文档库 最新最全的文档下载
当前位置:文档库 › (完整版)五年级下册数学长方体和正方体教案

(完整版)五年级下册数学长方体和正方体教案

(完整版)五年级下册数学长方体和正方体教案
(完整版)五年级下册数学长方体和正方体教案

第三单元:长方体和正方体

第1课时长方体

教学内容:长方体的认识

教学目标:

1.初步认识立体图形、认识长方体的特征。

2.通过观察、想象、动手操作等活动进一步发展空间观念。

3.继续培养学生学习数学的兴趣,进一步形成勇于探索、善于合作交流的学习品质。

教学重点:掌握长方体的特征。

教学难点:通过观察、想象、动手操作等活动进一步发展空间观念

教学过程

一、复习导入

1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的平面图形)

2.投影出示教材第18页的主题图。提问:这些还是平面图形吗?(不是)教师:这些物体都占有一定的空间,它们都是立体图形。提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体?

3.举例:在日常生活中你还见到过哪些长方体的物体?长方体又具有什么特征呢?引出新课并板书课题。

二、新课讲授

1.认识长方体的面、棱、顶点。

(1)请学生拿出自己准备的长方体学具,摸一摸,说一说。你有什么发现?(长方体有平平的面)

板书:面

(2)再请学生摸一摸长方体相邻两个面相交的地方有什么?讲述:把两个面相交的边叫做棱。

板书:棱

(3)再请同学摸一摸三条棱相交的地方有什么?(一个点)讲述:把三条棱相交的点叫做顶点。

板书:顶点

(4)师生在长方体教具上指出面、棱、顶点。学生依次说出名称。

2.研究长方体的特征。

(1)面的认识。

①请学生拿出长方体学具,按照一定的顺序数一数,长方体一共有几个面?(6个面)有几组相对的面?(3组)前后,上下,左右。

②引导学生观察长方体的6个面各是什么形状的?

板书:6个面都是长方形,特殊情况下有两个相对的面是正方形。教师分别出示这两种情况的教具。

③引导学生进一步验证长方体相对的面的特征。

板书:相对的面完全相同。

④请学生完整叙述长方体面的特征。

(2)棱的认识。教师出示长方体框架教具,引导学生注意观察:

①长方体有几条棱?②这些棱可分为几组?③哪些棱的长度相等?通过以上三个问题,分组讨论,实际测量。根据学生汇报后并板书:相对的棱长度相等。教师:请大家把长方体棱的特征完整地总结一下。

(3)顶点的认识。课件演示:先闪动三条棱再分别闪动三条棱相交的点。师:请你们按照一定的顺序数一数,长方体有几个顶点?

板书:8个顶点。

指名让学生把长方体的特征完整地总结一下。

3.认识长方体的直观图。

(1)请学生拿出长方体学具,放在桌面上观察,最多能看到它的几个面?(三个面)

(2)怎样把长方体画在纸上或黑板上。

4.认识长方体的长、宽、高。

(1)讨论:要知道长方体12条棱的长度,只要量哪几条棱就可以了?

(2)归纳:我们把相交于同一个顶点的三条棱的长度分别叫做长方体的长、宽、高。习惯上,长方体的位置固定以后,我们把底面中较长的棱叫做长,较短的棱叫做宽,和底面垂直的棱叫做高。

(3)拓展:老师将长方体横放、竖放,让学生分别说出长方体的长、宽、高。

三、课堂作业

1.完成教材第19页“做一做”。

2.完成教材第21页练习五的第1、2、3、6、7题。

(1)第1题:此题是让学生观察长方体纸巾盒,说出各个面的形状,哪些面形状是相同的?各个面的长和宽各是多少?同桌合作。

(2)第2题:求长方体的棱长和。

(3)第4题:让学生通过观察,发现长方体棱之间的关系,如:各组棱互相平行;与其中一条棱垂直的几条棱相互平行等。

(4)第6题、第7题学生独立完成。

四、课堂小结

今天我们认识了长方体,知道了长方体的相关知识,谁愿意来说一说,这节课你有什么收获?

五、课后作业

完成练习册中本课时练习。

板书设计:

长方体

相交于一个顶点的三条棱的长度叫做长方体的长、宽、高。

长方体的六个面都是长方形,特殊情况下两个相对的面是正方形。相对的面完全相同。相对的棱长度相等。

第2课时正方体

教学内容:正方体的认识

教学目标:

1.通过观察、操作等活动,认识正方体、掌握正方体的特征。

2.通过观察比较弄清长方体与正方体的联系与区别。

3.通过学习活动培养学生的操作能力,发展学生的创新意识和空间概念。教学重点:认识正方体的特征。

教学难点:理清长方体和正方体的关系。

教学过程

一、复习导入

1.回忆长方体的特征,请学生用语言进行描述。

2.操作:同桌交流,分别说出长方体的棱在哪儿?几条棱可以分别分成几组?相交于同一个顶点的三条棱叫做什么?

教师:今天这节课,我们继续学习一种特殊的立体图形。

(板书课题:正方体)

二、新课讲授

探索正方体的特征。

1.想一想。正方体具有什么特征呢?我们在研究时应该从哪方面去思考?(也应该从面、棱、顶点这三个方面去考虑)

2.合作学习。

学生根据手中的正方体学具,小组合作探究。

3.集体交流。

(1)组:正方体有6个面,6个面大小都相等,6个面都是正方形。

(2)组:正方体有12条棱,正方体的12条棱的长度相等。

(3)组:正方体有8个顶点。请学生到讲台前,手指正方体模型,按“面、棱、顶点”的特征有序地数一数,摸一摸,其他同学观察思考。

教师问:怎样判断一个图形是不是正方体?

4.教学正方体和长方体的联系与区别:

老师出示一个正方体教具。请学生讨论:它是不是一个长方体?

学生充分讨论,集体交换意见。

学生甲组:这个物体的六个面都是正方形,它不是长方体。

学生乙组:长方体6个面是对面的面积相等,而这个物体是6个面的面积相等,所以我们也认为它不是长方体。

学生丙组:我们组有不同意见,因为我们认为它的6个面虽然都是正方形,不是长方形,但是正方形是特殊的长方形,它的12条棱也包括每组4条棱长度相等;6个面面积相等,也包括了相对的面面积相等这些条件,所以我们认为它是长方体。

教师根据学生的发言进行总结:正方体是特殊的长方体,长方体中包含着正方体,用集合圈表示为:

教师:我们把长、宽、高都相等的长方体叫做正方体或者叫立方体。

三、课堂作业

1.教材第20页的“做一做”。

2.教材第21~22练习五的第4、5、8、9题。

四、课堂小结

今天这节课,大家有什么收获?(学生畅所欲言谈收获,教师将学生的发言进行总结)

五、课后作业

完成练习册中本课时练习。

板书设计

正方体

有6个面,都是正方形,每个面的面积相等。

有12条棱,每条棱长度相等。有8个顶点。

2.长方体和正方体的表面积

第1课时长方体和正方体的表面积(1)

教学内容:长方体和正方体的表面积概念,长方体和正方体表面积的计算(教材第24页例1、例2,以及第25~26页练习六第1、2、3、4、6、7题)。

教学目标:

1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。

2.会用求长方体和正方体表面积的方法解决生活中的简单问题。

3.培养学生分析能力,发展学生的空间概念。

教学重点:掌握长方体和正方体表面积的计算方法。

教学难点:会用求长方体和正方体表面积的方法解决生活中的简单问题

一、复习导入】

1.什么是长方体的长、宽、高?什么是正方体的棱长?

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

二、新课讲授

1.教学长方体和正方体表面积的概念。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

2.学习长方体和正方体表面积的计算方法。

(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

方法一:长方体的表面积=6个面的面积和

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0 .2+0.35+0.35=1.66(m2)

方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两

个面的面积

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)

方法三:(上面的面积+前面的面积+左面的面积)×2

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)

(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?

(6)请同学们尝试自己解答教材第24页例2,集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业

1. 完成教材第23页“做一做”。

2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结

今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?

五、课后作业

板书设计

长方体和正方体的表面积(1)

长方体的表面积=(长×宽+长×高+宽×高) ×2

正方体的表面积=边长×边长×6

第2课时长方体和正方体的表面积(2)

教学内容:求一些不是完整六个面的长方体、正方体的表面积,(教材25页第5题、教材第26页第9、10题)。

教学目标:

1.利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。

2.通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲

教学重点:能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。

教学难点:求一些不是完整六个面的长方体、正方体的表面积。

一、复习导入

师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)

1.做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?

2.一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。

二、新课讲授

1.教材25页第5题

(1)一个长方体的饼干盒,长10 cm、宽6 cm、高12 cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?

(2)学生读题,看图,理解题意。

(3) “上下面不贴”说明什么?(说明只需要计算4个面的面积,上下两个面不计算)

(4)学生尝试独立解答。

(5)集体交流反馈。

方法一:10×12×2+6×12×2=240+144=384 (cm2)

方法二:(10×12+6×12)×2=(120+72)×2=384 (cm2)

答:这张商标纸的面积至少需要384平方厘米。

2.教材26页第8题

(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)

(2)学生读题,看图,理解题意。

(3)提问“鱼缸的上面没有盖”说明什么?(说明只需计算正方体5个面的面积之和)

(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。

3×3×5=9×5=45 (dm2)

答:制作这个鱼缸时至少需要玻璃45平方分米。

三、课堂作业

完成教材第26页练习六第9、10题。

四、课堂小结

提问:同学们,这节课我们学习了求一些不是完整六个面的长方体、正方体的

表面积,这节课你有什么收获?

五、课后作业

完成练习册中本课时练习。

板书设计长方体和正方体的表面积(2)

一个长方体的饼干盒,长10cm、宽6cm、高12cm。如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少需要多少平方厘米?

方法一:10×12×2+6×12×2

=240+144

=384 (cm2)

方法二:(10×12+6×12)×2

=(120+72)×2

=384 (cm2)

答:这张商标纸的面积至少需要384平方厘米。

一个玻璃鱼缸的形状是正方体,棱长 3 dm,制作这个鱼缸时至少需要玻璃多少平方分米?

3×3×5

=9×5

=45 (dm2)

答:制作这个鱼缸时至少需要玻璃45平方分米。

3.长方体和正方体的体积

第1课时体积和体积单位

教学内容:体积和体积单位(教材第27、28页的内容)。

教学目标:

1.使学生理解体积的概念,了解常用的体积单位,形成表象。

2.培养学生比较、观察的能力。

3.通过学生的动手实践,加强学生空间概念的发展。

教学重点:常用体积单位。

教学难点:常用体积单位。

一、复习导入

口答:1米、1分米、1厘米是什么计量单位?

1平方米、1平米分米、1平方厘米又是什么计量单位?

二、新课讲授

1.认识体积的概念。

(1)故事导入 :多媒体课件演示乌鸦喝水的故事。看完后,老师提问:乌鸦是怎么喝到水的?为什么把石头放进瓶子里,瓶子里的水就升上来了。

引导学生说出石头占了水的空间,所以水就升上来了。

(2)实验证明老师:石头真的占了水的空间吗?我们再来做个实验验证一下。取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒入第二个杯子,让学生观察会出现什么情况。学生通过观察会发现:第二个杯子装不下第一个杯子的水,因为第二个杯子里放了一块石头,石头占了一部分空间,所以装不下了。

(3)观察比较

观察:电视机,影碟和手机,哪个所占的空间大?教师:不同的物体所占空间的大小不同。

(4)体积概念的引入

教师:物体所占空间的大小叫做物体的体积。

提问:体积与表面积的概念相同吗?为什么?

2.体积单位的认识。

(1)出示两个长方体。

提问:怎样比较这两个长方体体积的大小呢?(要比较这两个长方体体积的大小就要用统一的体积单位来测量)

(2)根据常用的长度单位和面积单位,想一想常用的体积单位有哪些?

教师:计量体积要用体积单位,常用的体积单位有立方厘米、立方分米、立方米,可以分别写成cm3,dm3和m3。

(3)认识体积单位。

老师:请你猜一猜1cm3,1dm3,1m3是多大的正方体。

学生讨论后回答:棱长是1cm的正方体,体积是1cm3;棱长是1dm的正方体,体积是1dm3;棱长是1m的正方体,体积是1m3。教师请学生看教材,证实同学们的回答是正确的。

(4)再次感受体积单位实际的大小。

①一粒蚕豆的大小是1cm3,请同学们估出身边体积是1cm3的物体。

②一个粉笔盒的大小是1dm3,请同学们用手捧出1dm3大小的物体。

③用3根1m长的木条做成一个互成直角的架子,把它放在墙角,看看1m3有多大,估计一下,大约能容纳几个同学?

教师:立方厘米,立方分米,立方米是常用的体积单位,要计算一个物体的体积,就要看这个物体中含有多少个体积单位,请同学们用4个1cm3的小正方体摆成一个长方体,你知道这个长方体的体积是多少吗?(4cm3)为什么?(因为它是由4个体积是1cm3的小正方体摆成的)

(5)练习:完成课本第28页“做一做”第1、2题。

三、课堂作业

教材第32页练习七1~5题。

四、课堂小结

教师:同学们,今天我们认识了体积和体积单位。它们在我们的生活中应用非常广泛。通过今天的学习,大家又有什么收获呢?

五、课后作业

完成练习册中本课时练习。

板书设计

1.体积和体积单位

物体所占空间的大小叫做物体的体积。常用的体积单位有立方厘米,立方分米,立方米。可分别写成cm3,dm3,m3。

第2课时长方体和正方体的体积

教学内容:长方体、正方体的体积计算

教学目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重点:长方体、正方体体积计算。

教学难点:长方体、正方体体积计算

一、复习导入

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入第29页表格。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长×宽×高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

(3)质疑:求长方体的体积公式需要知道什么条件?

2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:V=a.a.a=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。V=abh=7×4×3=84(cm3)

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业

完成课本第31页“做一做”第1、2题。

四、课堂小结

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业

完成练习册中本课时练习。

板书设计

2.长方体和正方体的体积

长方体的体积=长×宽×高

V=abh

正方体体积=棱长×棱长×棱长

V=a.a.a=a3

第3课时体积单位间的进率

教学内容:体积单位间的进率

教学目标:

1.通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的改写。

2.使学生学会用名数的改写解决一些简单的实际问题。

3.培养学生根据具体情况灵活应用不同的单位进行计算的能力。

教学重点:掌握名数的改写方法。

教学难点:用名数的改写解决一些简单的实际问题。

一、复习导入

1.口答:说一说常用的体积单位有哪些?

2.填一填。

1千米=()米

1米=()分米=()厘米

1平方米=()平方分米

1平方分米=()平方厘米

二、新课讲授

1.学习体积单位间的进率。

(1)老师板书教材第34页例2:一个棱长为1dm的正方体,它的体积是1dm3。想一想,它的体积是多少立方厘米。

(2)学生读题,理解题意。

(3)老师出示棱长为1dm的正方体模型。

提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm)

(4)计算。

请学生想一想,根据正方体体积的计算公式,能不能算出这个正方体体积是多少立方厘米?

学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说:

①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。

②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积×高,也就是100×10=1000cm3,得出它的体积。

老师根据学生的回答,板书:V=a3

10×10×10=1000(cm3)

1dm3=1000cm3

(5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少?

1立方分米=1000立方厘米(老师板书)

(6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。

老师板书:1立方米=1000立方分米

(7)观察板书内容。

想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。

2.体积单位,面积单位,长度单位的比较。

(1)长度单位:米、分米、厘米,相邻两个单位之间的进率是十。

(2)面积单位:平方米、平方分米、平方厘米,相邻两个单位之间的进率是一百。

(3)体积单位:立方米、立方分米、立方厘米,相邻两个单位之间的进率是一千。

3.学习体积单位名数的改写。

(1)回忆:怎样把高级单位的名数变换成低级单位的名数?(要乘进率)怎样把低级单位的名数变换成高级单位的名数?(要除以进率)

(2)学习教材第35页的例3。

板书:3.8m3是多少立方分米?2400cm3是多少立方分米?

请学生尝试独立解答,老师巡视。

指名让学生说一说是怎样做的。

板书:3.8m3=(3800)dm32400cm3=(2.4)dm3

(3)学习教材第35页的例4。

学生理解题意明确箱子上的尺寸是这个长方体的长、宽、高。请学生说出这个箱子的长、宽、高各是多少?

学生独立思考,然后解答,指名板演。

V=abh=50×30×40=60000(cm3)=60(dm3)=0.06(m3)

4.巩固:完成课本第35页的“做一做”第1题。学生完成后,要求他们口述解答的过程。

3.5dm3=(3500)cm3700dm3=(0.7)m3

三、课堂作业

完成课本第36~37页练习八的第1~9题。

1.第1题此题是巩固单位间进率的习题。练习时先让学生独立完成,反馈时,让学生说说思考的过程。

2.第2题这是一道实际应用的问题。包装盒是否能够装得下玻璃器皿,关键要看包装盒的高是多少,因为从已知条件中我们已经知道包装盒的长、宽都比玻璃器皿的长、宽要长。只要包装盒的高大于18cm,就能够装得下。练习时,让学生独立计算出包装盒的高,提醒学生注意统一计量单位后,全班反馈。

3.第3-9题由学生独立完成。

四、课堂小结

今天我们学习了体积单位间的进率,在这节课里,你有哪些收获呢?

五、课后作业

完成练习册中本课时练习。

板书设计

体积单位间的进率

1立方分米=1000立方厘米

1立方米=1000立方分米

第4课时容积和容积单位(1)

教学内容:容积和容积单位

教学目标:

1.使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。

2.掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。

3.感受1毫升的实际意义,和应用所学知识解决生活中的简单问题。

教学重点:容积单位换算

教学难点:容积单位换算

一、复习导入

1.什么叫物体的体积?

2.常用的体积单位有________、_________、_________,相邻两个体积单位之间的进率是_________。

3.一个长方体的纸盒,长2dm、宽1.8dm、高1dm,它的体积是多少立方分米?学生在练习本上完成,然后小组交流检查。

二、新课讲授

1.教学容积的概念。

(1)教师把长方体的纸盒打开,问:盒内是空的可以装什么?学生交流后汇报。教师:我们把这个纸盒所能容纳物体的体积叫做它的容积。

如:金鱼缸里面可以放满水,水的体积就是鱼缸的容积。

(2)学生举例说一说什么是容积?

教师引出课题并板书:容积

(3)比较物体的体积和容积的异同。

请学生想一想,体积和容积有什么相同点,有什么不同点。学生独立思考,小组内交流,全班反馈。

相同点:体积和容积都是物体的体积,计算方法一样。

不同点:①体积要从容器外面量出它的长、宽、高;而容积要从容器的里面量长、宽、高。

②所有的物体都有体积,但只有里面是空的,能够装东西的物体,才能计算它的容积。

(4)容积的计算方法。

教师:容积的计算方法与体积的计算方法相同,但要从里面量出长、宽、高。这是为什么呢?

教师出示一个木盒。演示为什么容积应该从里面量出长、宽、高。

2.教学容积单位。

(1)教师:计量物体的容积,需要用到容积的单位。(完成课题板书)

(2)学生自学教材第38页内容。组织学生汇报学习的内容,教师板书:升、毫升

(3)出示量杯和量筒,倒入1升的水进行演示,让学生得出

1升=1000毫升(1L=1000mL)

(4)容积单位与体积单位的关系。

试验:把水倒入量杯1mL处,然后再把1mL的水倒入1cm3的正方体容器里面,刚好倒满

提问:这个实验说明什么?1mL=1cm3。(板书)

提问:大家想一想1升是多少立方分米?相互讨论,得出:1L=1dm3。(板书) 3.新知应用。出示例5,指一名学生读题。(1)分析理解题意:求这个油箱可以装多少汽油就是求这个油箱的什么?必须知道什么条件?应该怎样算?

(2)学生独立完成,然后指名汇报,全班集体订正。

5×4×2=40(dm3)40dm3=40L

答:这个油箱可装汽油40L。

三、课堂作业

完成教材第40-41页练习九的第1-6题。

四、课堂小结

通过今天的学习,你有哪些收获?学生交流学习所得。

五、课后作业

完成练习册中本课时练习。

板书设计

容积和容积单位(1)

1L=1000mL1L=1dm3

1mL=1cm3

例5:5×4×2=40(dm3)

40dm3=40L

答:这个油箱可以装汽油40L。

第5课时容积和容积单位(2)

教学内容:求不规则物体的体积(课本第39页的例6)

教学目标:

1.使学生进一步熟练掌握求长方体和正方体容积的计算方法。

2.能根据实际情况,应用排水法求不规则物体的体积。

3.通过学习,让学生体会数学与生活的紧密联系,培养学生在实践中的应变能力。

教学重点:运用具体方法求不规则物体的体积。

教学难点:运用具体方法求不规则物体的体积

一、复习导入

1.填空

6.7m3=( )dm3=( )cm3

2L=( )mL3 450mL=( )L

0.82L=( )mL=( )dm3

提问:单位换算你是怎样想的?

2.判断

(1)容积的计算方法与体积的计算方法是完全相同的。

(2)容积的计算方法与体积的计算方法是完全相同的,但要从里面量出长、宽、高。

(3)一个量杯能装水10mL,我们就说量杯的容积是10mL。

(4)一个量杯最多能装水100mL,我们就说量杯的容积是100mL。

(5)一个纸盒体积是60cm3,它的容积也是60cm3。

通过判断的练习,要让学生理解容积与体积的区别与联系。

二、新课讲授

出示课本第39页教学例题6。

(1)出示一块橡皮泥。

提问:你能求出它的体积吗?(把它捏成一个长方体或正方体,用尺子量出它的长、宽、高,就可以算出它的体积)

(2)出示一个雪花梨。

提问:你能求出这个雪花梨的体积吗?

学生展开讨论交流并汇报。

最优方法:把它扔到水里求体积。

(3)给每个小组一个量杯,一个雪花梨,一桶水,请大家动手实验,把实验的步骤记录下来,让学生分工合作。

(4)汇报试验过程,请一个组一边汇报过程,一边演示,先往量杯里倒入一定量的水,估计倒入的水要能浸没雪花梨,看一下刻度,并记下。接着把雪花梨放入量杯,要让其完全浸没再看一下刻度,并记下。最后把两次刻度相减就是雪花梨的体积。

即:450-200=250(mL)=250(cm3)

(5)提问:为什么上升那部分水的体积就是雪花梨的体积?学生展开讨论后并回答。

(6)用排水法求不规则物体的体积要注意什么?要记录哪些数据?(要注意把物体完全浸入到水中,要记录没有浸入之前的刻度和完全浸入之后的刻度)

(7)想一想,可以利用上面的方法测量乒乓球、冰块的体积吗?为什么?也是可以的,但必须把它们完全浸入水中。

三、课堂作业

完成课本第41页练习九第7~13题。

第7题:教师引导学生理解题意,要根据已知条件算出水深是13cm时水和土豆合在一起形成的长方体的体积,放入土豆后高是13cm,根据“底面积×高”的公式,可以求出放入土豆后的体积,再从中减去5L水,就得出土豆的体积。第13题:一个大圆球加一个小圆球排出的水是12mL,一个大圆球加四个小圆球排出的水是24mL,这样可知3个小圆球共排出的水是24-12=12(mL),由此可得出3个小圆球的体积是12cm3,则1个小圆球的体积为4cm3,所以大圆球的体积为12-4=8(cm3)

第16题:这是个思考题,教师引导学生弄清图意,让学生在四人小组内进行交流、讨论,全班反馈时,可让学生说说思维过程。

四、课堂小结

今天这节课,同学们都能用学到的知识解决生活中常见的问题,希望大家在今后的计算中要多加小心。

五、课后作业

完成练习册中本课时练习。

板书设计容积和容积单位(2)

不规则物体的体积

↓排水法

把物体扔到水里,两次的体积差则是不规则物体的体积。

人教版五年级数学下册长方体与正方体单元测试题

五年级数学下册长方体与正方体单元测试题 一、填空题。(共26分) 1、长方体有()个顶点,有()条棱,有()个面。(3分) 2、相交于长方体一个顶点的三条棱的长度分别叫做它的()、()和()。(3分) 3、一个正方体的棱长为A,棱长之和是(),当A=6厘米时,这个正方体的棱长总和是()厘米。(2分) 4、一个长方体最多可以有()个面是正方形,最多可以有()条棱长度相等。(2分) 5、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。(2分) 6、一个正方体的棱长和是12分米,它的体积是()立方分米。(2分) 7、一个长方体水箱(无盖)的长是6分米,宽是5分米,高是4分米,给它的四周安上角铁一共需要()分米。给它表面装上铁皮一共需要()平方分米。(4分) 8、一个长方体的长是8厘米,宽是长的一半,高2厘米,这个长方体的表面积是( )平方厘米,体积是( )立方厘米。(4分) 9、一个长方体方钢,横截面积是12平方厘米,长2分米,体积是()立方厘米(2分) 10、一个长方体的长、宽、高分别是a米、b米、h米。如果高增加2米,体积比原来增加()立方米。(2分) 二、选择题。(每小题2分,共12分) 1、用一根长()铁丝正好可以做一个长6厘米、宽5厘米、高3厘米的长方体框架。 A、28厘米 B、126平方厘米 C、56厘米 D、90立方厘米 2、如果把长方体的长、宽、高都扩大3倍,那么它的体积扩大()倍。 A、3 B、6 C、9 D、27

3、一根长方体木料,长1.5米,宽和厚都是2分米,把它锯成4段,表面积最少增加()平方分米. A、8 B、16 C、24 D、32 4、一个无盖的水桶,长a厘米,宽b厘米,高h厘米,做这个水桶用料()平方厘米。 A、abh B、abh+2ab C、ab+2(bh+ah) D、2(bh+ah) 5、一个长方体的底是面积为3平方米的正方形,它的侧面展开图正好是一个正方形,这个长方体的侧面积是()平方米。 A、18 B、48 C、54 D、64 6、一个长方体正好可以切成两个棱长是3厘米的正方体,这个长方体的表面积是()平方厘米。 A、108 B、54 C、90 D、99 三、判断题。(每小题1分,共5分) 1、一瓶白酒有500升。() 2、长方体的各个面中可能有正方形,正方体的各个面中可能有长方形。() 3、求一个容器的容积,就是求这个容器的体积。() 4、体积相等的两个正方体,它们的表面积一定相等。() 5、在一个正方体的一角切下一个小正方体,正方体的体积和表面积都变小。() 四、图形与计算。(共16分) 求下面图形的体积和表面积。(单位:厘米) 15

小学五年级数学长方体的认识教案

小学五年级数学长方体的认识教案 单元教学目标 1、使学生掌握长方体和立方体的特征,理解表面积、体积(容积)的意义,对体积单位的形状、大小有较明确的概念,掌握这些单位间的进率和化聚。 2、使学生学会计算长方体和立方体的表面积和体积,并能运用所学知识解决一些实际问题。 3、通过建立长方体和立方体的正确概念,发展学生的空间观念。 1、长方体和立方体的认识 第一课时 教学内容:长方体的认识 教学目标: 1、认识长方体的特征及其各部分名称。 2、发展学生的空间观念。 教学重点: 掌握长方体的特征,认识并理解长方体的长、宽、高。

教学难点: 培养学生的空间观念。 教具准备: 长方体教具、计算机及软件、油漆桶、魔方、牙膏盒等。 学具准备: 每人一个长方体形状的纸盒。 教学过程: 一、复习引入。 师:你们都学过哪些平面图形?(电脑出示:) 这是什么图形?有什么特征?(把长方体从屏幕上慢慢托起来)问:这个图形还是长方形吗?为什么? 师:我们以前学过的长方形、正方形、三角形等都是平面上的图形,叫平面图形,而现在屏幕上所显示的长方体则是立体图形,因为它占有一定的空间。

二、实物感知、形成表象、引入新课。 (出示油漆桶、魔方玩具、球、牙膏盒等实物) 问:这些物体的形状都是什么图形?为什么?其中哪些物体的形状是长方体? 请大家联系我们的生活实际,说说你见过哪些物体的形状是长方体? (出示一个不规则木块)它的形状是长方体吗? 大家都认为这个木块不是长方体,而刚才举的那些例子大家认为是长方体?是不是长方体根据什么来判断?一个物体的形状具备了什么样的特征,就是长方体呢?这节课我们就来重点研究这个问题。(板书:长方体的认识) 三、探讨长方体的特征。 1.整体观察,认识面、棱、顶点。 (1)认识面: 请大家仔细观察手中的长方体,你看到了什么?并用手摸一摸。(汇报时板书:面。并让学生用手摸摸哪些是长方体的面)

北师大版五年级数学下册长方体(一)专题

长方体(一) 棱长计算专题练习(1) 长方体:已知棱长求棱长总和 用铁丝焊一个长12cm,宽9cm,高6cm的长方体框架,至少需要多少厘米长的铁丝?(8分) 学校有一幢长方体形状的教学楼(如图)。为了庆祝建党90周年,现准备买彩灯装饰教学楼除地面外的边。那么,学校至少需要买多长的彩灯?(10分) 用一根绳子捆扎一种礼品盒(如图),结头处的绳子长15cm。这根绳子共多少厘米?(8分) 用一根彩带捆扎一种礼盒(如图),如果结头处的彩带长30cm,求这根彩带的长度?(8分)

把两个同样的长方体盒子(如下图)叠在一起,在外面用纸包起来,并扎上包装袋,包装带长(结头不计)多少厘米?(10分) 做一个长7米、宽1米、高3米的长方形灯箱框架,需要多少米长的铁条?(8分) 长方体:已知棱长总和求棱长 一个长方体游泳池,长50米,宽20米,深2米,沿着这个游泳池游一圈,共游了多少米?(8分) 一个长方体的棱长总和是48厘米,底面周长是18厘米,求高是多少厘米?(10分) 把一根长72厘米的铁丝做成一个长方体框架,已知长和宽分别做成8厘米和5厘米。高要做成多少厘米才能刚好把铁丝用完?(10分) 一个长方体框架,棱长总和为128厘米,长是高的2倍,宽是8厘米,它的高是多少厘米?(10分)

表面积计算专题练习(2) 1、要制一个长方体油箱,长4分米,宽3分米,高6分米,一共需要多少铁皮? 2、做一个无盖的铁箱,长1米,宽5分米,高8分米,至少需要多少平方米的铁皮? 3、做20个棱长为30厘米的小正方体纸箱,至少需要多少平方米硬纸? 4、要做一个棱长是45厘米的鱼缸,至少需要多少平方厘米的玻璃? 5、用3个棱长是1厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米? 6、把一个长6厘米、宽5厘米、高4厘米的长方体截成两个完全一样的长方体后,这两个长方体的表面积之和最大是多少平方厘米? 7、一只底面是正方形的长方体铁箱,如果把它的侧面展开,正好得到一个边长为40厘米的正方形。这只铁箱的表面积是多少平方厘米? 8、把三根相同的长方体木料拼成一个大长方体,每根长10厘米、宽5厘米、高2厘米。怎样才能使拼成的 长方体表面积最大,最大是多少平方厘米?

五年级下册数学长方体的认识教案

第3单元长方体和正方体 第1课时长方体的认识 【教学内容】 长方体的认识(教材第18~19页例1、例2及第21~22页练习五的1、2、3、6、7题)。 【教学目标】 1.初步认识立体图形、认识长方体的特征。 2.通过观察、想象、动手操作等活动进一步发展空间观念。 3.继续培养学生学习数学的兴趣,进一步形成勇于探索、善于合作交流的学习品质。 【教学重难点】 重点:掌握长方体的特征。 难点:形成长方体的概念,建立空间概念。 【教学过程】 一、复习导入 1.谈话引入,回忆以前学过哪些几何图形?它们都是什么图形?(由线段围成的平面图形) 2.投影出示教材第18页的主题图。提问:这些还是平面图形吗?(不是)教师:这些物体都占有一定的空间,它们都是立体图形。提问:在这些立体图形中有一种物体是长方体,谁能指出哪些是长方体? 3.举例:在日常生活中你还见到过哪些长方体的物体?长方体又

具有什么特征呢?引出新课并板书课题。 二、新课讲授 1.认识长方体的面、棱、顶点。 (1)请学生拿出自己准备的长方体学具,摸一摸,说一说。你有什么发现?(长方体有平平的面) 板书:面 (2)再请学生摸一摸长方体相邻两个面相交的地方有什么?讲述:把两个面相交的边叫做棱。 板书:棱 (3)再请同学摸一摸三条棱相交的地方有什么?(一个点)讲述:把三条棱相交的点叫做顶点。 板书:顶点 (4)师生在长方体教具上指出面、棱、顶点。学生依次说出名称。 2.研究长方体的特征。 (1)面的认识。 ①请学生拿出长方体学具,按照一定的顺序数一数,长方体一共有几个面?(6个面)有几组相对的面?(3组)前后,上下,左右。 ②引导学生观察长方体的6个面各是什么形状的? 板书:6个面都是长方形,特殊情况下有两个相对的面是正方形。教师分别出示这两种情况的教具。

人教版六年级数学长方体和正方体练习题(最新整理)

长方体、正方体练习题 一.填空题。 1、表面积是54平方分米的正方体,它的体积是()立方分米。 2、把一个长、宽、高分别是2分米、12厘米、10厘米的长方体铁块熔铸成一个正方体铁块。 这个正方体铁块的体积是()立方厘米。 3.一个正方体的棱长总和是72厘米,它的一个面是边长()厘米的正方形,它的体积是()。 4.至少要()个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是()平方厘米。 5、一根96厘米的铁丝正好做成了一个长8厘米,宽6厘米的长方体,它的高是()厘 米。 6、把一根长6米的长方体,切成3段一样的小长方体,表面积增加了3.6平方米。这个长 方体的体积是()。 7.把三个棱长都是4厘米的正方体拼成一个长方体,表面积减少了()平方厘米,它的体积是()立方厘米。 8、做一个长方体的烟囱需要多少平方米铁皮,是求长方体的() 9、正方体的棱长扩大3倍,体积扩大()倍。 10、把一个长8厘米、宽6厘米、高4厘米的的木块锯一个最大的正方体,剩下部分的体积是()立方厘米。 二.看图求它们的表面积与体积。 12 9

三.实践与应用。 1、正方体的棱长总和是120厘米,它的表面积是多少平方厘米? 2、一个底面是正方形的长方体,所在棱长的和是100厘米,它的高是7厘米,这个长方体的体积是多少立方厘米? 3、一个长方体水箱,底面是一个边长2分米的正方形,高是30厘米,水面高度是15厘米, 放入一个石头后,水面的高度是18厘米,石头的体积是多少? 4、一个长方体的药水箱里装了60升的药水,已知药水箱里面长5分米,宽3分米,它的深 是多少分米? 5、一块长方形的铁皮,长40厘米,宽30厘米。从四个角都剪掉边长为5厘米的小正方形后,焊成一个无盖的长方体盒子,这个盒子最多能容纳多少毫升的液体?

人教版五年级下册数学长方体正方体表面积练习题

长方体和正方体的表面积练习题 1、一间教室长8米、宽6米,高3米,现在要用涂料粉刷它的四壁和顶棚。如果扣除门、窗和黑板24 平方米,求要粉刷的面积有多大?如果每平方米用涂料0.15千克,一共需要多少千克涂料? 2、水泥厂要制作10根长方体铁皮通风管,管口是边长30厘米的正方形,管子长2米。共需多少平方米铁皮? 3、一个长方体游泳池,长20米,宽15米,深2米,现要将它的每个面先抹上水泥,再贴上边长4分米瓷砖,需要这样的瓷砖多少块?如果每平方米用水泥5千克,要用去多少水泥 4、一种长方体铁皮烟囱,底面是边长3分米的正方形,高4米,制这样一节烟囱至少要用铁皮多少平方米? 11、一个正方体木块,若把它切成3个完全相等的长方体后,表面积增加了80平方厘米,这个正方本木块原来的表面积是多少平方厘米? 5、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米? 6、两块大小相同的正方体木块拼成一个长方体,已知长方体的棱长总和是48厘米,那么,每块正方体的木块体积是多少? 7、有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体的表面积的和为240平方厘米,求原来长方体的体

积。 8、一个体积是576立方厘米的长方体,正面面积是96平方厘米,侧面面积是48平方厘米,底面面积是多少平方厘米? 9、把1立方米的正方体木料,全锯成1立方厘米的小木块(损耗不在计算之内),把这些小木块一个紧挨一个地排成一行,这一行总共有多少米? 10、有一个长方体铁盒,它的高与宽相等。如果长缩短15厘米,就成为表面积是54平方厘米的正方体,这个长方体盒的宽是长的几分之几? 11、一个长42厘米,宽30厘米,高18厘米的长方体的木块,在一面挖一个深是10厘米的正方体方槽。那么这个长方体的外表面积是多少平方厘米? 12、一个长12厘米,宽10厘米,高5厘米的长方体钢块,在上面中心处挖一个深是3厘米的正方体方槽。那么这个长方体挖槽后的表面积是多少?

小学六年级数学认识长方体和正方体教案

小学六年级数学认识长方体和正方体教案 本节内容是在学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上,进一步探索长方体和正方体的特征。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也为进一步学习其他立体图形打好基础。 例1教材一共安排了三个层次学习活动,让学生由浅入深,由表及里地探索长方体的特征。第一层次结合实物(或图片)从整体上感知长方体,第二层次通过对长方体的进一步观察,认识长方体的直观图及其面、棱和顶点,第三层次探索发现长方体面和棱的特征。在此基础上,介绍长方体长、宽、高的含义。例2着重引导学生利用认识长方体的已有经验,自主探索并归纳正方体面、棱、顶点的特征,体会正方体和长方体的联系与区别。 [教学目标] 1、学生通过观察、操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。 2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。 3、学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心。 [教学重点] 认识长方体、正方体的面、棱、顶点以及长宽高(棱长)的含义,掌握长方体和正方体的特征。 [教具准备]

长方体、正方体教具、CAI课件 [教学过程] 一、观察与操作,认识长方体的特征 1、教学例1 出示画面:有一些长方体的实物和正方体的实物。(如电冰箱、饼干盒、魔方等) 谈话:同学们,这些是我们生活中常见的一些物体,你能说说哪些物体的形状是长方体,哪些物体的形状是正方体? 学生回答,并举例再说说生活中还有哪些物体的形状是长方体和正方体。 出示长方体模型,谈话:长方体有几个面?从不同的角度观察一个长方体,你觉得最多能同时看到几个面? 学生说一说自己的猜想。 分组操作,进行验证。学生分组从不同角度观察一个长方体,看一看最多能同时看到几个面。 学生汇报、演示观察结果,并说一说从某一个角度进行观察,能同时看到的是哪几个面,看不到的是哪几个面。 提问:那么,从不同的角度观察一个正方体,最多能同时看到几个面? 说明:从不同的角度观察一个长方体或正方体,最多能同时看到三个面。 谈话:依据同学们的观察结果,我们画出长方体和正方体的直观图。 出示长方体和正方体的直观图。(标出面)

五年级数学下册长方体二练习题

五年级数学下册长方体二练习题 一、填空题 1.在电冰箱、微波炉和文具盒三种物体中,()占的空间最大,()占的空间最小, ()的体积最大. 2.棱长1厘米的正方体的体积是(). 3.一块橡皮的体积约是3(),运货集装箱的体积约是40(). 4.在括号里填上适当的单位名称 旗杆高15()教室面积80() 油箱容积16()一瓶墨水60() 5.一个正方体的棱长总和是48厘米,它的体积是(). 6.一个长方体的长5米,宽3米,高4米,它的体积是()立方米. 7.用棱2厘米的正方体切成棱长1厘米的小正方体,可以切成()块. 8.3.5立方米=()立方分米 470立方厘米=()立方分米 0.8立方米=()立方厘米 60立方分米=()立方米 4300毫升=()升 35立方分米=()升 1200平方厘米=()平方分米=()平方米 8.25立方米=()立方分米=()立方厘米 4.8升=()立方分米=()立方厘米 二.、判断题 1.3立方米比2平方米大. () 2.5立方米40立方分米=540立方分米. () 3.棱长是6厘米的正方体的表面积和它的体积是相等的.() 4.两个小正方体拼成一个长方体,长方体的体积等于两个小正方体的体积之和. () 5.相邻的两个体积单位间的进率是1000. () 三、选择题 1.一个冰箱的容积是210(). A.平方分米 B.立方分米 C.立方米 2.长方体(不含正方体)的6个面中,最多有()个正方形. A.2 B.4 C.6 3.至少要用()个同样的正方体才能拼成一个新的正方体. A.8 B.16 C.4

4.把正方体的棱长扩大4倍,它的体积就扩大(). A.4倍 B.16倍 C.64倍 5.有一个底面积是4平方米的长方体,它的体积是0.2立方米,高是(). A.0.1米 B.0.05米 C.5米 四、求下面各图形的体积. 五、下面两组数中每一组都有一个数与其它数不同,请在括号里划去这个数. 七.解决问题 1.挖一个长方体的沙坑,长4米,宽2米,深0.5米.这个沙坑占地面积是多少平方米?需要多少立方米的沙子才能填满? 2.一个游泳池长60米,宽30米.当平均水深1.5米时,游泳池内的水一共是多少立方米? 3.一个正方体的水箱,每边长4分米,把这样一箱水倒入另一只长0.8米,宽25厘米的长方体水箱中,水深是多少厘米? 4.某纸盒厂生产一种正方体纸板箱,棱长40厘米,它的体积是多少立方厘米?合多少立方分米?

五年级下册数学长方体和正方体解决问题

长方体和正方体复习(1) 令狐采学 ——解决问题 1. 下面的两个图形是由五个相同的小正方形组成的。请你各补上一个小正方形,使这两个图形都能折成一个立方体。要求两种补法不一样,画出示意图即可。 2. 有一种长方形纸片,长12cm、宽8cm。王老师想用这种长方形纸拼成一个正方形。至少需要多少张这样的长方形纸片? 3. 蛋糕店王阿姨用彩带包扎一个长方体的礼盒(包扎方式如图,接头处忽略不计)。至少要用多少长的彩带,才能包好? 4. 东东用一些棱长为1厘米的小立方体摆成长方体。他已经摆成了如图的形状。照这样摆,至少还需要摆几个这样的小立方体,才能摆成一个长方体?摆成的长方体表面积是多少平方厘米? 5. 学校要修建一个长100米、宽60米的游泳池,游泳池的深度为2米。修建这个游泳池需要挖土多少 m3?如果在游泳池的底部和四周贴瓷砖,那么贴瓷砖的面积大约是多少平方米? 6. 粉刷一间长8m、宽6m、高3.5m的教室,扣除门窗的面积约20㎡,如果每平方米需要涂料500克,那么粉刷这间教室共需要涂料多少kg? 7. 把一个长25cm,宽20cm的长方形纸片剪成大小相同的正

方形纸片(正好剪完),正方形纸片的变成最大是几厘米?这样的正方形纸片可以剪几个? 8. 如图,一段长方体木料长4m,如果沿着虚线且平行于侧面把它切成两段,表面积增加了400平方厘米。请算出这段木料原来的体积。 9. 右图是一个正方形纸板,从四个角各减去一个相同的小正方形纸片,然后做成没有盖的纸盒,请你分别算出这个纸盒的表面积和容积。(单位:分米) 10. 用以下材料各2个焊接成一个长方形铁皮盒子。这个盒子的表面积和体积各是多少?(焊接处的材料忽略不计) 11. 一个密封的长方体水箱,里面放了一些水,当水箱如图左放置时水深20dm,当水箱如图右放置时,水深多少分米?12. 一个长方体体积是240立方厘米,它的长是8厘米,宽是6厘米。这个长方体的高是多少厘米? 13. 一根长48分米的铁丝焊接成一个正方体框架。给这个正方体框架的表面贴上彩纸,至少需要彩纸多少平方分米?14. 一个长方体玻璃容器,从里面量,底面长、宽为2分米,向容器中倒入5.5升水,再把一个大苹果放入水中,这时量得容器中水深是16厘米。这个苹果的体积是多少?

【苏教版】六年级上册数学试题-长方体和正方体(含答案)

长方体和正方体测试卷 一、选择题(题型注释) 米,宽和厚都是2分米,把它锯成4段,表面积增加( )平方分米。 A. 8 B. 16 C. 24 D. 32 2.把一个长方体分成几个小长方体后,体积( ),表面积( )。 A. 不变 B. 比原来大了 C. 比原来小了 3.用一根长( )铁丝正好可以做一个长6厘米、宽5厘米、高3厘米的长方体框架。 A. 28厘米 B. 126平方厘米 C. 56厘米 D. 90立方厘米 4.一个正方体的棱长总和是60厘米,它的表面积是( )。 A. 21600平方厘米 B. 150平方厘米 C. 125立方厘米 5.将下图沿虚线折起来,可折成一个正方体。这时正方体的5号面所对的面是( )号面。 A. 2 B. 3 C. 4 D. 6 二、填空题(题型注释) 长方体(或正方体)有 个顶点,有 条棱,有 个面. 7.一个正方体的棱长是8分米,它的棱长总和是(_____)分米,表面积是(_____)平方厘米,体积是(_____)立方分米。长方体的长为7cm ,宽为5cm ,高为3cm ,它的棱长总和是(_____)厘米;表面积是(_____)平方厘米;体积是(_____)立方厘米 8.一个长方体的底面积是80平方厘米,高是7厘米,它的体积是 立方厘米. 9.一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是 平方分米. 10.500cm 3 = (_____)dm 3= (_____)L 750000cm 3= (_____)dm 3= (_____)m 3 11.一根长方体的方木,横截面的面积为25平方厘米,长5分米,它的体积是(_____)平方厘米。 12.把30L 水装入容积是250ml 的水瓶里,能装 瓶. 13.至少要 个小正方体才能拼成一个大正方体,如果一个小正方体的棱长是5厘米,那么大正方体的表面积是 平方厘米,体积是 立方厘米. 14.物体所占 的大小叫做物体的体积;容器所能容纳物体的体积,叫做容器的 . 15.长方体的面中不可能有正方形. . 16.一个正方体的棱长总和是72 cm ,它的表面积是(____),体积是(_____)。 17.有时候正方体的表面积与体积一样大. . 18.正方体的棱长扩大3倍,它的表面积扩大(______),体积扩大(_____)。 A .3倍 B .6倍 C .9倍 D .27倍 三、解答题(题型注释) 20平方厘米的长方体,这个长方体的长是多少厘米? 20.用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米? 21.—个房间的长6米,宽3.5米,髙3米,门窗面积是8平方米。现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共需要水泥多少千克? 22.把一个长70厘米、宽50厘米、高50厘米的长方体木块削成一个体积最大的正方体,削去部分的体积是多少立方分米? 23.木工要做5只长5分米,宽3分米,高15厘米的抽屉,至少要用多少平方米木料? 24. 把一根长为4.8米,宽 1.4米,高0.8米的木料锯成体积相等的2份,它的表面积最多增加多少平方米?最少呢? 四、判断题

人教版小学数学五年级下册长方体和正方体练习(最新整理)

长方体和正方体应用题练习一、填空 1.我们学过的几何图形有()、()、() ()、()。 2.()叫周长。 3.()叫面积 4.长方形的周长= 字母表示: 5 正方形的周长= 字母表示: 6.三角形的周长= 平行四边形的周长= 梯形的周长= 7.长方形的面积= 字母表示:s= 8正方形的面积= 字母表示:s= 9长方体的表面积= 字母表示:s= 长方体的体积= 字母表示:v= 10.正方体的表面积= 字母表示:s= 11 正方体的体积= 字母表示v= 二、有关计算 棱长: 1、(1)一个长方体的长6 厘米,宽5 厘米,高4 厘米。它的棱长和是多少?(2)长方体的棱长和是60 厘米,长6 厘米,宽5 厘米。高是多少?(3)长方体的棱长和是60 厘米,长6 厘米,高4 厘米。宽是多少?(4)长方体的棱长和是60 厘米,宽5 厘米,高4 厘米。长是多少? 2、(1)正方体的棱长是8 厘米。它的棱长是多少? (2)正方体的棱长和是96 厘米。它的棱长是多少? 3.一个正方体礼盒,棱长为1.5 dm,包装这个礼品盒至少要用多少平方分米的包装纸?(接头不计。)

4.用一根长48 厘米的铁丝围成一个长方体,这个长方体长5 厘米,宽4 厘米,它的高是多少厘米? 5、一个长方体的长是15 厘米,宽是12 厘米,棱长总和是148 厘米,它的高是多少、? 6 两根同样长的铁丝焊长方体和正方体,长方体长 7 厘米,宽5 厘米,高3 厘米,正方体的棱长是多少厘米? 三、表面积: 1.一个长方体的长8 厘米,宽5 厘米,高3 厘米。它的表面积是多少? 2、一个长方体无盖玻璃鱼缸,它的底长4dm,宽25cm,高20cm,做这样一个鱼缸至少要玻璃多少平方厘米?(求什么?)3.一个房间的长6 米,宽3.5 米,高3 米,门窗面积是8 平方米。现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4 千克,一共要水泥多少千克? 4.一盒饼干长20 厘米,宽15 厘米,高30 厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米? 5、挖一个长50 米,宽30 米,深2 米的养鱼池,这个养鱼池的占地面积是多少平方米? 6、一个通风管的横截面是边长是0.5 米的正方形,长2.5 米。如果用铁皮做这样的通风管50 只,需要多少平方米的铁皮? 7、在一节长120 厘米,宽和高都是10 厘米的通风管,至少需要铁皮多少平方厘米?做12 节这样的通风管呢?

五年级数学下册长方体练习题(最新整理)

长方体 班级姓名得分 一、填空题 1、长方体有()个面,()条棱,()个顶点。相对的棱的长度(),相对的面完全()。 2、一个正方体的棱长是a,棱长之和是()。 3、长方体的上面和(),前面和(),左面和(),都是相对的两个面,相对面的面积()。 4、一个正方体的棱长总和是36 厘米,它的表面积是()。 5、需要()个棱长为3 厘米的正方体,才能组成一个棱长为9 厘米的正方体。 6、一个棱长1 米的正方体,沿长、宽、高各切三刀、三刀、四刀,恰好切成80 个小长方体,则80 个小长方体的表面积之和为()。 二、判断题 1、正方体的每一个面都有4 条棱,正方体有6 个面,所以正方体有24 条棱。() 2、如果长方体有两个相对的面是正方形,那么其余的四个面的面积都相等。() 3、棱长是1 分米的正方体纸盒放在桌子上,纸盒所占桌面的面积是1 平方分米。() 4、把一个长方体木料锯成两个长方体,一共增加了 4 个面。() 5、一个正方体的棱长总和是 12cm,则它的表面积是 12cm2。 () 三、看图完成下面各题 1、将 4 个棱长都是 2 厘米的正方体如下图摆放,露在外面的面积是多少? 2、在下面的 8 个面中找出 6 个面,使它们能围成右面的长

方体。这6 个面的编号分别是() 四、解决问题 1、一个长方体和一个正方体的棱长之和相等,已知长方体的长、宽、高分别是 3 厘米、2 厘米、1 厘米,那么正方体的棱长是多少? 2、做一个不带盖的长方体水桶,底面是边长为 3 分米的正方形,高是 4 分米,问至少需要多少平方分米的铁皮? 3、把一个棱长为 8 厘米的正方体切成两个长方体,切成的这两个长方体的表面积的总和是多少?

六年级数学长方体正方体表面积和体积练习题

长方体和正方体的表面积和体积练习 一、填空: 1、一个正方体棱长5厘米,它的棱长和是(),表面积是(),体积是()。 2、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是(),占地面积是(),表面积是(),体积是()。 3、一个长方体方钢,横截面积是12平方厘米,长2分米,体积是()立方厘米。 4、一个长方体水箱,从里面量,底面积是25平方米,水深1.6米,这个水箱能装水()升。 5、一块正方体的钢锭,棱长是10分米,如果1立方分米的钢重7.8千克,这块钢锭重()千克。 6、正方体的棱长扩大3倍,棱长和扩大()倍,表面积扩大()倍,体积扩大()倍。 7、用棱长5厘米的小正方体拼成一个大正方体,至少需这样的小正方体()块。 8、一个长方体的长、宽、高分别是a米、b米、h米。如果高增加2米,体积比原来增加()立方米。 二、判断: 1、正方体是由6个完全相同的正方形组成的图形。() 2、棱长6厘米的正方体,它的表面积和体积相等。() 3、a3表示 a×3 。() 4、一个长方体(不含正方体),最多有两个面面积相等。() 5、体积相等的两个正方体,它们的表面积一定相等。() 三、操作题: 右图是长方体展开图,测量所需数据,并求长方体体积。

四、解决问题: 1、一个长方体铁块,长10分米,宽5分米,高4分米,每立方分米铁块重7.8千克,这个铁块重多少千克? 2、一节长方体形状的铁皮通风管长2米,横截面是边长为10厘米的正方体,做这节通风管至少需要多少平方厘米铁皮? 3、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升?(玻璃厚度忽略不计) 4、有一个底面积是300平方厘米、高10厘米的长方体,里面盛有5厘米深的水。现在把一块石头浸没到水里,水面上升2厘米。这块石头的体积是多少立方厘米?

(完整版)新人教版五年级数学下册长方体和长方体练习题

新人教版五年级数学下册长方体和正方体练习题 一、空题。 1、40立方米=()立方分米4立方分米5立方厘米=()立方分米 30立方分米=()立方米0.85升=()毫升 2100毫升=()立方厘米=()立方分米 0.3升=()毫升=()立方厘米 2.8立方分米=()立方厘米0.8升=()毫升 720立方分米=()立方米51000毫升= ( )升 32立方厘米=()立方分米 2.7立方米=()升1200毫升=()立方厘米 8.3立方米=()立方分米 1080立方厘米=()立方分米 6升40毫升=()升 1.5立方分米=()升=()毫升 4.25立方米=()立方分米=()升 1.24立方米=()升=()毫升 3.06升=()升()毫升 8.3立方米=()立方分米1080立方厘米=()立方分米 6升40毫升=()升 1.5立方分米=()升=()毫升 一个正方体的棱长和是12分米,它的体积是()立方分米. 0.08立方米=()升=()毫升 3.8升=()升()毫升 6.47升=()毫升=()立方分米415平方厘米=()平方米 10020立方分米=()立方米20升=()立方米 9.08立方分米=()升=()毫升0.08立方米=()毫升 2、一个长方体,长是3m,宽和高都是0.5m,把它分割成两个完全一样的小长方体,表面积最少增加()平方分米。 3、至少要()小正方体才能拼成一个长方体。如果小正方体的棱长是5cm,那么大正方体的表面积是()平方厘米,体积是()立方分米。 4、把一长124cm,宽和高都是10cm的长方体锯成最大的正方体,最多可以锯()个

5、用一根12分米长的铁丝未成一个最大的正方体框架,这个正方体的体积是()。 6、一个长方体的长宽高都扩大3倍,它的表面积就()。 7、写出下列各式的结果。 5*5= a*a*a= b+b+b= 7x*x= 8、一个正方体的表面积是54平方米,它的每个面的面积是(),它的棱长是()。 9、一个正方体的棱长扩大到它的4倍,它的体积就(),它的表面积就()。 10、一个长方体相交于一个顶点的三条棱分别是5cm,3cm,4cm,这个长方体的所有棱长之和是()厘米,体积是()。 二.判断题。 ()1.棱长是6cm的正方体,体积和表面积相等。X K b 1.C om ()2.体积相等的两个正方体,它的表面积也一定相等。 ()3.一个棱长为5的无盖正方体,它的表面积是500平方米。 ()4.长方体的三条棱分别叫长,宽,高。 ()5.有两个相对面是正方形的长方体,它的其余四个面完全相同。 ()6.至少用4个体积是1立方厘米的正方体,才能拼成一个大正方体。 ()7.长方体中有时四个面是完全一样的长方形。 ()8.冰箱的体积就是冰箱的容积。 ()9.一个长方体横着或竖着放时所占的空间不一样大。 ()10.正方体是长宽高都相等的特殊的长方体。 三.应用题。 1、一根长2米的长方体木料锯成两段后,表面积增加了100平方厘米,它的体积是多少? 2、一个长方体正好可以切成两个棱长是3厘米的正方体,这个长方体的表面积是多少?

五年级数学下册 长方体练习题

长方体 班级____________ 姓名___________ 得分_____ 一、填空题 1、长方体有()个面,()条棱,()个顶点。相对的棱的长度(),相对的面完全()。 2、一个正方体的棱长是a,棱长之和是()。 3、长方体的上面和(),前面和(),左面和(),都是相对的两个面,相对面的面积()。 4、一个正方体的棱长总和是36厘米,它的表面积是()。 5、需要()个棱长为3厘米的正方体,才能组成一个棱长为9厘米的正方体。 6、一个棱长1米的正方体,沿长、宽、高各切三刀、三刀、四刀,恰好切成80个小长方体,则80个小长方体的表面积之和为()。 二、判断题 1、正方体的每一个面都有4条棱,正方体有6个面,所以正方体有24条棱。() 2、如果长方体有两个相对的面是正方形,那么其余的四个面的面积都相等。() 3、棱长是1分米的正方体纸盒放在桌子上,纸盒所占桌面的面积是1平方分米。() 4、把一个长方体木料锯成两个长方体,一共增加了4个面。() 5、一个正方体的棱长总和是12cm,则它的表面积是12cm2。() 三、看图完成下面各题 1、将4个棱长都是2厘米的正方体如下图摆放,露在外面的面积是多少? 2、在下面的8个面中找出6个面,使它们能围成右面的长 方体。这6个面的编号分别是()

四、解决问题 1、一个长方体和一个正方体的棱长之和相等,已知长方体的长、宽、高分别是3厘米、2厘米、1厘米,那么正方体的棱长是多少? 2、做一个不带盖的长方体水桶,底面是边长为3分米的正方形,高是4分米,问至少需要多少平方分米的铁皮? 3、把一个棱长为8厘米的正方体切成两个长方体,切成的这两个长方体的表面积的总和是多少?

03六年级数学长方体和正方体练习(9.11)

六年级数学长方体和正方体练习(2018.9.11) 班级:姓名: 一、填空题。 1. 在一个长方体中,相交于同一顶点处的三条棱的长度之和为4.5分米,则这个长方体的棱长之和是()分米。 2.右图正方体展开图中相交于同一顶点的三个面的总和最大 是()。 3.一个长方体平均分成两个正方体(右图), 正方体的棱长是4厘米,则这个长方体的表面积是()平方厘米。 4.一个长方体最多可以有()个面是正方形,最多可以有()条棱长度相等;至少需要()个完全相同的小正方体可以拼成一个大正方体。 5.一个长方体的棱长总和是96分米,长是14分米,宽是5分米,高是()分米,这个长方体有()个面是正方形,每个面的面积是()平方分米,这个长方体的表面积是()平方分米。 6.一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是()平方分米。 二、操作题 1.下图是边长1厘米的方格图,用阴影部分描出一个棱长1厘米的正方体展开图。(画出两种不同的正方体展开图) 二、解决实际问题。 1.用60分米长的铁丝做一个正方体框架,则正方体的表面积是多少平方分米? 2.两根同样长的铁丝,一根做成棱长9厘米的正方体框架;另一根做成一个长10厘米,宽7厘米的长方体框架模型,它高是多少厘米?

3.做一个长方体的无盖鱼缸,长8分米,宽4分米,高6分米,至少需要多少平方分米的玻璃?如果每平方分米玻璃4元钱,至少需要多少钱买玻璃? 4.长方体铁皮烟囱长2米,横截面是边长60厘米的正方形,做这样一个烟囱至少需要多少平方米铁皮? 5.如图,有一个长5分米、宽和高都是3分米的长方体硬纸箱,如果用绳子将箱子竖着捆两道,横着捆一道,打结处共用2分米,一共要用绳子多长? 6.学校门厅里有4根方柱,每根方柱高5米,底面都是边长0.6米的正方形,如果要在每根柱子四周侧面贴上大理石,贴大理石的面积是多少平方米? 7.有一个火柴盒,已知它的长是4厘米,宽2厘米,高1.5厘米。 (1)这个火柴盒的内盒是多少平方厘米? (2)这个火柴盒的外盒是多少平方厘米?

五年级下册数学长方体与正方体知识点汇总

五年级知识点汇总第三单元长方体和正方体 一、长方体和正方体 1、长方体与正方体的相同点和不同点 1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。 2、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。 3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。 4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。 5、长方体有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。 长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4 长=棱长总和÷4-宽-高 a=L÷4-b-h 宽=棱长总和÷4-长-高 b=L÷4-a-h 高=棱长总和÷4-长-宽 h=L÷4-a-b 正方体的棱长总和=棱长×12 L=a×12 正方体的棱长=棱长总和÷12 a=L÷12 6、长方体或正方体6个面和总面积叫做它的表面积。 长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) 无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2 S=2(ab+ah+bh)-ab S=2(ah+bh)+ab 无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh) 正方体的表面积=棱长×棱长×6 S=a×a×6 7、物体所占空间的大小叫做物体的体积。 长方体的体积=长×宽×高 V=abh 长=体积÷宽÷高 a=V÷b÷h 宽=体积÷长÷高 b=V÷a÷h 高=体积÷长÷宽 h= V÷a÷b 正方体的体积=棱长×棱长×棱长 V=a×a×a 8、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。 常用的容积单位有升和毫升也可以写成L和ml。 1升=1立方分米 1毫升=1立方厘米 1升=1000毫升 9、a3读作“a的立方”表示3个a相乘,(即a·a·a) 体积单位:1立方米=1000立方分米=1000000立方厘米 1立方分米=1000立方厘米=1升=1000毫升 1立方厘米=1毫升 相同点 不同点 面棱 长方体都有6个 面,12条 棱,8个顶 点。6个面都是长方形。(有可 能有两个相对的面是正 方形)。 相对的棱的长度都相等 正方体6个面都是正方形。12条棱都相等。

小学五年级数学长方体正方体综合练习(含答案)

小学五年级数学长方体正方体综合练习(含答案)

五年级下册数学长方体和正方体的认识教学设计 教学目标: 1.掌握长方体和正方体的特征,认识它们之间的关系。 2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。 3.渗透事物是相互联系,发展变化的辩证唯物主义观点。 教学重、难点: 1.长方体和正方体的特征。 2.立体图形的识图。 教学设计: 一、已有知识引入: 师:我们以前学过哪些图形?请每人画出其中一个?再请用手摸一摸有什么感觉?(平的)教师明确:这些图形都在一个平面上,叫平面图形。请同学们看老师带来的这些物体(出示:牙膏盒、粉笔盒等)各部分还在一个平面上吗?这些物体不在一个面上,都是立体图形。生活中这样的图形到处都是,你能举个例子吗? 生:冰箱、楼房等 师:他们给我们的感觉是立体的,他们的轮廓可以看做什么形体? 生:长方体、正方体 师:今天这节课我们要认识长方体和正方体(揭题:长方体和正

方体的认识),学习之前,你对它是不是已经有所了解了?有怎样的了解呢?学生就已经知道的知识进行介绍 二、自主探究——在观察讨论中了解长方体、正方体面的特点 1、请同学们取出自己准备的长方体,观察一下,小组合作,运用数一数、看一看、量一量的方法。说一说它们是怎么构成的?它们有什么特点?(学生观察讨论特点,作记录) (1)教师巡视指导并总结学生认识情况 (2)汇报 2、具体知识点: 师:用数一数、摸一摸等方法集体合作认识具体知识点并板书。 (1)顶点——三条棱交叉的点。——长方体、立方体都有8个定点 (2)棱——两个平面交叉的线段。 长方体有12条棱,分三组,每组长度相等——分别成为长、宽、高 正方体12条棱,所有棱都相等——棱长 怎样证明你的观察是正确的? 生:量一下手上物体的长宽高或者棱长。 (3)面——长方体6个面,6个面都是长方形,相对的面大小相等。 立方体6个面,6个面都是正方形,所有面大小相等。

最新北师大版五年级数学下册-长方体

北师大版五年级数学下册长方体 顶点面棱 个数个数形状大小关系个数长度关系 立体图形 相同点不同点 顶点棱面棱长面的形状 长方体 正方体 三、填空题 1. 长方体有( )个顶点,( )条棱,( )个面,相交于同一个顶点的三条棱分别叫做长方体的( )、( )、( )。 2. 长、宽、高相等的长方体叫做( )。正方体有( )个面,每个面都是( )形,( )的面积都相等,有( )条棱,它们的长度( )。 3. 长方体长6厘米,宽4厘米,高3厘米,则这个长方体的棱长之和是厘米。 4. 一个正方体的棱长之和是60厘米,则它的一条棱长是( )厘米。 四、判断题。 1. 长方体的6个面一定都是长方形。( ) 2. 长方体三条棱相交于一点叫做它的顶点。( ) 3. 长方体是特殊的正方体。( ) 4、决定长方体的大小的是它的长、宽和高。( ) 5. 一根长方体木料,横截成3段,增加了6个面。( ) 6. 底面是正方形的长方体,一定是正方体。( ) 7. 在一个长方体中,如果有两个相对的面是正方形,那么另外四个面的面积一定相等。( ) 8. 因为正方体有6个相等的面,所以正方体有24条相等的棱。( ) 9. 因为长方体和正方体都有6个面,所以有6个面的物体一定是长方体或正体。( ) 五、应用题 1. 求出下面长方体每个面的面积: 2. 用110厘米的长的铁丝焊成一个长方体的框架,长是宽的2倍,宽是高的1.5倍,求高是多少?

3. 一个长方体12条棱长之和是120厘米,长是宽的1.5倍,高比宽多2.5倍,求宽是多少? 4. 一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米? 5. 用一根铁丝恰好可以焊成一个长5厘米,宽3厘米,高4厘米的长方体框架,若这根铁丝也恰好能够焊成一个正方体框架,则这个正方体框架的棱长是多少厘米? 6. 用丝带捆扎一个厂25厘米,宽20厘米,高8厘米的长方体礼品盒(如图)。接头处的丝带长40厘米,捆扎这个盒子至少需要多长的丝带? 7. 为迎接六一儿童节,工人叔叔在西蒙的四周装上彩灯(如图,地面四周不装)。已知西蒙的尝试100米,宽48米,高15米,工人叔叔至少需要多长的彩灯? 五年级数学下册长方体的表面积

相关文档
相关文档 最新文档