某些模式的最后一个字符相匹配(即匹配冲突),这时发生坏字符移动的可能性就非常小了。本文提出的算法解决了如何在上述情况下继续保持Boyer-Moore 算法的实质与效率的问题,采用散列(Hash )技术和高效过滤等方法,减小了匹配冲突对算法执行效率的影响。算法描述如下: 首先,算法需要计算出模式的最小长度,设其值为m ,为简化算法描述,假定所有模式均具有相同的长度,同时保证最小长度合理以免影响匹配效率。 假设P 为模式的集合,P={P 1P 2……P K },K=|P|,P 中所有模式的长度均为m 。T 为网络数据包,T=t 1t 2……t n (n ≧m )。 选取Q 为足够大空间的常数,定义长度为m 的支字符串R=r 1r 2……r m ,则构造出R 的Hash 函数:∑=?=m i i m i S r Q R Hash 1mod )(,其中S 为上文所提的模式的P 集合。 二、算法流程设计 1. 预处理阶段 首先需要对模式进行排序,形成有序模式链表;然后主要完成三张表(SHIFT 表、HASH 表和PREFIX 表)的创建。SHIFT 表主要用于确定扫描文本时可移动的字符数。根据SHIFT 表中的取值分为两种处理情况:SHIFT[i ]≠0:直接根据SHIFT[i ]中的取值,确定移动的字符数。SHIFT[i ]=0:即前面提到的匹配冲突。此时需要根据HASH 表和PREFIX 表确定匹配的候选模式并最终核实该模式。 (1)SHIFT 表的创建在此处起到与Boyer-Moore 算法中相同的移动指示作用,只不过移动字符的数目基于长度为B 的字符块。假设SHIFT 表中包含了每个大小为B 的字符串的入口,那么它的大小为|∑|B 。为了减少表存储空间,采用了散列函数,将每个长度为B 的字符串映像为一个索引SHIFT 表的整数。设X=x 1x 2……x b 为文本中的b 个字符串,并假设X 已经被映像为SHIFT 表中的一个入口,则过程SHIFT Table Set Value ()有以下两种情况: X 不属于substring (P ) :SHIFT[i]=m-B+I ; X 属于substring (P ) :SHIFT[i]=m-q ; (q 为P i 中X 发生匹配的最右端位置)。 SHIFT 表中的所有初始值均为m-B+1,考虑每个模式 P=P 1P 2……P K ,将每个大小为i j B j B j P p p p B )(21"+?+?的子 串映像到SHIFT 表中。 通常情况下,SHIFT 表项的取值总是大于0,因此能够成功地跳过文本块并继续扫描文本。但是当模式数量增多时,情况就完全不同了。当模式数量增多时,SHIFT 表项取值为0的概率也呈线性递增趋势,即发生匹配冲突的可能性越来越大。本文设计的该算法的核心思想就是采用散列技术来最小化需要处理模式的数目,避免与模式链表中的每个模式逐一进行匹配,同时结合PREFIX 表的过滤作用,加速搜索过程。 (2)HASH 表的创建创建HASH 表,并使用前面计算出的用于索引SHIFT 表的B 个字符串映像整数作为该表的索引。设HASH 表的第i 个入口为HASH[i],它包含了一个指向最后B 个字符散列值为i 的模式链表的指针。链表PAT_POINT 用于存储指向模式的指针,每个模式按其最后B 个字符的散列值大小排序。设h 为文本当前后缀的散列值,并假设SHIFT[i ]=0,此时HASH[h]的取值指针p 指向散列值为h 的模式链表首部。为查找链表尾,指针不断递增直至它等于HASH[h+1]。如果SHIFT[i ]≠0,则有HASH[h]= HASH[h+1],因为不存在后缀散列值为h 的模式。 (3)PREFIX 表的创建多模式中肯定会出现相同后缀的情况,导致HASH 表冲突,即所有具有相同后缀的模式将映像到HASH 表中的同一入口。为了加快在相同后缀中查找确切匹配模式的速度,算法还引入了用于区分这些模式的一个称为PREFIX 的表。除了将所有模式的后B 个字符做一映像之外,还须将所有模式的前B 个字符映像到PREFIX 表中。 如果发现SHIFT 值为0,并且要在HASH 表中确定是否存在匹配,那么就在PREFIX 表中检查该值。对每个后缀而言,HASH 表不仅包含具有所有此后缀的模式,而且还包含了他们相应的前缀。可以通过左移m-B 个位置计算出文本中的相应前缀,并用它来过滤那些后缀相同但是前缀不同的模式。 2. 扫描阶段 扫描阶段的流程如下:(1)计算tm-B+1到tm 的基于文本当前B 个字符的散列值h ;(2)检查SHIFT[h]的取值,如大于0,移动文本返回(1),否则转至(3);(3)从当前位置向左m 个字符处开始计算文本中的前缀散列值,称为文本前缀;(4)检查每个p ,SHIFT[h]≦p <HASH[h+1],是否有PREFIX[P]=text-prefix 。如果相等,那么就直接检查与文本相对应的实际模式(由PAT_POINT[p]给出)。 参考文献: [1] Crosbie , Gene Spafford. Defending a Computer System using Autonomous Agent[R].COAST Technical Report No.95-022, March 1994. [2] Aho A , Corasick M. Efficient String Matching an Aid to Bibliographic Search [J]. Communication of the ACM , 1975, 18(6) : 333-340.

图像匹配的主要方法分析

图像匹配的主要方法分析 在我国的图像处理中,有很多的关键技术正在不断的发展和创新之中。这些相关技术的发展在很大程度上推动了我国图像处理事业的发展。作为图像处理过程中的关键技术,图像匹配技术正在受到越来越多的关注。文章针对图像匹配的主要方法进行详细的论述,希望通过文章的阐述和分析能够为我国的图像匹配技术的发展和创新贡献微薄力量,同时也为我国图像处理技术的发展贡献力量。 标签:图像处理;图像匹配;特征匹配;方法 在我国的图像处理技术中,图像的匹配技术不仅仅是其中的重要组成部分,同时还是很多图像技术的发展创新的技术基础。例如图像技术中的立体视觉技术;图像技术中的运动分析技术以及图像技术中的数据融合技术等。通过上述内容可以看出,在我国的图像技术中,图像匹配技术具有非常广泛的应用。随着我国的相关技术不断的创新和发展,对于图像匹配技术的要求也是越来越高。这样就要求我国的图像匹配技术有更深层次的研究和发展。我国现阶段的研究主要是针对图像匹配过程中的匹配算法进行研究,希望借助研究能够更加有效的提升在实际的工作应用中的图像质量,同时也能够在很大程度上提升图像处理的图像分别率。文章的主要陈述点是通过图像匹配技术的具体方法进行优点和缺点的分析,通过分析优点和缺点来论述我国图像处理技术中的图像匹配技术的发展方向以及改进措施。近些年出现了很多的图像匹配方法,针对现阶段的新方法以及新的研究思路我们在实际的应用过程中要有一个非常清醒的选择。文章针对这一问题主要有三个内容的阐述。第一个是图像匹配技术的算法融合;第二个是图像匹配技术中的局部特征算法;最后一个是图像匹配技术中的模型匹配具体算法。 1 现阶段在世界范围内较为经典的图像匹配技术的算法 关于现阶段在世界范围内的较为经典的图像匹配技术的算法的阐述,文章主要从两个方面进行分析。第一个方面是ABS图像匹配算法。第二个方面是归一化相互关图像匹配算法。下面进行详细的论述和分析。 (1)算法一:ABS图像匹配算法。ABS图像匹配算法最主要的原理就是要使用模板的图像以及相应的匹配图像的搜索用窗口之间的转换差别来显示两者之间的关联性。图像匹配的大小在数值上等同于模板图像的窗口滑动顺序。窗口的每一次滑动都会引起模板图像的匹配计算。现阶段ABS的算法主要有三个,如下: 在选择上述三种计算方法的过程中要根据实际情况社情相应的阀值,否则会出现很高的失误率。上述的三种算法使用范围较狭窄。只使用与等待匹配的图像在模板影像的计算。 (2)算法二:归一化相互关图像匹配算法。归一化相互关的图像匹配算法在现阶段是较为经典的算法。通常专业的称法为NC算法。此计算方法主要是采

相关文档