文档库 最新最全的文档下载
当前位置:文档库 › 预拱度经验值

预拱度经验值

预拱度经验值
预拱度经验值

简支梁起拱度经验值:

10m:一般为8-10mm;13m:一般为10-15mm;16m:一般为10-15mm;

20m:一般为15-20mm;25m:一般为20-25mm;30m:一般为20-30mm;也有设置反拱度为36mm。

简支梁起拱度一般为梁长的1/1000;钢桁架一般为梁长的3-4/1000

简支梁预应力上拱度计算:x=2*(Mpe*L*L)/(8*0.95*EC*In)

Mpe——永存应力的弯矩;L——垮径;

EC——混泥土弹性模量;In——截面抗弯惯性距。

起拱度没有达到预算的原因:

正常来说,张拉完成后,底板当然应该是平的, ,有可能是以下几种原因:

1.预应力张拉值不够,未达到设计值.

2.设计计算不够准确,张拉力本身偏小.

3.箱梁浇注过程中,自身出的问题.如:梁配筋位置偏差,砼浇注厚度偏差,直接影响了张

拉后起拱度.

4.预应力筋波纹管定位不准确,位置的变化也是影响起拱最关键的一个环节.

后张法预应力箱梁预拱度控制:

由中铁大桥局股份有限公司承建的广深沿江高速公路机场特大桥上部结构采用先简支后连续的预应力混凝土组合箱梁,每半幅桥由两片边梁和三片中梁组成。施工要求箱梁成桥阶段桥面基本水平,无论起拱度值偏小或偏大均会导致桥面纵桥向形成波浪线形,影响行车的舒适;同时要求同一孔的5片箱梁的预拱度基本一致,否则会导致箱梁架设后存在桥面错台,影响横桥向桥面的平整度。箱梁预拱度设置是预制箱梁施工过程中重点控制项目,现在结合现场实际施工对预拱度设置及其控制做简单的陈述与分析。

1 反拱度值计算

预制箱梁反拱度值主要根据以下方面计算:1)梁体结构自重;2)预应力钢筋总张拉力;3)混凝土设计强度、弹模及其使用环境温度(影响混凝土收缩徐变);4)桥面二期恒载值;5)反拱度计算龄期(混凝土收缩徐变时间)。设计图纸中计算的30m预制组合箱梁跨中最大反拱度值为:边梁20mm,中梁15mm。

2 反拱度值设置原则

反拱度值设置原则为:其值大小以水泥混凝土铺装前梁的上拱度(向上)不大于2cm,同时满足成桥后的预拱度(即边梁20mm,中梁15mm)要求控制。

根据桥梁施工计算手册以及以往施工经验,反拱度设置按二次抛物线(二次抛物线方程可以根据两粱端和跨中梁底坐标求得)设置能满足施工精度要求。

3 反拱度设置

施工过程反拱度设置一般通过制梁台座调整底模标高来控制,制梁台座设计时考虑留有154cm高的操作空间(即底模距地面高度)。反拱度值采用二次抛物线设置,每60cm 设置一控制截面。现仅取30m预制组合箱梁中梁对预拱度设置流程作简单介绍:1)根据设计图纸提供的预拱度值求出预拱度方程y=200×2/3;则每控制截面的底模控制标高计算如表1所示:

2)根据上面计算标高埋设底模预埋件;

3)浇筑台座混凝土,混凝土顶面标高不宜高于预埋件顶面标高;

4)安装底模,并利用水准仪进行调整至上表计算值,然后加固。

4 影响实际施工起拱值的因素

本项目预制简支箱梁预应力束设置在底腹板上,混凝土上拱值主要是由于底腹板混凝土在预应力钢筋和混凝土自身收缩徐变的作用下收缩而产生,而且上拱值的大小与底腹板混凝土压缩量成正比。

通过施工过程预制梁进行变形观测后发现,设计计算预拱度值比实际施工上拱值小。经过反复分析研究后总结出影响施工起拱值偏大有以下两个主要因素:

1)混凝土粗骨料母岩强度偏小,直接致使箱梁混凝土弹模比设计偏小,底腹板上的压缩量偏大;

2)管道摩阻系数偏小,在锚下控制应力一致的情况下管道摩阻力越小,预应力平均应力相应偏大,预应力对混凝土的压缩量偏大。

同时总结出在以下因素的影响下,箱梁上拱值均会发生改变:

1)箱梁混凝土初、终张拉时混凝土的龄期、弹模;

2)箱梁混凝土振捣质量,混凝土振捣质量直接影响混凝土的密实度;

3)混凝土的搅拌质量,混凝土的搅拌质量直接影响混凝土强度、弹性模量、混凝土终凝时间,然而混凝土终凝时间直接影响混凝土收缩徐变的时间;

4)制梁台座不均匀沉降导致底模反拱值变化;

5)箱梁终张拉至架设时间。

5 预拱度调整与控制

在完全按照设计给定的规定施工预制箱梁的情况下,影响预拱度的两个主要原因混凝土弹模和管道摩阻均无法人为调整,所以只能根据实际观测数据调整底模标高来调整反拱度值。

根据前面分析得知:

1)在实际施工过程中,控制箱梁最大起拱值主要通过控制混凝土施工质量和终张拉时混凝土的实际弹模(宜达到设计弹模值方可进行终张拉施工),同时在箱梁预制施工过程中加强制梁台座的监测,防止因为制梁台座不均匀沉降产生的反拱值偏差。

2)为了控制同一孔梁的五片梁起拱值一致(即梁顶面平整度偏差值满足施工规范要求),主要是控制同一孔桥的五片梁在规定的时间内完成,一般为5d时间。

作者:阎杰(科技传播 2011年6期)

张拉程序控制说明:

JTJ 041-2000《公路桥涵施工技术规范》第129页12.8.3.4“预应力筋张拉时,应先调整到初应力σ0,该初应力宜为张拉控制应力σcon的10%~15%,….”

条文说明第450页中的12.8.3 4条指出:“推算时,可采用相邻级的伸长值,例如初应力σ0为10%σcon时,其伸长值可采用由10%张拉到20%的伸长值。”

初应力选10%时,相邻级的伸长值则为20%时,初应力也可以选15%,相邻级的伸长值则为30%,但不能直接由10%——30%。

2、预制预应力T梁预拱度计算及控制

预制预应力T梁预拱度计算及控制 摘要:本文结合***高速公路***桥25m预制T梁的工程实践,介绍了T梁预拱度设置的必要性及设置注意事项,提供了依据结构力学挠曲变形原理及预应力混凝土弹性计算理论计算梁体挠度的方法。 关键词:预制T梁预拱度设置挠度计算 0、桥梁简介 ****桥分左右两幅,左幅桥长483.2m,右幅桥长478.2m。全桥左幅共5联:3*25+4*25+4*30+3*35+3*25,右幅共5联:4*25+4*25+3*30+3*35+3*25,上部结构左幅第1联、左幅第2联、左幅第4联、右幅第1联、右幅第2联采用预应力砼(后张)先简支后连续T梁:其余采用预应力砼(后张)T梁桥面连续结构;全桥共有T梁203片,其中122片25m、41片35m、40片30m。T梁预应力束为钢绞线,锚具为VOM锚。 1、预拱度设置 1.1设置原因 预制T梁设计时,为使梁体具有足够的强度、刚度来承受恒载和活载所产生的弯矩,往往布置预应力筋,通过预应力筋张拉对梁体产生的负弯矩来抵消恒载和活载产生的正弯矩。为了控制梁体张拉时产生的过大的向上反拱,则需通过对预制梁台座(底模)设置一个向下的合适的拱度来抵消反拱,所设的拱度即为“预拱度”。 1.2注意事项 预拱度设置的合理与否十分重要,如设置不合理,将直接影响梁的外观及后续工作的质量。如预拱度设置过大,为保证桥面铺装设计标高,则需增加桥跨中段铺装层的厚度,这样就增加了桥面铺装混凝土的重量,既降低了梁的承载储备又造成了浪费;如预拱度设置过小,受桥面铺装设计标高控制,桥跨中段铺装层厚度将达不到设计厚度,这样就影响了桥面的耐久性及梁体的使用寿命。 预拱度的设置不仅梁底要设,梁顶也要设。如梁顶不设置预拱度,而只有梁底设置,梁片浇注完成后将会出现梁顶平、梁底凹的现象。预应力张拉后,由于预应力筋的作用,向上的拱度抵消了梁底的凹拱,却产生了梁顶的凸拱,预拱度的设置也就失去了意义。故,预拱度设置时,不仅要考虑梁底,也要考虑梁底。 2、梁体挠度计算 根据结构力学挠曲变形原理及预应力混凝土梁弹性计算理论,25m后张预应力预制T梁上拱度

成桥预拱度计算方法

5.5.1 成桥预拱度计算方法 目前,由于对混凝土徐变的计算,不论是老化理论,修正老化理论还是规范规定的计算方法,都难以正确地估算混凝土徐变的影响,在施工中对这一影响不直接识别、修正,通常是用以往建成的同类跨径的下挠量来类比的,并且通过立模标高的预留来实现的。因此,成桥预拱度合理设置尤为重要。 根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L:中孔跨径),边孔最大挠度一般发生在3/4L处,约为中孔最大挠度1/4。另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠。中孔跨中下挠。因此,边跨成桥预拱度一般设置较小,在3/4L处设置fc/4预拱度(fc:中孔跨中成桥预拱度)。 根据陕西省连续刚构桥成桥预拱度计算方法:“中跨预拱度在设计预拱度的基础上,按L/1000+1/2d2(L为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算,边跨最大挠度在3/4L处。其余各点按余弦曲线分配。在中孔跨中fc确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。边孔3/4L处成桥预拱度取中孔跨中成桥预拱度fc的1/4,边孔其余各点按余弦曲线分配。原因:(1)余弦曲线在墩顶两曲线连接处切线斜率为零,满足平顺要求;(2)余弦曲线在L/4处预拱度为跨中预拱度1/2,与有限元计算吻合。

1.活载挠度计算 1) 荷载等级:公路—Ⅰ; 2) 车道系数:三车道,车道折减系数0.78; 3) 中跨活载最大挠度: d 2=0.029m; +A 曲线:21cos()290x y π?= -???? (090x ≤≤) B 曲线:21cos()261fc x y π??= -???? (22.553x ≤≤) C 曲线:21cos()245fc x y π??=-???? (022.5x ≤≤) 5.5.2 施工预拱度的计算方法 不论采用什么施工方法,桥梁结构在施工过程中总要产生变形,并且结构的变形将受到诸多因素的影响,极易使桥梁结构在施工过程中的实际位置(立面标高、平面位置)状态偏离预期状态,使桥梁难以顺利合拢,或成桥线形与设计要求不符,所以必须对桥梁进行施工

GPS接收机灵敏度解析

1 GPS接收机的灵敏度定义 随着GPS应用范围的不断扩展,对GPS接收机的灵敏度要求也越来越高,高灵敏度的接收性能可以令接收机在室内或其它卫星信号较弱的场景下仍然能够实现定位和跟踪,大大拓展了GPS的使用范围。 作为GPS接收机最为重要的性能指标之一,高灵敏度一直是各个GPS接收模块孜孜以求的目标。对于GPS接收系统而言,灵敏度指标包括多个场景下的指标,分别为:跟踪灵敏度、冷启动灵敏度、温启动灵敏度。目前业界已经可以实现跟踪灵敏度在-160dBm以下,冷启动灵敏度和温启动灵敏度也分别可以达到-145dBm和-158dBm以下,其中冷启动灵敏度和温启动灵敏度分别表示的是在两种不同场景下的捕获灵敏度。 GPS接收机首先需要完成对卫星信号的捕捉,完成捕捉所需要的最低信号强度为捕捉灵敏度;在捕捉之后能够维持对卫星信号跟踪所需要的最低信号强度为跟踪灵敏度。 2 GPS接收模块的灵敏度性能分析 从系统级的观点来看,GPS接收机的灵敏度主要由两个方面决定:一是接收机前端整个信号通路的增益及噪声性能,二是基带部分的算法性能。其中,接收机前端决定了接收信号到达基带部分时的信噪比,而基带算法则决定了解调、捕捉、跟踪过程所能容忍的最小信噪比。 2.1接收机前端电路性能对灵敏度的影响 GPS信号是从距地面20000km的LEO(Low Earth Orbit,低轨道卫星)卫星上发送到地面上来的,其L1频段(f L1=1575.42MHz)自由空间衰减为: (1) 按照GPS系统设计指标,L1频段的C/A码信号的发射EIRP(Effective Isotropic Radiated Power,有效通量密度)为P=478.63W(26.8dBw)([1][2]),若大气层衰减为A=2.0dB,则GPS系统L1频段C/A码信号到达地面的强度为: (2) GPS ICD(Interface Control Document,接口控制文档)文件([3])中给出的GPS系统L1频段C/A码信号强度最小值为-160dBw,和上述结果一致。在实际场景中,由于卫星仰角的不同、以及受树木、建筑物等的遮挡,L1频段 C/A信号到达地面的强度可能会低于-160dBw。

工程中模态灵敏度的计算方法

工程中模态灵敏度的计算方法 灵敏度即求导信息,它是一种度量,是一种评价由于设计变量或参数的改变而引起结构特性变化的变化程度的方法。系统的灵敏度分析的主要目的是确定设计参数变更时,系统响应、特征值及特征向量等发生的变化率,因此通过灵敏度分析可得到为实现最优化所需要的设计导数。它是当前力学和结构工程领域的主要研究方向之一。例如在结构优化、可靠性评估及结构控制等工程领域,灵敏度信息即是一个主要的先决条件,通常依据灵敏度性态来确定对优化目标及状态变量影响较大的设计参数,利用程序可自动选择灵敏度高的参数进行操作。在结构系统的模型修正时,基于设计参数及矩阵元素的修正算法,可以使用无阻尼实模态的正交归一化条件作为约束求解修正量,目前也有一些文献在使用复模态的正交归一化条件来设计修正算法,这些算法经常使用各种模态参数的灵敏度信息参与修正量的求解。当前,结构安全性检测有时也依赖灵敏度信息来确定结构是否出现损伤、损伤的位置及损伤的严重程度等。 1 阻尼与模态 依据结构阻尼的性质可将振动系统分为无阻尼、比例阻尼及一般粘性阻尼三种情况。在应用灵敏度分析的相关领域中,各种阻尼情况下的模态分析是其重要的基础。 无阻尼情况下的模态被称为实模态或纯模态,特征方程的根比较容易依据方程(λ2M+K)x=0的特征值问题求解,这种问

题在数学意义上称为广义特征问题,得到实频率-ω2r=λ2r及相对应的实模态。当比例阻尼矩阵满足方程C=αM+βK (α,β 为实常数)时,比例阻尼系统具有复频率λ2r,并满足【1】 且与无阻尼系统具有相等的实模态向量。可见比例阻尼系统的数值计算量远低于一般的粘性阻尼系统。当系统的阻尼近似为一般粘性阻尼时,系统的极点与模态都是复值的,系统的特征问题为(λ2M+λC+K)x=0。这不是一般意义上的特征问题,为了将系统特征问题转化为数学意义上的特征问题,即实值矩阵的一般特征问题,常将系统方程转入状态空间形式,第一种常见的状态方程形式为Ay+By=0,其中【2】 这种类型的状态矩阵总也不是对称的,导致它的右状态向量系总也不是内部正交的,还必须要求M-1存在。但是,它的优点是振动系统的特征问题转化为一般矩阵 A 的特征问题,而不是第一种的广义特征问题。在使用两种状态方程的状态向量正交关系时,必须格外注意它们与系统的左右模态之间的关系,以及考虑系统性质矩阵是否对称等,否则极易得到错误的结论。讨论状态向量的正交性及灵敏度问题的意义在于2N 维状态向量的前N 维恰为原振动系统的模

灵敏度表示与计算

灵敏度表示与计算 灵敏度表示与计算 灵敏度是表征电声换能能力的一个指标,其定义是在单位声压作用下的输出电压或电功率。可见,随着单位和负载的不同,可能有多种不同的表示方法。常见的有开路灵敏度和有载灵敏度两种。所谓开路灵敏度系指在单位声压作用下输出的电动势。换句话说,当话筒(MIC 微音器传声器)的输出端处与开路状态时,若作用在振膜上的声压为P,测得的电压为V,则开路灵敏度。 E=V/P 常用的单位为豪伏/微巴。如果以分贝(dB)表示,开路灵敏度:E(dB)=20lgV/P-20lgV(0)/P(0)分贝 必须特别加以注意的是,当以分贝表示话筒(麦克风MIC 微音 器传声器)的开路灵敏度时,必须注明其基准值。 有载灵敏度又称灵敏度的功率表示法。它是指在单位声压作用下,在传声器输出端的额定负载上输出的电功率。通常规定额定负载为600欧姆。 在上述定义中,都涉及声压的测量问题。如果采用的是声场中某点的声压值,则称为声场灵敏度;如果取实际作用在话筒(麦克风MIC 微音器传声器)振膜上的声压值,则称为声场灵敏度;如果取实际作

用在传声器振膜上的声压值,得出的则是声压灵敏度。在实际使用中,除非另有说明,通常说明书上给出的是声场灵敏度。 简易远距离无线调频传声器电路 寻求一种发射距离远、拾音灵敏度高、长时间工作不跑频、调试简单易制作,且成本低廉的无线是很多爱好者迫切希望的。本文介绍的单管远距离无线调频传声器即具备以上特点。 由于发射用的环形L1兼作振荡,该天线内流动的是与振荡频率同步谐振的高频电流,所以始终处于最佳发射状态。经实践,在空矿地发射距离大约100~150m(用的是TOLY1781袖珍,该机天线加长至时所能达到的接收距离)。相比之下,在工作电压、工作电流和发射频率同等的情况,L1换成普通螺旋线圈,振荡集电极接上一只5pF电容至长的拉杆天线作发射实验,前后两种发射方式的发射距离几乎相当,证明该内藏式环形天线兼作振荡线圈时的发射效率是相当高的。 内藏式环形天线采用长度160mm,1mm的漆包线制成金属圆环或方框形,嵌入机壳内。调节电容C3,使发射频率落入88~ 108MHz之间,以便用调频收音机接收。当电压在~2V之间变化时,长时间工作,本发射频率稳定不变。电池电压时,整机工作电流约。调试时,手不要靠近环形天线,安放时不要靠近金属物,以免影响振荡频率和发射距离。

拱桥预拱度的计算与设置

附录B 拱桥预拱度的计算与设置 B.0.1 施工预拱度的计算 预拱度的大小应按无支架和有支架两种情况,并分别考虑下列因素进行估算。 1 无支架施工的拱桥 1)主拱圈及拱上建筑自重产生的拱顶弹性下沉δu1 3)混凝土主拱圈由混凝土收缩和徐变产生的拱顶下沉δu3 整体施工的主拱圈,可按温度降低15℃所产生的下沉值计算,分段施工的主拱圈,可按温度降低5—15℃所产生的下沉值计算,即在本条第(B.0.1—3)公式内,整体施工的主拱圈取(t l—t2)=—15℃,分段施工的主拱圈取(t l—t2)=—5~—15℃。 4)墩、台水平位移产生的拱顶下沉δu4

6)对于无支架施工的拱桥,本款内1)~4)项可估算为 ,当墩台可能有位移时取较大值,当无水平位移时取较小值。 2 满布式拱架施工的拱桥 满布式拱架受载后,主拱圈拱顶产生的弹性及非弹性下沉,本条第1款的1)—4)项仍然适用。满布式 拱架本身的下沉可按下列项目估算:

2)非弹性变形δs2 非弹性变形各类缝隙压密量可按下列估计:顺木纹相接,每条接缝变形取2mm;横木纹相接时取3mm;顺木纹与横木纹材料相接取2.5mm;木料与金属或木料与圬工相接取2mm。对于扣件式钢管拱架,扣件拉柱滑动或相对转动可引剧(架非弹睦变形,按经验估算断。 3)砂筒的非弹性压缩量δs3 可按经验估算:一般200kN压力砂筒取4mm,400kN压力砂筒取6mm,筒内未预先压实时取10mm。 4)支架基础在受载后的非弹性下沉δs4 支架基础非弹性下沉可按下列值估算:枕梁在砂类土上取5~10mm,枕梁在粘土上取10-20mm,打入 砂土的桩取5mm,打入粘土的桩取10mm。 拱顶处的预拱度,根据上述各种下沉量,按可能产生的各项数值相加后得到,施工时应根据以上计算值并结合实践经验进行调整。一般情况下,有支架施工的拱桥,当无可靠资料时,预拱度可按 l/600—l/800估算。 B.0.2 预拱度的设置 预拱度应根据上述各项因素产生的挠度曲线反向设置;可根据以往的实践经验按下述方法之一设置:1 按抛物线设置

【doc】无铰拱内力影响线座标及恒载内力计算程序

【doc】无铰拱内力影响线座标及恒载内力计算程序无铰拱内力影响线座标及恒载内力计算程 序 ? 38- 拷折.链砖日,幢戳佝,孵 云南公路科技1994年第1期(总第5I期】 无铰拱内力影响线座标及恒载内力计算程序 云南省公路规划勘察设计院柏松平".叫. 众所周知,由于拱桥具有跨越能力较大,能耐久而且养护维修费用少,外型美观,构造 简单技术易被掌握等突出优点,只要在条件许可的情况下.修建拱桥往往是经济合理的. 由于我省所处的地理环境独特,因此拱桥在我省公路建设中得到了广泛的应用和发展从审 小跨径的圬工拱桥到大跨径的钢筋混凝土拱桥,我省已修建了许许多多的各型拱桥随着高 等级公路的迅速发展,拱桥仍然是我省公路桥粱的一种主要型式. 但是,拱桥的跨度越大,必然使拱桥的大胆度增大,拱桥设计和施工的复杂程度亦随之增大为解决设计工作中大量繁复的查表计算工作.提高设计质量,缩短设计周期本人 结合工作实际,编写了此计算程序,以解决生产中的实际问题. 一

等截面悬链线无铰拱内力影响线座标计算程序 1,计算假定 空腹式拱桥中,桥跨结构的匿载由主拱圈与实腹段自重的分市力及空腹部份通过 腹孔墩 传下的集中力组成.由于集中力的存在,拱的恒载压力线不是悬链线,也不是一条 光滑曲 线.但由于悬链线的受力隋况好,亦采用悬链线(恒载压力线)作为拱轴线, 2.编程原理 (1)程序中的积分,采用辛普生积分公式进行展开 (2)悬链线拱轴公式: y({一)(1】 上式中:m一一拱轴系数: f一一计算矢高fm): {,一如图l示,{=2x/L; K…K1nfm十,』'一l】: L一,计算踌径fm1. (3)拱轴线水平倾角: …】=arctg(sr~,l一==_】'{) 上式中:=2fK/Lfm—1) (4)弹性中心: 图1 无铰拱内力影响线座标及恒载内力计算程序柏松平?39? 本文为公式推导清晰,把积分用拼音编号AB……代替.如JFB代表积分B

预制预应力T梁预拱度计算及控制

精心整理 预制预应力T 梁预拱度计算及控制 中铁十五局集团第二工程有限公司刘少修 摘要:本文结合福建龙浦高速公路十里排枢纽主线桥25m 预制T 梁的工程实践,介绍了T 梁预拱度设置的必要性及设置注意事项,提供了依据结构力学挠曲变形原理及预应力混凝土弹性计算理论计算梁体挠度的方法。 关键词:预制T 梁预拱度设置挠度计算 0、十里排枢纽主线桥简介 十里排枢纽主线桥分左右两幅,左幅桥长483.2m ,右幅桥长478.2m 。全桥左幅共5联: 3*25+4*25+4*30+3*35+3*25,右幅共5联:2联、左幅第4联、右幅第1联、右幅第2T 梁桥面连续结构;全桥共有T 梁203片,其中122片25m 为VOM 锚。 1、预拱度设置 1.1设置原因 预制T 。 1.2设置注意事项 如预拱度设置过 受桥面铺装设计标高控制,桥跨中段铺装层厚度将达不到设 现梁顶平、梁底凹的现象。预应力张拉后,由于预应力筋的作用,向上的拱度抵消了梁底的凹拱,却产生了梁顶的凸拱,预拱度的设置也就失去了意义。故,预拱度设置时,不仅要考虑梁底,也要考虑梁底。 2、梁体挠度计算 根据结构力学挠曲变形原理及预应力混凝土梁弹性计算理论,25m 后张预应力预制T 梁上拱度有两部分组成:一是由梁体自身产生的挠度;二是由预应力产生的挠度。具体计算时可分三种情况: ①、中性轴在预应力束中间时,计算挠度用下式: EI L e N EI L e N f 48/58/22211??+??-=(1)

②、中性轴在预应力束之上时,计算挠度用下式: EI L e N EI L e N f 48/58/22212??+??=(2) ③、预应力束近似直线时,计算挠度用下式: EI L e N f 8/213??=(3) 2.1十里排枢纽主线桥25mT 梁相关参数(计算) 十里排枢纽主线桥25mT 梁钢束布置图及相应的断面图如下所示: 2.1.1中性1y =7 3.08cm 2y =101.92cm 2.1.2截面惯性矩计算 截面惯性矩计算采用公式:])()([c 3 1I 313132d y c B By y -?--+=(6) 将梁体参数及1y 、2y 代入公式(3)可得: 截面惯性矩4 47386.0cm 1086.3m I =?= 2.1.3混凝土弹性模量

接收机灵敏度计算公式

接收灵敏度的定义公式 摘要:本应用笔记论述了扩频系统灵敏度的定义以及计算数字通信接收机灵敏度的方法。本文提供了接收机灵敏度方程的逐步推导过程,还包括具体数字的实例,以便验证其数学定义。 在扩频数字通信接收机中,链路的度量参数Eb/No (每比特能量与噪声功率谱密度的比值)与达到某预期接收机灵敏度所需的射频信号功率值的关系是从标准噪声系数F的定义中推导出来的。CDMA、WCDMA蜂窝系统接收机及其它扩频系统的射频工程师可以利用推导出的接收机灵敏度方程进行设计,对于任意给定的输入信号电平,设计人员通过权衡扩频链路的预算即可确定接收机参数。 从噪声系数F推导Eb/No关系 根据定义,F是设备(单级设备,多级设备,或者是整个接收机)输入端的信噪比与这个设备输出端的信噪比的比值(图1)。因为噪声在不同的时间点以不可预见的方式变化,所以用均方信号与均方噪声之比表示信噪比(SNR)。 图1. 下面是在图1中用到的参数的定义,在灵敏度方程中也会用到它们: Sin = 可获得的输入信号功率(W) Nin = 可获得的输入热噪声功率(W) = KTBRF其中: K = 波尔兹曼常数= × 10-23 W/Hz/K, T = 290K,室温 BRF = 射频载波带宽(Hz) = 扩频系统的码片速率 Sout = 可获得的输出信号功率(W) Nout = 可获得的输出噪声功率(W) G = 设备增益(数值) F = 设备噪声系数(数值) 的定义如下: F = (Sin / Nin) / (Sout / Nout) = (Sin / Nin) ×(Nout / Sout) 用输入噪声Nin表示Nout: Nout = (F × Nin × Sout) / Sin其中Sout = G × Sin 得到: Nout = F × Nin × G

连续梁成桥预拱度计算过程

5.5.1 成桥预拱度计算方法目前,由于对混凝土徐变的计算,不论是老 化理论,修正老化理论还是规范规定的计算方法,都难以正确地估算混凝土徐变的影响,在施工中对这一影响不直接识别、修正,通常是用以往建成的同类跨径的下挠量来类比的,并且通过立模标高的预留来实现的。因此,成桥预拱度合理设置尤为重要。 根据近几年来工程实践检验,后期混凝土收缩、徐变对中孔跨中挠度影响约为L/500~L/1000(L:中孔跨径),边孔最大挠度一般发生在 3/4L处,约为中孔最大挠度1/4。另外,连续刚构桥边中跨比例0.52~0.6,桥墩采用柔性墩。在后期运营中向跨中方向产生位移,刚构墩、梁固结,由变形协调可知,转角位移使边孔上挠。中孔跨中下挠。因此,边跨成桥预拱度一般设置较小,在3/4L处设置fc/4预拱度(fc:中 孔跨中成桥预拱度)。 根据陕西省连续刚构桥成桥预拱度计算方法:“中跨预拱度在设计预 拱度的基础上,按L/1000+1/2d2(L为中跨跨径,d2为活载挠度)提高预拱度(最大挠度在跨中),边跨预拱度按中跨最大挠度1/4计算, 边跨最大挠度在3/4L处。其余各点按余弦曲线分配。在中孔跨中fc 确定后,中孔其余各点按y=fc/2(1-cos(2πx/L))进行分配。边孔3/4L 处成桥预拱度取中孔跨中成桥预拱度fc的1/4,边孔其余各点按余弦曲线分配。原因:(1)余弦曲线在墩顶两曲线连接处切线斜率为零, 满足平顺要求;(2)余弦曲线在L/4处预拱度为跨中预拱度1/2,与有限元计算吻合。.

1.活载挠度计算 1) 荷载等级:公路—Ⅰ; 2) 车道系数:三车道,车道折减系数0.78; 3) 中跨活载最大挠度:d=0.029m; 22.中跨最大预拱度的确定 Ld=0.09+0.0145=0.1045m; ??fc2 100023.余弦曲线 成桥预拱度线形示意图 各曲线函数表达如下: ?x2fa??曲线:() A)y?cos(1?90??x0??290???xfc2??B曲线: () )?1y?cos(53?22.5?x??612???x2fc??C曲线:() )cos(?y1?22.5??x0?? 245??5.5.2 施工预拱度的计算方法 不论采用什么施工方法,桥梁结构在施工过程中总要产生变形,并且结构的变形将受到诸多因素的影响,极易使桥梁结构在施工过程中的实际位置(立面标高、平面位置)状态偏离预期状态,使桥梁难所以必须对桥梁进行施工或成桥线形与设计要求不符,以顺利合拢, 控制,使其在施工中的实际位置状态与预期状态之间的误差在容许范围和成桥状态符合设计要求。本单位设置的施工预拱度由下面的公式进行说明: f=∑f+f+f+f+f+f+f+f+f+f+f11i si6i1i9i2i7i3i10i4i5i8i fsi:施工预拱度; ∑f:本阶段块件生成后和以后各阶段挠度累计值1i∑f:本次浇筑梁段及后浇梁段纵向预应力钢束张拉对该点挠度2i影响值 f:二期恒载的挠度3i f:结构体系转换4i f:挂篮的自重及变形5i f:

预拱度与挠度关系及计算

3.5挠度、预拱度的计算 一、变形(挠度)计算的目的与要求 桥梁上部结构在荷载作用下将产生挠曲变形,使桥面成凹形或凸形,多孔桥梁甚至呈波浪形。因此设计钢筋混凝土受弯构件时,应使其具有足够的刚度,以免产生过大的变形,影响结构的正常使用。 过大的变形将影响车辆高速平稳的运行,并将导致桥面铺装的迅速破坏; 车辆行驶时引起的颠簸和冲击,会伴随有较大的噪音和对桥梁结构加载的不利影响; 构件变形过大,也会给人们带来不安全感。 变形验算是指钢筋混凝土桥梁以汽车荷载(不计冲击力)计算的上部结构最大竖向挠度,不应超过规定的允许值。《公桥规》对最大竖向挠度的限值规定如下表: 钢筋混凝土梁桥允许挠度值 注:1.此处L为计算跨径,L1为悬臂长度; 2.荷载在一个桥跨范围内移动产生正负不同的挠度时,计算挠度应为其正负挠度的最大绝对值之和。 二、刚度和挠度计算 桥梁的挠度,根据产生原因可分成永久作用(结构自重力、桥面铺装、预应力、混凝土徐变和收缩作用等)产生的和可变作用(汽车、人群)产生的两种。 永久作用产生的挠度是恒久存在的且与持续的时间有关,可分为短期挠度和长期挠度。可变作用产生的挠度是临时出现的,在最不利的作用位置下,挠度达到最大值,随着可变作用位置的移动,挠度逐渐减小,一旦可变作用离开桥梁,挠度随即消失。 永久作用产生的挠度并不表征结构的刚度特性,通常可以通过施工时预设的反向挠度(即预拱度)来加以抵消,使竣工后的桥梁达到理想的设计线形。 可变作用产生的挠度,使梁产生反复变形,变形的幅度越大,可能发生的冲击和振动作用也越强烈,对行车的影响也越大。因此,在桥梁设计中,需要通过验算可变作用产生的挠度以体现结构的刚度特性。 钢筋混凝土和预应力混凝土受弯构件,在正常使用极限状态下的挠度,可根据给定的构件刚度用结构力学的方法来计算。对于均布荷载作用下的简支梁,跨中最大挠度值为:

灵敏度

讨论这个议题的主要起因是:灵敏度(sensitivity)是如何确定的.[https://www.wendangku.net/doc/8411719442.html,] 问题:我们经常看到某些GPS芯片 商宣称自己的芯片灵敏度是如何的高,但是根据对整个系统的分析可以看出系统的灵敏度主要取决于第一级LNA的设计,GPS产品的灵敏度取决于GPS芯片和放大器的设计,那么就带来下面的问题:[https://www.wendangku.net/doc/8411719442.html,] 1)系统的灵敏度是如何计算的芯片的灵敏度对系统设计有什么影响 [https://www.wendangku.net/doc/8411719442.html,] 2)接收GPS信号的功率和信噪比是一个什么样的水平 [https://www.wendangku.net/doc/8411719442.html,] 3)如何按照信噪比,信号功率设计系统灵敏度 [https://www.wendangku.net/doc/8411719442.html,] [https://www.wendangku.net/doc/8411719442.html,] 这真是一篇超精华的帖子!感谢楼主和参与的所有人![5 2 jinfoxhe: R1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比, NF为系统噪声系数.如果是扩频系统,还需要减去扩频增益. 2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系.从仿真来看, GSM的解调Eb/N0为4-5dB. 3 见1. snow99: 好象在说GPS, 不是GSM, 虽然看起来很像 GPS RF BW: 2.046 MHz Modulation: BPSK Process Gain: 46 d Thermal Noise Floor: kTB = -111 dBm/2.046MHz Required Eb/N0: 6 dB (不太清楚, 可以修正)

Receiver NF: 3 dB (Typical) Sensitivity: -111 + 6 + 3 - 46 = -148 dBm 这只是一个大致结果, 考虑系统的其他算法以及Doppler校正, 最终灵敏度在-154 ~ -149之间 https://www.wendangku.net/doc/8411719442.html,] Arm720: 楼上朋友对灵敏度的描述已经非常清楚了,降低系统的信噪比和噪声系数能提高系统的灵敏度.那么对于设计来说是不是可以这么理解: 1)根据灵敏度公式估算系统的接收灵敏度 2)根据估算的系统接收灵敏度计算对芯片接收灵敏度的要求 芯片接收的灵敏度反映了对前级放大器噪声系数和信噪比的设计要求. 不知我的理解是否正确,如果是这样,估算的原则又是什么那些参考书上有描述,我想详细的研究一下,多谢了! 那位测试过GPS信号的朋友能说一下GPS信号的接收功率和信噪比吗 Arm720: 看来我的发帖晚了一部,多谢jinfoxhe和snow99兄! 不过snow99兄的计算方法和上面公式好像对不上.你描述的是对GPS接收系统的需求,不只这些需求是如何计算出来的. 多谢了! 以下是引用jinfoxhe在2006-4-24 8:56:00的发言: 1 灵敏度的计算公式:S=-174dBm+10*log(BW)+Eb/N0+NF. BW一般为中频带 宽,Eb/N0为芯片在一定误码的情况下解调需要的信噪比, NF为系统噪声系数.如果是扩频系统,还需要减去扩频增益. 2 对于GSM来说,其灵敏度一般为-110dBm左右(基站),和具体的配置有关系.从仿真来看, GSM的解调Eb/N0为4-5dB. 3 见1. 今天仔细看了看jinfoxhe兄的帖子,发现对关键问题进行了描述"Eb/N0为芯片在一定误码条件下的解调需要的信噪比",也就是说,你选的芯片就决定了接收系统灵敏度的理论值,这

等截面悬链线空腹式无铰拱(石拱桥)设计

目录 一、课程设计任务书 (2) 二、设计说明书 1、主要尺寸的拟定 (4) 2、拱轴系数m的确定 (5) 3、计算跨径和计算矢高 (5) 4、主拱圈拱轴线、拱背和拱腹坐标 (5) 5、各部分结构重力及其拱脚和拱跨1/4处的距离 (7) 6、拱轴系数m值验算 (14) 7、结构重力内力 (15)

课程设计任务书 一、设计题目 等截面悬链线空腹式无铰拱(石拱桥)设计 二、设计资料 1.设计荷载:汽车-20;挂车-100;人群荷载3.5KN/m2; ⒉桥面净宽:净—9+(2×0.25+2×0.75 ) m; ⒊标准跨径:40m; ⒋净跨径:40m; ⒌净矢高:8m; ⒍拱顶填土平均厚度(包括路面)为0.7m; ⒎人行道及栏杆等折算厚度为0.06m; ⒏拱圈材料容重γ1=24KN/m3; ⒐拱上建筑材料容重γ2=22KN/m3; ⒑人行道及栏杆的材料容重γ3=23KN/m3; ⒒路面及填料的平均容重γ4=18KN/m3; ⒓侧墙顶宽度取C=0.8m;

13.最高月平均温度为30℃,最低月平均温度为0℃,主拱圈合拢 温度为15℃; 14.采用拱架施工; 15.拱圈材料的弹性模量E=7200Mpa。 三、设计内容 1.拟定主拱圈的主要尺寸; 2.假定拱轴系数m,确定计算跨径和计算矢高; 3.计算主拱圈拱轴线、拱背和拱腹坐标; 4.计算各部分结构重力及其拱脚和拱跨1/4处的距离; 5.验算假定的拱轴系数m,如果符合,进行下一步;如果不符合, 须重新假定m值,由第二步开始再次进行计算; 6.结构重力内力计算; 7.活载内力计算。 四、参考资料 1.《桥涵设计》(材料); 2.《公路桥涵设计手册》拱桥分册; 3.相关图纸。 五、注意事项 1.计算书要求用钢笔或圆珠笔书写; 2. 计算过程所用参考图,用铅笔手工绘制或CAD绘制; 3. 用CAD完成部分用A4纸打印; 4. 资料和图纸装订成册上交,要求设计封面、目录。

桥梁博士预拱度设置及计算

用桥博计算书模板提取预拱度 分享 首次分享者:千雪寻已被分享21次评论(0)复制链接分享转载举报 一、对桥博组合位移全部废弃,仅供用户自定义组合的解释。 1、对全预应力和A类构件,计算挠度时,按照规范6.5.2条,全截面的抗 弯刚度Bo应取0.95EcIo,但桥博直接取的EcIo,所以桥博算出来的单项 位移,全界面的抗弯刚度没有进行折减,单项位移、组合位移结果都是是不准确的,全部废弃。 2、解决方案:用户可以将桥博输出的值加以修整,除以0.95的折减系数, 即可得到正确的单项挠度效应。组合位移的值,用户可以采用报表来完成。 3、对于钢筋混凝土构件桥博的挠度计算值无需再进行修正。钢筋硷构件在 使用阶段是允许开裂的,挠度验算采用最小刚度原则,即用砖开裂后的最小刚度计算其可能的最大挠度。

二、如何设置预拱度? 1、规范条文: 2、预拱度的设置:桥博不能自动判断是否需要设置预拱度,需要用户编制报表,计算出短期荷载效应下的长期挠度和预加力产生的长期反拱值。通过比较先判断是否需要设置预拱度,若需要设置,则按规范值进行计算。同时,挠度值还必须满足规范6.5.3条的要求:

3、几个系数的取值 4、桥博报表解析 荷载短期效应组合长期竖向挠度(mm) {1000*(1.55-0.0025*W)/0.95*(ZSUM<[DS(iN,2,iS).V],iS=sgjd>+ZSUM<[D S(iN,3,iS).V],iS=sgjd>+0.7*([DU(iN,58).V])+[DU(iN,70).V])}ZDEC<3> 永久荷载产生的荷载+施工临时荷载位移+汽车最小剪力下的位移+人 群最小剪力的位移 预加应力产生的长期挠度(mm) {1000*2*(ZSUM<[DS(iN,4,iS).V],iS=sgjd>)}ZDEC<3> 消除结构自重后的挠度 {(1000/0.95*(0.7*([DU(iN,58).V])+1.0*([DU(iN,70).V])))*(1.55-0.0025*W)} 汽车最小剪力下的位移+人群最小剪力的位移 总结: 《桥规》 D62的 6.5.5条:受弯构件的预拱度可按下列规定设置: 1 钢筋混凝土受弯构件 1)当由荷载短期效应组合并考虑荷载长期效应影响产生的长期挠度不超过计算跨径的1/1600时,可不设预拱度; 2)当不符合上述规定时应设预拱度,且其值应按结构自重和1/2可变荷载频遇值计算的长期挠度值之和采用。 假设为C50,挠度长期增长系数ηθ=1.425。桥博位移的计算是按照不开裂换算截面刚度计算的,未做折减处理,刚度折减系数取为0.95, 1.425/0.95*1000=1500。sgjd=1-n(共n个施工阶段) 预拱度 ={1500*(ZSUM<[DS(iN,2,iS).V],iS=sgjd>+0.5*(0.7*([DU(iN,55).V])+[DU(iN ,67).V])} 结构自重计算的挠度=ZSUM<[DS(iN,2,iS).V],iS=sgjd> 汽车荷载频遇值计算的的挠度=0.7*[DU(iN,55).V] 人群荷载频遇值计算的的挠度=[DU(iN,67).V] 2 预应力混凝土受弯构件

如何设置预拱度

桥博常见问题整理(小专题) 一、对桥博组合位移全部废弃,仅供用户自定义组合的解释。 1、对全预应力和A类构件,计算挠度时,按照规范 6.5.2条P63,全截面的抗弯刚度 Bo=0.95EcIo,但桥博直接取的EcIo,所以桥博算出来的单项位移,全截面的抗弯刚度没有进行折减,单项位移、组合位移结果都是是不准确的,全部废弃。 2、解决方案:用户可以将桥博输出的值加以修整,除以0.95的折减系数,即可得到正确的 单项挠度效应。组合位移的值,用户可以采用报表来完成。 3、对于钢筋混凝土构件桥博的挠度计算值无需再进行修正。钢筋硷构件在使用阶段是允许开 裂的,挠度验算采用最小刚度原则,即用砖开裂后的最小刚度计算其可能的最大挠度。

二、如何设置预拱度? 1、规范条文: 2、预拱度的设置:桥博不能自动判断是否需要设置预拱度,需要用户编制报表,计算出短期 荷载效应下的长期挠度和预加力产生的长期反拱值。通过比较先判断是否需要设置预拱度,若需要设置,则按规范值进行计算。同时,挠度值还必须满足规范6.5.3条的要求:

3、几个系数的取值 4、桥博报表解析 荷载短期效应组合长期竖向挠度(mm) {1000*(1.55-0.0025*W)/0.95*(ZSUM<[DS(iN,2,iS).V],iS=sgjd>+ZSUM<[DS(iN,3,iS).V],iS= sgjd>+0.7*([DU(iN,58).V])+[DU(iN,70).V])}ZDEC<3> 永久荷载产生的荷载+施工临时荷载位移+汽车最小剪力下的位移+人群最小剪力的位移 预加应力产生的长期挠度(mm) {1000*2*(ZSUM<[DS(iN,4,iS).V],iS=sgjd>)}ZDEC<3> 消除结构自重后的挠度 {(1000/0.95*(0.7*([DU(iN,58).V])+1.0*([DU(iN,70).V])))*(1.55-0.0025*W)} 汽车最小剪力下的位移+人群最小剪力的位移

第3章电路的灵敏度分析

第三章 网络的灵敏度分析 §3.1网络的灵敏度 灵敏度用来表征网络特性对元件参数变化的敏感程度。它在确定产品合格率、寿命及对工作环境的适应性方面起着关键的作用。 网络函数或网络响应都是组成网络的元件参数的函数。在具体实现一个设计方案时,所选择的元件均有其标称值和相对误差。例如100Ω%5.1±即表示标称值是100Ω,相对误差是%5.1的一个电阻。当将一个这样的电阻接入电路时,它的真正值可能是99、100、101等值,不一定刚好等于标称值。另一方面,实际电路在工作时,随着使用时间的增长、周围环境(例如温度、湿度、压力)等因素的变化,元件参数值也难免要发生不同程度的变化而偏离标称值,况且有的元件本身就是作为敏感元件使用的。这些元件参数的变化必将导致网络函数或网络响应的变化,严重时网络无法正常工作。研究元件参数变化对网络函数或网络响应的影响即属于电路灵敏度分析(sensitivity analysis)内容。电路的灵敏度分析还是电路的容差(tolerance analysis)分析、最坏情况分析(worst analysis)和最优设计(optimize design)的重要基础。在最优设计中,灵敏度作为目标函数的寻优梯度。灵敏度分析是电路分析与电路综合的桥梁。著名的电路仿真软件PSPICE 和WORKBANCH 均有灵敏度分析功能。 网络函数H 或网络响应R (统一用T 来表示) 对某元件相关参数p (p 可以是元件参数或影响元件参数的温度、湿度、压力等)变化率称为网络函数对该参数的绝对灵敏度,记作: p T S ??= (3.1a) 有时还要用到相对和半相对灵敏度。相对灵敏度的定义是: p T p T T p S ln ln 00??=??= (3.1b) 相对灵敏度是无量纲量。半相对灵敏度的定义是: p T p S ??=0 (00=T 时), p T T S ??=01 (00=p 时) (3.1c) 式中0p 和0T 分别是元件的标称值及对应标称值的网络函数或网络响应值。 当0p 或0T 为零时,相对灵敏度要么为零要么不存在。此时要用半相对灵敏度。 从各灵敏度的定义式可见,关键是计算绝对灵敏度。因此,本章以下只涉及绝对灵敏度的计算。 图3.1 为常用的电桥测量电路。以1U 为激励,2U 为响应的网络函数为 4 33211 12R R R R R R U U H +++-== (3.2) 设1R 、4R 为热敏电阻,由式(3.2)并根据灵敏度的定义式(3.1a)求得H 对电阻1R 、

支架预拱度计算

支架预拱度计算 (1)支架在荷载作用下的弹性压缩δ1 箱梁恒载及施工荷载由荷载计算书得 g=22.15kN/m 2 钢管步距0.8×0.7m 则每根钢管上承受荷载N N=22.15×1.0×0.9=19.94KN 钢管的横截面积 A=3.14×(482-44.52)/4=254.14mm 2 δ= = =78N/mm 2 δ1= (h 取8m ,E 取2.0×105mpa) δ 1= =3.12mm (2)受载后由于杆件接头的挤压和卸架设备压缩而产生的非弹性变形δ2 δ2=δ1’+δ2’ δ1’接头的挤压变形 取δ1’=2mm δ2’卸架设备的压缩变形 取δ2’=2mm δ2=δ1’+δ2’=2+2=4mm (3)支架基础在受载后的非弹性压缩δ3 取δ3=10mm δ=7.2+4+10 =21.1 mm 予拱度的设置 主梁予拱度沿跨度方向变化的曲线按二次抛物线处理,N 19.94×103 254.14 δ.h E 78×8000 5

沿梁跨方向予拱度值y y= 每跨梁上弹性压缩δ1 箱梁恒载及施工荷载取五个控制点,即取跨中和离跨中一半两个点与两端共五个点,两端予拱值为零,以控制变化。 (1)支架在荷载作用下的由荷载计算书得 g=26kN/m 2 钢管步距0.8×0.7m 则每根钢管上承受荷载N N=26×0.9×0.6=31.1KN 钢管的横截面积 A=3.14×(482-452)/4=254.14mm 2 δ= = =122.4N/mm 2 δ1= (h 取4m ,E 取2.0×105mpa) δ 1= =2.4mm (2)受载后由于杆件接头的挤压和卸架设备压缩而产生的非弹性变形δ2 δ2=δ1’+δ2’ δ1’接头的挤压变形 取δ1’=2mm δ2’卸架设备的压缩变形 取δ2’=10mm δ2=δ1’+δ2’=2+2=4mm (3)支架基础在受载后的非弹性压缩δ3 4δ(l-x).x L 2 N 31.1×103 254.14 δ.h E 122.4×4000 2.0×105

WCDMA 灵敏度公式详解

上行灵敏度公式:Sin (dBm) = NF (dB) + KTBRF (dBm) + Eb/No (dB) - PG (dB) Sin = 可获得的输入信号功率(W) Nin = 可获得的输入热噪声功率(W) = KTBRF其中: K = 波尔兹曼常数= 1.381 ×10-23 W/Hz/K, T = 290K,室温 Sout = 可获得的输出信号功率(W) Nout = 可获得的输出噪声功率(W) G = 设备增益(数值) F = 设备噪声系数(数值) PG = BRF / Rbit WCDMA 规定用户数据速率Rbit等于12.2kbps F的定义如下: F = (Sin / Nin) / (Sout / Nout) = (Sin / Nin) ×(Nout / Sout) 用输入噪声Nin表示Nout: Nout = (F ×Nin ×Sout) / Sin其中Sout = G ×Sin 得到: Nout = F × Nin × G 调制信号的平均功率定义为S = Eb / T,其中Eb为比特持续时间内的能量,单位为W-s,T 是以秒为单位的比特持续时间。 调制信号平均功率与用户数据速率的关系按下面的式子计算: 1 / T = 用户数据比特率,Rbit单位Hz,得出Sin = Eb ×Rbit 根据上述方程,以Eb/No表示的设备输出端信噪比为:

Sout / Nout = (Sin × G) / (Nin × G × F) = Sin / (Nin × F) = (Eb × Rbit) / (KTBRF × F) = (Eb/ KTF) ×(Rbit / BRF), 其中KTF表示1比特持续时间内的噪声功率(No)。 因此, Sout / Nout = Eb/No × Rbit / BRF 在射频频带内,BRF等于扩频系统的码片速率W,处理增益(PG = W/Rbit)可以定义为: PG = BRF / Rbit 所以,Rbit / BRF = 1/PG,由此得输出信噪比: Sout / Nout = Eb/No ×1 / PG。 注意:对于没有扩频的系统(W = Rbit),Eb/No在数值上等于SNR。 接收机灵敏度方程 对于给定的输入信号电平,为了确定SNR,用噪声系数方程表示Sin: F = (Sin / Nin) / (Sout / Nout)或F = (Sin / Nin) ×(Nout / Sout) Sin = F × Nin ×(Sout / Nout) Sin又可以表示为: Sin = F × KTBRF × Eb/No × 1/PG 用一种更加常用的对数形式表示,对每一项取以10为底的对数再乘10得到单位dB或dBm。于是噪声系数NF (dB) = 10 ×log (F),由此得出下面的接收机灵敏度方程: Sin (dBm) = NF (dB) + KTBRF (dBm) + Eb/No (dB) - PG (dB) 数字实例

相关文档