文档库 最新最全的文档下载
当前位置:文档库 › 气压控制换向阀工作原理

气压控制换向阀工作原理

气压控制换向阀工作原理
气压控制换向阀工作原理

气压控制换向阀工作原理

1、气压控制换向阀

气压控制换向阀,是利用气体压力来使主阀芯运动而使气体改变流向的。按控制方式不同分为加压控制、卸压控制和差压控制三种。加压控制是指所加的控制信号压力是逐渐上升的.当气压增加到阀芯的动作压力时,主阀便换向;卸压控制是指所加的气控信号压力是减小的,当减小到某一压力值时,主阀换向;差压控制是使主阀芯在两端压力差的作用下换向。

气控换向阀按主阀结构不同,又可分为截止式和滑阀式两种主要形式。滑阀式气控换向阀的结构和工作原理与液动换向阀基本相同。在此主要介绍截止式换向阀。

2、先导式电磁换向阀

先导式电磁换向阀是由电磁铁首先控制气路,产生先导压力,再由先导压力去推动主阀阀芯,使其换向。适用于通径较大的场合。

先导式双电控二位四通电磁换向阀。它由先导阀(Dl、D2)和主阀组成。而主阀又包括阀体1和活塞组件2两部分。图示的是Dl、D2均处于断电的状态。电磁阀的动铁芯5、6处于关闭状态。当Dl通电、D2断电时,动铁芯5被吸起,由P口来的压缩空气经孔a(虚线)进入阀的f腔。并从密封塞4(单向阀)的四周唇边进入孔‘,并进入。广腔,推动活塞组件2下移,使P与A通,B经阀芯中心孔h与T通(排气)。A口有压缩空气输出的同时,有一部分压缩空气流入孔g,其中一路经节流孔d进入c腔使密封塞4下移封住排气孔b,另一路压缩空气进入f腔,作用在活塞组件2的上端。此时,即使Dl断电,活塞组件2也不会位即该阀具有记忆功能。

先导式双电控二位四通电磁换向阀当先导阀D2通电、Dl断电时,动铁芯6被吸起,c腔内的压缩空气经T1口排出。此时从P到A的压缩空气作用在大、小活塞上,因大、小

活塞的面积差而产生向上的作用力,使活塞组件2上移。与此同时,密封塞4也上移,并打开阀口3,使活塞组件2上端的压缩空气经孔6排掉。活塞组件2上移后,P与B通,A 与T通(排气)。此时即使D2断电,因大小活塞面积差而产生向上的作用力依然存在,所以输出状态也不会改变,即具有记忆功能。气动电磁换向阀与液压电磁换向阀一样,有很多类型,其工作原理也相似,不再赘述。

换向型方向控制阀的分类及工作原理

换向型方向控制阀(简称换向阀),是通过改变气流通道而使气体流动方向发生变化,从而达到改变气动执行元件运动方向目的。它包括气压控制换向阀、电磁控制换向阀、机械控制换向阀、人力控制换向阀和时间控制换向阀等。1、气压控制换向阀气压控制换向阀,是利用气体压力来使主阀芯运动而使气体改变流向的。按控制方式不同分为加压控制、卸压控制和差压控制三种。加压控制是指所加的控制信号压力是逐渐上升的.当气压增加到阀芯的动作压力时,主阀便换向;卸压控制是指所加的气控信号压力是减小的,当减小到某一压力值时,主阀换向;差压控制是使主阀芯在两端压力差的作用下换向。

气控换向阀按主阀结构不同,又可分为截止式和滑阀式两种主要形式。滑阀式气控换向阀的结构和工作原理与液动换向阀基本相同。在此主要介绍截止式换向阀。截止式换向阀的工作原理图1所示为二位三通单气控截止式换向阀的工作原理图。图14—20a为及口没有控制信号时的状态。阀芯在弹簧与P腔气压作用下,使P与A断开,A与T通,阀处于排气状态。当K口有控制信号时(见图14—20b),P与A通,A与2、断开,A口进

气。

图一、截止式换向阀的工作原理

图2所示为二位三通单气控截止式换向阀的结构图。当K口无信号时。A与T通、阀处于排气状态;当K口有信号输入后,压缩空气进入活塞9的有端,使阀杆5左移、P与A通。图中所示的为常断型阀,如果P与T换接则成为常通型。

图二、截止式换向阀的结构图

2、先导式电磁换向阀

图三、直动式单电控电磁阀的工作原理

先导式电磁换向阀是由电磁铁首先控制气路,产生先导压力,再由先导压力去推动主阀阀芯,使其换向。适用于通径较大的场合。图4所示为先导式双电控二位四通电磁换向阀。它由先导阀(Dl、D2)和主阀组成。而主阀又包括阀体1和活塞组件2两部分。图示的是Dl、D2均处于断电的状态。电磁阀的动铁芯5、6处于关闭状态。当Dl通电、D2断电时,动铁芯5被吸起,由P口来的压缩空气经孔a(虚线)进入阀的f腔。并从密封塞4 (单向阀)的四周唇边进入孔‘,并进入。广腔,推动活塞组件2下移,使P与A通,B经阀芯中心孔h与T通(排气)。A口有压缩空气输出的同时,有一部分压缩空气流入孔g,其中一路经节流孔d进入c腔使密封塞4下移封住排气孔b,另一路压缩空气进入f腔,作用在活塞组件2的上端。此时,即使Dl断电,活塞组件2也不会位即该阀具有记忆功能。

图四、先导式双电控二位四通电磁换向阀

当先导阀D2通电、Dl断电时,动铁芯6被吸起,c腔内的压缩空气经T1口排出。此时从P到A的压缩空气作用在大、小活塞上,因大、小活塞的面积差而产生向上的作用力,使活塞组件2上移。与此同时,密封塞4也上移,并打开阀口3,使活塞组件2上端的压缩空气经孔6排掉。活塞组件2上移后,P与B通,A与T通(排气)。此时即使D2断电,因大小活塞面积差而产生向上的作用力依然存在,所以输出状态也不会改变,即具有记忆功能。气动电磁换向阀与液压电磁换向阀一样,有很多类型,其工作原理也相似,不再赘述。

液压比例阀工作原理.

液压比例阀工作原理 间电网投资的快速增长为公司提供了良好的发展机遇。2)置信电气生产非晶合金变压器,属于国家推广的节能类产品,公司为国内唯一的规模化生产非晶合金变压器的企业,市场占有率达到80%以上。受政府强制采购政策的推动,非晶合金变压器有望获得大范围的推广,得益于此,公司将面临一个巨大的市场空间。建议重点关注特变电工和置信电气。 电力行业“节能减排”形势严峻 在“十一五”乃至相当长的时间内,“节能减排”将是我国政府工作的重点。“十一五”期间节能减排目标:实现国内生产总值能耗降低20%、主要污染物排放总量减少10%。但电力行业节能减排形势很严峻,具体表现为:1)2006年,发电用煤超过12亿吨,排放的二氧化碳占全国排放总量的54%,火电用水占工业用水的40%,烟尘排放量占全国排放量的20%。2)我国火电发电机组所占比例大,大量小机组存在,这使得煤耗显著偏高。3)电网建设滞后,“重发轻供”导致电网建设落后于电源建设,电网建设中超高压输电线路比重偏低,高耗能变压器使用量太大。 电气设备将在“节能减排”中发挥重要作用 我们认为,未来国内电力行业节能的主要途径为:大力发展特高压电网;加强现有电厂设备改造,提高能源使用效率;积极鼓励新能源开发利用。电气设备将在“发送配用”各个环节发 首页 >>产品中心>>比例式减压阀 一、产品[固定比例式减压阀]的详细资料: 产品名称:固定比例式减压阀

产品特点:本厂生产的比例式减压阀,外形美观,质量可靠,比例准确,工作平稳.既减动压也减静压。该阀利用阀体内部活塞两端不同截面积产生的压力差,改变阀后的压力,达到减压目的。我厂减压阀的减压比例是:2:1,3:1,4:1,3:2,S 2等,亦可根据用户的要求设计特殊比例的减压阀.固定比例式减压阀,减压阀。 二、主要技术参数: 适用介质水、气体 适用温度≤90℃ 压力误差≤8% 最小开启2:1 0.2MPa 压力3:1 0.3MPO 连接形式法兰、内螺纹 主要零件阀体锡青铜不锈钢铸铁 材料内件锡青铜不锈钢锡青铜或不锈钢 三、比例式减压阀主要外形尺寸(法兰连接尺寸PNl.OMPa按GB4216.4—84标准): 公称通径DN (mm)A1 25 115 32 124 40 132 50 140 65 155 80 155 100 200 125 220 150 230 200 270 订货须知: 一、①比例式减压阀产品名称与型号②比例式减压阀口径③比例式减压阀是否带附件二、若已经由设计单位选定公司的比例式减压阀型号,请按比例式减压阀型号 三、当使用的场合非常重要或环境比较复杂时,请您尽量提供设计图纸和详细参数,

换向阀工作原理

换向阀 利用阀芯对阀体的相对运动,使油路接通、关断或变换油流的方向,从而实现液压执行元件及其驱动机构的启动、停止或变换运动方向。 按阀芯相对于阀体的运动方式:滑阀和转阀 按操作方式:手动、机动、电磁动、液动和电液动等按阀芯工作时在阀体中所处的位置:二位和三位等 按换向阀所控制的通路数不同:二通、三通、四通和五通等。 1、工作原理 图4-3a所示为滑阀式换向阀的工作原理图,当阀芯向右移动一定的距离时,由液压泵输出的压力油从阀的P口经A口输向液压缸左腔,液压缸右腔的油经B口流回油箱,液压缸活塞向右运动;反之,若阀芯向左移动某一距离时,液流反向,活塞向左运动。图4-3b为其图形符号。 2、换向阀的结构 1)手动换向阀 利用手动杠杆来改变阀芯位置实现换向。分弹簧自动复位(a)和弹簧钢珠(b)定位两种。 2)机动换向阀 机动换向阀又称行程阀,主要用来控制机械运动部件的行程,借助于安装在工作台上的档铁或凸轮迫使阀芯运动,从而控制液流方向。 3)电磁换向阀

利用电磁铁的通电吸合与断电释放而直接推动阀芯来控制液流方向。它是电气系统和液压系统之间的信号转换元件。 图4-9a所示为二位三通交流电磁阀结构。在图示位置,油口 P和A相通,油口B断开;当电磁铁通电吸合时,推杆1将阀芯2推向右瑞,这时油口P和A断开,而与B相通。当电磁铁断电释放时,弹簧3推动阀芯复位。图 4-9b为其图形符号。 4)液动换向阀 利用控制油路的压力油来改变阀芯位置的换向阀。阀芯是由其两端密封腔中油液的压差来移动的。如图所示,当压力油从K2进入滑阀右腔时,K1接通回油,阀芯向左移动,使P和B相通,A和T相通;当 K1接通压力油,K2接通回油,阀芯向右移动,使P和A相通,B和T相通;当K1和K2都通回油时,阀芯回到中间位置。 5)电液换向阀 由电磁滑阀和液动滑阀组成。电磁阀起先导作用,可以改变控制液流方向,从而改变液动滑阀阀芯的位置。用于大中型液压设备中。 3、换向阀的性能和特点 1)滑阀的中位机能 各种操纵方式的三位四通和三位五通式换向滑阀,阀芯在中间位置时,各油口的连通情况称为换向阀的中位机能。其常用的有“O”型、“H”型、“P”型、K”型、“M”型等。 分析和选择三位换向阀的中位机能时,通常考虑: (1)系统保压 P口堵塞时,系统保压,液压泵用于多缸系统。 (2)系统卸荷 P口通畅地与T口相通,系统卸荷。(H K X M型) (3)换向平稳与精度 A、B两口堵塞,换向过程中易产生冲击,换向不平稳,但精度高;A、B口都通T口,换向平稳,但精度低。 (4)启动平稳性阀在中位时,液压缸某腔通油箱,启动时无足够的油液起缓冲,启动不平稳。

各种流量调节阀工作原理及正确选型

暖通知识 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器臵于要求控温的房间,阀体臵于供暖系统上的

某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设臵温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10 mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一KV值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提高温控阀的调节性能。 二、电动调节阀 电动调节阀是适用于计算机监控系统中进行流量调节的设备。一般多在无人值守的热力站中采用。电动调节阀由阀体、驱动机构和变送器组成。温控阀是通过感温包进行自力式流量调节的设备,不需要外接电源;而电动调节阀一般需要单相220V电源,通常作为计算机监控系统的执行机构(调节流量)。电动调节阀或温控阀都是供热系统中流量调节的最主要的设备,其它都是其辅助设备。 三、平衡阀 平衡阀分手动平衡阀和自力式平衡阀。无论手动平衡阀还是自力式平衡阀,它们的作用都是使供热系统的近端增加阻力,

比例阀设计

内部资料 比 例 阀 设 计 2005年3月19日

目录 三制动压力调解阀(比例阀)的设计 (3) 3.1制动压力调解阀结构及工作原理 (3) 3.1.1制动力限压阀(BG) (3) 3.1.2制动力调解阀(BR16 BR18) (4) 3.1.3带有支路的制动力调解阀(BRMS) (5) 3.1.4串联的制动力调解阀 (7) 3.1.5带关闭特性的感载比例阀 (9) 3.1.6介绍几种实用的比例阀及惯性阀 (9) 3.2制动力调解阀的参数设计 (11) 3.3 比例阀特性曲线及其偏差的确定 (12) 3.4 尺寸链计算 (12) 3.5 装配过盈量的确定 (12) 3.6 比例阀零件材料选用 (12) 3.7液压感载式制动压力调解阀性能要求及台架试验方法 (14) 1 主题内容与适用范围 (15) 2 引用标准 (15) 3 技术要求 (15) 4试验方法 (17) 5 验收规则 (21) 6 标志包装运输储运 (21) 2005年3月19日星期六

三 制动压力调解阀(比例阀)的设计 3.1制动压力调解阀结构及工作原理 当汽车制动时, 随着汽车减速度的增加,从后轴转移到前轴的汽车载荷也将增加,然而, 由于制动力的分配在设计时已经确定了,因此仅允许其变化在相对的范围内。而在其它情况下,无论是前轴还是后轴的制动力超过允许值都存在着汽车侧滑或操纵失灵的危险。 为了避免这些不足,就要在制动时,按着载荷的变化而改变制动力的分配,以便在各种情况下,基本上得到最佳的制动力分配,至少防止了后轴的抱死。 3.1.1制动力限压阀(BG) 在末达到阀的关闭点之前,输入端和输出端的压力相同,当压力增加超过了关闭点的压力时,输出端保持恒定值,压力不在增加。见图 1。 图 1 制动力限压阀特性曲线 工作原理: 由制动主缸产生的液压由A1端进入环形空间(1),穿过阀(2)和腔(3)经A2端输出到制动分泵,当液压增大到关闭点时,阀的活塞(4)向下移动压迫弹簧(5)直到阀(2)的锥座关闭。腔(1)和腔(2)隔开,在这种情况下,即使压力再增加也不影响阀的功能。因为活塞(4)平衡了这种关系。如果制动分泵的体积增大,例如热膨胀导致腔(3)的压力下降,则弹簧(5)将使锥座(2)打开,继续保持腔(1)和腔(3)的关系。便利压力再次达到预定值。如果由于制动器液体膨胀,腔(3)中的压力超过腔(1)中的压力,则弹簧阀座(6)向下移动,并且锥阀(2)打开,又实现了新的平衡。见图 2 。

液压比例阀工作原理

液压比例阀工作原理)置信电气生产非晶合金变压器,2间电网投资的快速增长为公司提供了良好的发展机遇。市场占公司为国内唯一的规模化生产非晶合金变压器的企业,属于国家推广的节能类产品,%以上。受政府强制采购政策的推动,非晶合金变压器有望获得大范围的推广,80有率达到得益于此,公司将面临一个巨大的市场空间。建议重点关注特变电工和置信电气。电力行业“节能减排”形势严峻“十一五”期间在“十一五”乃至相当长的时间内,“节能减排”将是我国政府工作的重点。%。但电力%、主要污染物排放总量减少10节能减排目标:实现国内生产总值能耗降低20亿吨,排放的二氧年,发电用煤超过121)2006行业节能减排形势很严峻,具体表现为:%,烟尘排放量占全国排放量的40化碳占全国排放总量的54%,火电用水占工业用水的)电网32)我国火电发电机组所占比例大,大量小机组存在,这使得煤耗显著偏高。%。20“重发轻供”导致电网建设落后于电源建设,电网建设中超高压输电线路比重偏建设滞后,低,高耗能变压器使用量太大。电气设备将在“节能减排”中发挥重要作用加强现有电厂设备未来国内电力行业节能的主要途径为:大力发展特高压电网;我们认为,改造,提高能源使用效率;积极鼓励新能源开发利用。电气设备将在“发送配用”各个环节发 首页>>产品中心>>比例式减压阀 的详细资料:固定比例式减压阀一、产品[] 产品名称:固定比例式减压阀. 产品特点:本厂生产的比例式减压阀,外形美观,质量可靠,比例准确,工作平稳.既减动压也减静压。该阀利用阀体内部活塞两端不同截面积产生的压力差,改变阀后的压力,达到减压目的。我厂减压阀的减压比例是:2:1,3:1,4:

制动力分配调节装置

前后轮制动力分配的调节装置 一、概述 1.目的 如本章第一节所述,最大制动力f bmax,受轮胎与地面之间附着力fψ的限制。即: f ≤fψ=gψ bma x 当f b一旦等于fψ后,车轮便停止转动被“抱死”,而在地面上滑拖。制动管路中的工作压力再增大,也不可能使制动力f b增加。车轮一旦抱死便会失去抗侧滑的能力。如前轮抱死时,会使汽车失去方向操纵性,无法转向;如后轮抱死而前轮滚动时,会使汽车失去方向稳定性,丧失了对侧向力的抵抗能力而侧滑(甩尾),造成极为严重的恶果。可见,后轮抱死的危险性远大于前轮。因此,要使汽车既能得到尽可能大的制动力,又能保持行驶方向的操纵性和稳定性(不失控、不甩尾),即最佳制动状态,就必须使汽车前后轮同时达到“抱死”的边缘。其同步条件是:前后车轮制动力之比等于前后车轮对路面垂直载荷之比。 但是,随着装载量不同和汽车制动时减速度所引起载荷的转移不同,汽车前后车轮的实际垂直载荷比是变化的。因此,要满足最佳制动状态的条件,汽车前后轮制动力的比例也应是变化的。 2.前后轮制动管路压力分配特性曲线 (1)无制动力调节装置的汽车,其前后车轮控制管路的工作压力p1、p2基本是相等的,其压力比p2/ p1永远等于1(如图20-71虚线所示)。这就使得不论前后车轮制动器的型式、尺寸如何不同,但制动力的分配比例却永远是个常数,不可能使汽车在各种条件下都能获得最佳的制动状态。

图20-71 理想的前后轮制动管路压力分配特性曲线 p1-前轮制动管路中的压力;p2-后轮制动管路中的压力;c-质心 (2)理想的前后轮制动管路压力分配特性曲线如图20-71实线所示。由于汽车满载较空载时质心c后移,p2应相应增加,故其曲线较空载曲线上移。又因制动强度的增加(即工作压力p的增加),质心向前转移程度的增加,压力比p2/ p1应相应减小(小于1),故随压力p1的增加,曲线变得平缓。 为满足上述理想特性的要求,在一些汽车上采用了各种制动力调节装置,来调节前后车轮制动管路中的工作压力。常用的有限压阀、比例阀和感载比例阀。 二、液压式限压阀 1.安装位置 限压阀是一种最简单的压力调节阀,串联在制动主缸与后轮制动器的管路之间。 2.作用 它的作用是当前后制动管路压力p1和p2由零同步增长到一定值后,即自动将后轮制动器管路中的液压限定在该值不变,防止后轮抱死。

电磁换向阀原理

电磁换向阀是利用电磁铁推动阀芯来控制液流方向的。采用电磁换向阀可以使操作轻便,容易实现自动化操作,因此应用极广。 电磁换向阀只是采用电磁铁来操纵滑阀阀芯运动,而阀芯的结构及型式可以是各种各样的,所以电磁滑阀可以是二位二通、二位三通、二位四通、三位四通和三位五通等多种型式。 一般二位阀用一个电磁铁,三位阀需用两个电磁铁。 操纵电磁阀用的电磁铁分为交、直流两种,交流电磁铁的电压一般为220 伏。其特点是启动力 较大,换向时间短,价廉。但当阀芯卡住或吸力不够而使铁芯吸不上时,电磁铁容易因电流过 大而烧坏,故工作可靠性较差,动作时有冲击,寿命较低。直流电磁铁电压一般为24伏。其 优点是工作可靠,不会因阀芯卡住而烧坏,寿命长,体积小,但启动力较交流电磁铁小,而且 在无直流电源时,需整流设备。为了提高电磁换向阀的工作可靠性和寿命,近年来,国内外正 日益广泛地采用湿电磁铁,这种电磁铁与滑阀推杆间无须密封,消除了O形密封圈处的摩擦力,它的电磁线圈外面直接用工程塑料封固,不另作金属外壳,这样既保证了绝缘,又利于散热, 所以工作可靠,冲击小,寿命长。 换向阀 作用:变换阀心在阀体内的相对工作位置,使阀体各油口连通或断开, 从而 控制执行元件的换向或启停。 1换向阀的分类 座阀式换向阀 按结构形式分 < 滑阀式换向阀 转阀式换向阀 2 滑阀式换向阀 (1)换向阀的结构和工作原理 阀体:有多级沉割槽的圆柱孔 结构〈 阀芯:有多段环行槽的圆柱体 分类: 二位 按工作位置数分< 三位位:阀心相对于阀体的工作位置数。 四位

二通 按通路数分< 三通通: 阀体对外连接的主要油口数 四通(不包括控制油和泄漏油口) 五通 电磁换向阀 液动换向阀 按控制方式分< 电液换向阀 机动换向阀 手动换向阀

制动系

汽车制动系 一、名词解释 1.人力制动系 2.动力制动系 3.伺服制动系 4.制动器 5.鼓式制动器 6.盘式制动器 7.领蹄 8.从蹄 9.制动踏板感 10.制动控制阀的随动作用 11.附着力 12.制动力 13.理想的前后轮制动器制动力分配曲线 14.实际的前后轮制动器制动力分配曲线 15.辅助制动 16.缓速器 17.缓速作用 18.排气缓速式辅助制动 *19.液力缓速式辅助制动 *20.全液压动力制动系 二、填空 1.汽车制动系的功用包括:,,。 2.汽车制动系按作用不同可分为、、、、。 3.汽车制动系按制动能源不同可分为、、。 4.汽车制动系按制动能量的传输方式不同可分为、、、等。 5.汽车必须具备的制动系包括和。 6.摩擦式制动器根据旋转元件不同可分为、。 7.摩擦式制动器根据旋转元件的安装位置不同可分为、。 8.鼓式制动器按促动装置不同可分为、、。 9.等促动力制动器是指。 10.非平衡式制动器是指。 11.鼓式制动器间隙调整分为和两种。 12.在基本结构参数和轮缸工作压力相同的条件下,轮缸式制动器按制动效能从大到小排列顺序为、、、。 13.对于轮缸式制动器,进行全面调整的方法是;进行局部调整的方法是。 14.对于凸轮式制动器,进行全面调整的方法是;进行局部调整的方法是。 15.轮缸式制动器的间隙自调装置可分为和。 16.钳盘式制动器可分为和两种。 17.人力制动系中产生制动力的力源由___________供给的,人力制动系的优点是________________。

18.驻车制动系多用机械式传动装置的主要原因是 ______________。 19.制动轮缸的作用是__________________ 。 *20.伺服制动系统按伺服系统的输出力作用部位和对其控制装置的操纵方式不同,伺服制动系可分为 _______________和_______________两类。 *21.伺服制动系按伺服能量的形式分为____________、____________和____________三种,其伺服能量分别为____________、____________和___________ _。 22.动力制动系有______________、______________和______________三种。 23.一般来说,汽车气压制动系各元件之间的连接管路有___________、__________和__________三种。 24.国产斯太尔6×4和6×6型重型汽车气压制动系回路中,在中、后行车制动回路中还装有气压感载比例阀作为制动调节装置,其作用是。 25.在动力制动系中,防冻器的工作原理是 ____。 26.在动力制动系中,多回路压力保护阀的作用是 _________。 27.解放CAl091型汽车的双腔串联活塞式制动控制阀,当驾驶员踩下制动踏板并保持在某一位置(即维持制动状态)时,制动阀处于_______位置。上腔中___________及___________之和与_____________相平衡;下腔中____________与____________及_____________之和相平衡。 28.在动力制动系中,快放阀的作用是 _______________;继动阀的作用是____________。 29.东风EQl090E汽车双回路气压制动系中梭阀的作用是________ 。 30.在动力制动系中,制动气室的作用是 _______。 31.气压制动系作为一种动力制动系,比人力液压制动系更容易满足在踏板力不过________,而踏板行程又不过________的条件下产生较________制动力的要求。 32.南京NJ2045汽车装用的制动力调节装置为;陕汽SX2190汽车装用的制动力调节装置为。 33.常见的制动力调节装置及系统有、、、、。 34.辅助制动系的作用是。 35.制动系中产生缓速作用的方法有、、、、。 36.陕汽SX2190汽车装用的辅助制动系为。 37.陕汽SX2190汽车排气缓速式辅助制动系主要由组成。 三、判断正误(对的打√,错的打×,并改正) 1.行车制动系必须能实现渐进制动。() 2.液压制动的动力源是由发动机带动油泵提供的,属于动力制动。() 3.所谓的双回路制动就是指每个制动器上同时有两套制动回路。() 4.轴线固定的凸轮式制动器是一种等位移式制动器。() 5.汽车制动鼓外表面铸有若干肋片,以增加散热面积和增加刚度。() 6.以车轮制动器为驻车制动器的驻车制动系可用于应急制动。() 7.在对制动器间隙进行全面调整时,可调整蹄鼓的正确接触部位和间隙。() 8制动器间隙在踏板上的反映是制动踏板自由行程。() 9.在动力制动系中,制动器间隙过大将使制动踏板行程太长。() 10.在制动器工作过程中,摩擦片的不断磨损必将导致制动器间隙逐渐增大。() 11.盘式制动器中,密封圈的极限变形量等于制动器间隙为设定值时的完全制动所需活塞行程。() 12.伺服制动系在正常情况下,制动能量大部分仍由驾驶员的操纵力供给,动力伺服系统起辅助作用;而在动力伺服系统失效时,则全靠驾驶员供给。() 13.气压制动系的供能装置包括:空压机、贮气筒、调压阀、安全阀、滤清器、油水分离器、空气干燥器、制动控制阀、防冻器、多回路压力保护阀、快放阀、继动阀等部件。() 14.解放CAl091汽车的双腔串联活塞式制动控制阀,当后轮回路失效时,前轮回路是利用下腔室大、小活塞和平衡弹簧的张力相互平衡起随动作用。()

方向控制阀工作原理

第13章气动控制阀(Pneumatic control valves) 气动控制阀是控制、调节压缩空气的流动方向、压力和流量的气动元件,利用它们可以组成各种气动回路,使气动执行元件按设计要求正常工作。 13.1常用气动控制阀(Common pneumatic control valves) 和液压控制阀类似,常用的基本气动控制阀分为:气动方向控制阀、气动压力控制阀和气动流量控制阀。此外还有通过改变气流方向和通断以实现各种逻辑功能的气动逻辑元件。 13.1.1 气动方向控制阀(Pneumatic direction control valves) 气动方向控制阀是用来控制压缩空气的流动方向和气流通、断的气动元件。 13.1.1.1 气动方向控制阀的分类 气动方向控制阀和液压系统的方向控制阀类似,也分为单向阀和换向阀,其分类方法也基本相同。但由于气压传动具有自己独有的特点,气动方向控制阀可按阀芯结构、控制方式等进行分类。 1.截止式方向控制阀 芯的关系如图13.1 阀口开启后气流的流动方向。 点: 1) 构紧凑的大口径阀。 2 胶等)密封,当阀门关闭后始终存在背压,因此,密封性好、泄漏量小、勿须借助弹簧也能关闭。 3)因背压的存在,所以换向力较大,冲击力也较大。不适合用于高灵敏度的场合。 4)比滑柱式方向控制阀阻力损失小,抗粉尘能力强,对气体的过滤精度要求不高。 2. 滑柱式方向控制阀 滑柱式气动方向控制阀工作原理与滑阀式液压控制元件类似,这里不具体说明。 滑柱式方向控制阀的特点: 1)阀芯较截止式长,增加了阀的轴向尺寸,对动态性能有不利影响,大通径的阀一般不易采用滑柱式结构; 2)由于结构的对称性,阀芯处在静止状态时,气压对阀芯的轴向作用力保持平衡,容易设计成气动控制中比较常用的具有记忆功能的阀; 3)换向时由于不受截止式密封结构所具有的背压阻力,换向力较小;

2位5通阀原理

二位五通电磁阀原理图解 电-气转化组件将电讯号转化为气动讯号,电气讯号输入控制了气动输出。最常用的电-气转换组件是电磁阀(Solenoid actuated valves) 。电磁阀既是电器控制部分和气动执行部分的接口,也是和气源系统的接口。电磁阀接受命令去释放,停止或改变压缩空气的流向,在电-气动控制中,电磁阀可以实现的功能有:气动执行组件动作的方向控制,ON/OFF开关量控制,OR/NOT/AND 逻辑控制。在电磁阀家族中,最重要的是电磁控制换向阀(Solenoid actuated directional control valves) 。 电磁控制换向阀的工作原理 在气动回路中,电磁控制换向阀的作用是控制气流通道的通、断或改变压缩空气的流动方向。主要工作原理是利用电磁线圈产生的电磁力的作用,推动阀芯切换,实现气流的换向。按电磁控制部分对换向阀推动方式的不同,可以分为直动式电磁阀和先导式电磁阀。直动式电磁阀直接利用电磁力推动阀芯换向,而先导式换向阀则利用电磁先导阀输出的先导气压推动阀芯换向。 图4.2a表示3/2(三路二位)直动式电磁阀(常断型)结构的简单剖面图及工作原理。线圈通电时,静铁芯产生电磁力,阀芯受到电磁力作用向上移动,密封垫抬起,使1、2接通,2、3断开,阀处于进气状态,可以控制气缸动作。当断电时,阀芯靠弹簧力的作用恢复原状,即1、2断,2、3通,阀处于排气状态。

图4.2b表示5/2(五路二位)直动式电磁阀(常断型)结构的简单剖面图及工作原理。起始状态,1,2进气﹔4,5排气﹔线圈通电时,静铁芯产生电磁力,使先导阀动作,压缩空气通过气路进入阀先导活塞使活塞启动,在活塞中间,密封圆面打开通道,1,4进气,2,3排气﹔当断电时,先导阀在弹簧作用下复位,恢复到原来的状态。

流量调节阀的工作原理以及选型

流量调节阀的工作原理以及选型 计量收费主要通过三个途径宏观节能:首先是装设了流量调节阀,实现了流量平衡,进而克服了冷热不均现象;其次是通过温控阀的作用,利用了太阳能、家电、照明等设备的自由热;第三是提高了用热居民的节能意识,减少了开窗户等的无谓散热。而这三条节能途径,其中有二条都是通过流量调节阀来实现的。可见,流量调节阀,在计量收费的供热系统中,占有何等重要的地位。因此,如何正确的进行流量调节阀的选型设计,就显得非常重要。 一、温控阀阀 1、散热器温控阀的构造及工作原理 用户室内的温度控制是通过散热器恒温控制阀来实现的。散热器恒温控制阀是由恒温控制器、流量调节阀以及一对连接件组成,其中恒温控制器的核心部件是传感器单元,即温包。温包可以感应周围环境温度的变化而产生体积变化,带动调节阀阀芯产生位移,进而调节散热器的水量来改变散热器的散热量。恒温阀设定温度可以人为调节,恒温阀会按设定要求自动控制和调节散热器的水量,从而来达到控制室内温度的目的。温控阀一般是装在散热器前,通过自动调节流量,实现居民需要的室温。温控阀有二通温控阀和三通温控阀之分。三通温控阀主要用于带有跨越管的单管系统,其分流系数可以在0~100%的范围内变动,流量调节余地大,但价格比较贵,结构较复杂。二通温控阀有的用于双管系统,有的用于单管系统。用于双管系统的二通温控阀阻力较大;用于单管系统的阻力较小。温控阀的感温包与阀体一般组装成一个整体,感温包本身即是现场室内温度传感器。如果需要,可以采用远程温度传感器;远程温度传感器置于要求控温的房间,阀阀体置于供暖系统上的某一部位。 2、温控阀的选型设计 温控阀是供暖系统流量调节的最主要的调节设备,其他调节阀都是辅助设备,因此温控阀是必备的。一个供暖系统如果不设置温控阀就不能称之谓热计量收费系统。在温控阀的设计中,正确选型十分重要。温控阀的选型目的,是根据设计流量(已知热负荷下),允许阻力降确定KV值(流量系数);然后由KV值确定温控阀的直径(型号)。因此,设计图册或厂家样本一定要给出KV值与直径的关系,否则不便于设计人员使用。 在温控阀的选型设计中,绝不是简单挑选与管道同口径的温控阀即完事大吉。而是要在选型的过程中,给选定的温控阀造成一个理想的压差工作条件。一个温控阀通常的工作压差在2~3mH2O之间,最大不超过6~10mH2O。为此,一定要给出温控阀的预设定值的范围,以防止产生噪音,影响温控阀正常工作。当在同一K V值下,有二种以上口径的选择时,应优先选择口径小的温控阀,其目的是为了提

方向控制阀的原理和区别

今天为大家带来多种方向控制阀的原理和区别。控制阀由两个主要的组合件构成,阀体组合件和执行机构组合件(或执行机构系统),分为四大系列:单座系列控制阀、双座系列控制阀、套筒系列控制阀和自力式系列控制阀。四种类型阀门的变种可导致许许多多不同的应用结构,每种结构有其特点和优、缺点。我们一起来看吧~ 液压阀是用来控制液压系统中油液的流动方向或调节其流量和压力的。 方向控制阀作为液压阀的一种,利用流道的更换控制着油液的流动方向。 单向型方向控制阀是只允许气流沿一个方向流动的方向控制阀,如单向阀、梭阀、双压阀等。 换向型方向控制阀是可以改变气流流动方向的方向控制阀,简称换向阀。 按照控制方式还可分为电磁阀,机械阀,气控阀,人控阀。

单向型方向控制阀1.单向阀

单向阀是气流只能朝一个方向流动,而不能反向流动的阀。单向阀常与节流阀组合,用来控制执行元件的速度。 组成:阀体、阀芯、弹簧等。 作用:只允许液流一个方向流动,反向则被截止。 工作原理:正向导通、反向截止。 应用:常被安装在泵的出口,一方面防止压力冲击影响泵的正常工作,另一方面防止泵不工作时系统油液倒流经泵回油箱。被用来分隔油路以防止高低压干扰。

2.液控单向阀 液控单向阀是依靠控制流体压力,可以使单向阀反向流通的阀。这种阀在煤矿机械的液压支护设备中占有较重要的地位。 液控单向阀与普通单向阀不同之处是多了一个控制油路K,当控制油路未接通压力油液时,液控单向阀就象普通单向阀一样工作,压力油只从进油口流向出油口,不能反向流动。 当控制油路有控制压力输入时,活塞顶杆在压力油作用下向右移动,用顶杆顶开单向阀,使进出油口接通。若出油口大于进油口就能使油液反向流动。 组成:普通单向阀+小活塞缸内泄式和外泄式。 工作原理: a. 无控制油时,与普通单向阀一样 b. 通控制油时,正反向都可以流动。 应用:a、保持压力。b、液压缸的“支承”。c、实现液压缸锁紧。d、大流量排油。 e、作充油阀。 f、组合成换向阀。

四通换向阀的工作原理

四通换向阀的结构与工作原理 1、四通换向阀的构成 四通换向阀主要由四通气动换向阀(主阀)、电磁换向阀(控制阀)及毛细管组成。主阀内由滑块、活塞组成活动阀芯,主阀阀体两端有通孔可使两端的毛细管与阀体内空间相连通,滑块两端分别固定有活塞,活塞两边的空间可通过活塞上的排气孔相通。控制阀由阀体和电磁线圈组成。阀体内有针型阀芯。主阀与控制阀之间有三根(或四根)毛细管相连,形成四通换向阀的整体。 2、四通换向阀的工作原理, 主阀的管口(4)连接于压缩机高压排气口,管口(2)连接于压缩机低压吸气口。(1)、(3)两个管口分别连接蒸发器的出气口和冷凝器的进气口。按图所示,(3)接冷凝器进气口,(1)接蒸发器出气口。 当电磁阀不通电时,系统工作于制冷状态,控制阀因弹簧1的作用,阀心移至左端,处于释放状态,此时毛细管E与C连通。因为E接在低压吸气管上,所以毛细管C及主阀内左端空间均为低压,高压气体由主阀管口4进入主阀,经活塞I的排气孔使主阀内的右端空间成为高压,推动主阀阀芯移至左端,管口2与管口1连通而管口4与管口3连通,系统形成制冷循环状态。(如图所示) 当电磁阀通电时,电磁力吸动控制阀阀芯向右移动,毛细管E与D相连。主阀内右端空间成为低压,高压气体经活塞II的排气孔进入主阀内左端空间,推动阀芯移向右端,管口2与管口3连通而管口4与管口1连通,蒸发器、冷凝器的功能对换,系统转换成制热循环状态。 3、四通换向阀应用中的注意事项! a)四通换向阀的各接口焊接应严密、可靠,避免出现假焊、虚焊等不良现象; b)四通换向阀不应出现与其它管路、部件碰撞、摩擦现象,以避免造成噪音及部件损坏等后果 c)四通换向阀线圈应固定牢固,避免出现松动现象,影响四通阀吸合的可靠性 d)四通换向阀在焊接时必须采取有效的降温措施,以防置在焊接过程中因高温引起阀芯变形,造成部件报废; e)使用中四通换向阀的四根管路应为2热2凉,如出现温差过小或无温差,说明四通换向阀高、低压已经串气,应及时更换四通换向阀。 四根毛细管连接主阀与控制阀的四通换向阀原理介绍 主阀与控制阀有四根毛细管连接的四通换向阀,与三根毛细管连接的四通换向阀相比较,控制阀下边的三根毛细管连接方法相同,但在控制阀上增加了一根毛细管连接至主阀的高压进气管4,多了一条高压通道。这种四通换向阀的控制阀与主阀在结构和动作原理上基本一致,即:控制阀本身也是一个四通换相阀。 当系统处于制冷状态时,电磁线圈不通电,控制阀释放,阀芯因弹簧力作用移至左端,毛细管E与C连通,B与D连通,主阀管口4 内的高压通过毛细管B、D进入主阀内右端空间,主阀内左端空间经毛细管C、E连至低压出气口2,主阀内部压力为右高左低,活塞带动滑块移向左端,管口2与1连通,4与3连通; 当系统处于制热状态时,电磁线圈通电,电磁力的作用使控制阀阀芯移向右端,毛细管E 与D连通,B与C连通,主阀内左端成为高压而右端变成低压,阀芯被推向右端,管口2与3连通,4与1连通。

比例阀原理

比例阀结构及工作原理 比例阀结构及工作原理 1 引言 电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(scr ewin cartridge proportional valve),另一类是滑阀式比例阀(spool proporti onal valve)。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与

流量控制阀工作原理及其特点

流量控制阀工作原理及其特点 流量控制阀是在一定压力差下,依靠改变节流口液阻的大小来控制节流口的流量,从而调节执行元件(液压缸或液压马达)运动速度的阀类。主要包括节流阀、调速阀、溢流节流阀和分流集流阀等。安装形式为水平安装。 流量控制阀的产品特点: 流量控制阀又称400X流量控制阀,是一种采用高精度先导方式控制流量的多功能阀门。适用于配水管需控制流量和压力的管路中,保持预定流量不变,将过大流量限制在一个预定值,并将上游高压适当减低,即使主阀上游的压力发生变化,也不会影响主阀下游的流量。 流量控制阀的选型:可根据管道等径选用。可根据最大流量和阀门的流量范围选用。 流量控制阀的工作原理: 数显流量控制阀其结构是由自动阀芯,手动阀芯及显示器部分组成。显示部分则由流量阀机芯、传感器发讯器、电子计算器显示器部分组成。 它的工作是及其复杂的。被测水流经阀门,水流冲击流量机芯内的叶轮,叶轮旋转与传感发讯器感应,使传感器发出与流量成正比的电讯号,流量电讯号通过导线送入电子计算器,经过计算器计算、微处理器处理后,其流量值显示出来。 手动阀芯是用来调节流量的,根据显示值来设定所需的流量值。自动阀芯是用来维持流量恒定的,即在管网压力变化时,自动阀芯就会在压力的作用下自动开大火关小阀口来维持设定流量数值不变。 真空阀门 目录 一、真空充气阀类 1、DDC-JQ系列电磁真空带充气阀

2、DDC-JQ-B系列电磁真空带充气阀 3、DYC-Q系列低真空电磁压差充气阀 4、GYC-JQ系列高真空电磁压差式充气阀 5、GQC系列电磁高真空充气阀 6、GDC-Q5型、GDC-5型电磁真空阀 二、真空挡板阀类 1、GDC-J型系列电磁高真空挡板阀 2、GDQ型系列气动高真空挡板阀 3、GD-J型系列高真空挡板阀 4、GDQ-J(b)型系列电、气动高真空挡板阀(带波纹管密封) 5、GDQ-J(b)-A型系列气动高真空挡板阀(带波纹管密封) 6、GD-J(b) 型系列手动高真空挡板阀(带波纹管密封) DDC-JQ系列电磁真空带充气阀 DDC-JQ型系列电磁真空带充气阀是安装在机械式真空泵上的专用阀门。阀门与泵接在同一电源上,泵的开启与停止直接控制了阀的开启与关闭。当泵停止工作或电源突然中断时,阀能自动将真空系统封闭,并将大气通过泵的进气口充入泵腔,避免泵油返流污染真空系统。 适用的工作介质为空气及非腐蚀性气体。 注:快卸及活套法兰连接方式请参阅DDC-JQ-B系列电磁真空带充气阀(内有DN100规格). 主要技术性能 适用范围(Pa) 105~1x10-2 <6.7x10-4 阀门漏率(Pa.L/S)

方向控制阀

.-方向控制阀

————————————————————————————————作者:————————————————————————————————日期:

教案首页课程名称液压与气动技术 课题 第5章液压控制元件5.1 液压控制元件的概述5.2 方向控制阀 课型理论 周次 学时 2 授课时间月日月日月日月日月日班级(人数) 教学目的【知识目标】了解液压控制阀的功用、分类和结构 掌握换向阀位通滑阀机能 【能力目标】掌握换向阀位、通、滑阀机能 【德育目标】培养学生用理论知识解决简单的实际问题的能力。 教学重点1、换向阀的位、通、滑阀机能的概念2、换向阀符号的含义 教学难点换向阀工作原理 教学方法讲授+练习 教具/设备 作业 教学后记 授课教师冯莉2012年月日审签年月日

组织教学:提示学生上课,集中学生注意力,检查学生出勤情况 复习旧课:1、液压缸的密封装置有哪些? 2、液压缸为什么要缓冲?缓冲方法有哪些? 讲授新课:第五章液压控制阀 5.1概述 一、定义:液压控制元件也叫液压控制阀(液压阀)。 二、功用:控制和调节液压系统中液体流动的方向、压力的高低、流量的大小,以满足执行元件的工作要求。 三、对液压控制阀的基本要求 ①动作灵敏、性能好、工作可靠、冲击振动和噪声小; ②油液通过阀时的液压损失要小;③密封性能好; ④结构简单、紧凑,体积小,重量轻,安装、维修方便,成本低。 四、分类 (1)按机能(用途)分类 压力控制阀:溢流阀、减压阀、顺序阀、卸荷阀、缓冲阀、限压切 断阀、压力继电器等 流量控制阀:节流阀、单向节流阀、调速阀、分流阀、排气节流阀 等 方向控制阀:单向阀、换向阀、行程减速阀、比例方向控制阀、快 速排气阀、脉冲阀等 (2)按连接方式分类 管式连接阀:将板式阀用螺钉固定在连接板(或油路板、集成块)上。 如:螺纹式联接、法兰式连接。 板式或叠加式连接:单层连接板式、双层连接板式、叠加阀、多路阀。 插装式连接:螺纹式插装(二、三、四通插装阀)、盖板式插装(二通)。 (3)按操纵方法分类: 手动阀:手把及手轮、踏板、杠杆 机动阀:档块及碰块、弹簧 液/气动阀:液动阀、气动阀 电液/气动阀:电液动阀、电气动阀 电动阀:普通/比例电磁铁控制、步进电动机控制、伺服电动机控制(4)按输出参数可调性分类: 开关控制阀:方向控制阀、顺序阀、限速切断阀、逻辑元件 输出参数连续可调的阀:溢流阀、减压阀、节流阀、调速阀、各类 电液控制阀(比例阀、伺服阀) 5.2 方向控制阀 作用:方向控制阀(简称方向阀),用来控制液压系统的油流方向,接通或断开油路,从而控制执行机构的启动、停止或改变运动方向。 分类:单向阀普通单向阀:只允许油液正向流动,不许反流。教学方法及授课要点随记

六通换向阀的工作原理

在石油、化工、矿山和冶金等行业中,六通换向阀是一种重要的流体换向设备。该阀安装在稀油润滑系统输送润滑油的管道中。通过变换密封组件在阀体中的相对位置,使阀体各通道连通或断开,从而控制流体的换 向和启停。 六通换向阀的性能参数 公称通径(mm)50~150 适用温度(℃)室温~80 公称压力(MPa)1.0 适用介质润滑油 连接形式法兰 强度试验压力(MPa)1.5 密封试验压力(MPa)1.1 耐压试验温度(℃)常温 六通换向阀的工作原理和结构特点 六通换向阀主要由阀体、密封组件、凸轮、阀杆、手柄和阀盖等零部件组成(图1)。阀门由手柄驱动,通过手柄带动阀杆与凸轮旋转,凸轮具有定位驱动与锁定密封组件的开启与关闭功能。手柄逆时针旋转,两组密封组件分别在凸轮的作用下关闭下端的两个通道,上端的两个通道分别与管道装置的进口相通。反之,上端的两个通道关闭,下端两个通道与管道装置的进口相通,实现了不停车换向。 图1 六通换向阀 1上阀盖 2手柄 3阀杆 4凸轮 5密封组件 6阀盖 7阀体 (1)六通阀的阀体由隔板分成两腔,每腔都有3个通道,中间为进油口,两端为出油口。阀体为碳钢板焊结构,体积小,质量轻,结构紧凑,提高了材料的利用率,缩短了生产周期,降低了成本。密封面堆焊不锈钢,防锈耐腐蚀,密封面经过精加 工后抛光研磨,表面粗糙度Ra≤0.8μm。 (2)六通阀有两组密封组件。每组密封组件(图2)由阀瓣、密封圈、调整块、调节螺钉、夹板和螺栓组成。阀瓣为碳钢板焊件,设有加强筋,即增加阀瓣强度又起导向作用,保证每组阀瓣间的同轴度。阀瓣上镶嵌聚氨脂橡胶圈,该材料具有耐油、耐磨损、性能稳定、密封良好和使用寿命长的特点。在凸轮的作用下,密封圈的球面与阀体密封面相接触产生挤压弹性变形,达到密封效果。调整块和

相关文档