文档库 最新最全的文档下载
当前位置:文档库 › 电压毛刺无损吸收电路

电压毛刺无损吸收电路

电压毛刺无损吸收电路
电压毛刺无损吸收电路

电压毛刺无损吸收电路

电压毛刺是高频变换器研制和生产过程中的棘手问题,处理得不好会带来许多的问题,诸如:功率管的耐压必须提高,而且耐压越高,其通态电压越大,功耗越大,这不仅使产品效率降低,而且使电路可靠性降低;另外,高频杂音的增加,对环境造成污染;为了达到指标,必须进一步采取措施,结果不仅使产品体积增大,而且使成本增加。解决办法通常是:增加主变压器中各线圈的耦合程度,以减少漏感(例如双线并绕等);选用结电容小,恢复时间短的优质开关管;增加吸收电路,最常用的是RC吸收电路,这种电路虽结构简单,但是有损的,而且变换器功率越大,需要的C越大,使R上的功耗也越大,导致R的体积很大,其结果是产品中常常装有体积大的电阻电容,使运行环境恶化,整机效率降低。显然这些解决办法不理想,本文将介绍两种无损电压毛刺回收电路。 1 常规RC吸收电路的功耗RC吸收电路如图1所示,设主变压器一次侧为半桥或全桥电路,二次侧为极性交变的脉宽调制方波,并且带有毛刺,如图2所示。这样在RC串联电路中就有充放电过程,在R 上就会有功耗。为分析方便,先不考虑电压毛刺,uAC的电压波形为极性交变的方波。

图1 高频整流的RC吸收电路

图2 高频调制方波

设某一时刻t=0时uAC的极性为上正下负,大小为Eo,C上的电压为Eo,极性上负下正,等效电路如图3所示。由电路方程可得

Eo=idt-Eo+iR

图3 等效电路

由初始条件t=0时,i=2Eo/R,解得i=2Eoe-t/RC/R。

电阻R上的消耗功率WR=i2Rdt=2CEo2

即C上的电压从-Eo→+Eo变化过程中,R上的功耗为2CEo2。

充电过程结束最终C上的电压为Eo,极性反转。一个周期内uAC翻转两次,R上的总功耗为4CEo2。例如:一个输出为48V的整流器,Eo通常约为150V,频率f取50kHz,电容C取1nF,则R上的功耗WR=4CEo2×f=5W。考虑毛刺的因素实际值远大于此值。显然,对于大功率高频率变换器,R上的功耗是相当大的。

2 主变压器二次为桥式整流电路的电压毛刺无损吸收电路

二次为桥式整流电路如图4所示。图中D1,D2,D3,D4为主整流管;D11及D12为毛刺吸收电路专用二极管。Lo与Co为主整流电路中的电感和电容;C为毛刺能量储存电容。L,S,D组成毛刺能量转换释放电路。主变压器中绕组CD和脉冲转换电路一起形成S的开关控制脉冲ugs,与绕组AB形成固定的相位关系。绕组AB的电压uAB波形与S 上的驱动脉冲波形示于图5。

图4 全桥整流电路与电压尖峰吸收电路

(a) uAB波形

(b) ugs波形

图5 uAB与ugs的相位关系

其吸收原理如下所述。

1)t1-t2时段uAB处于高毛刺阶段,毛刺最大值比正常值Uo高出ΔU,这时由

D1,D2,D11,D12形成全桥整流电路,对C充电,具体讲是D1和D12导通,uAB的毛刺部分将被C所吸收,使uc=Uo+ΔU。显然,C越大,ΔU越小;毛刺越高,ΔU越大。

2)t2-t3时段uAB="Uo",D12反偏截止。D1与D4导通,忽略D1与D4上的压降,UEF=Uo。以E为电压参考点,UF比UE电位低Uo,记作-Uo;由于UC=UEG=Uo +ΔUo,则UG比UE低Uo+ΔU,记作-(Uo+ΔU);这样UFG=UF-UG=ΔU。

由图5(b)可以看出,在t1-t3时间段开关管S被触发导通,UFG将使L中的电流逐步上升,使C上高于Uo部分的电压ΔU的能量逐渐转移到L上,当t3时刻uAB消失,ugs同时也消失,S截止。L上的能量将通过D向输出电容Co释放,形成电压毛刺的无损吸收。

3)t4-t5时段绕组AB之间的电压反向,此时D2与D11导通,对C充电,之后的工作过程同t1-t2时间段。

4)t5-t6时段工作过程同t2-t3时间段。

t7时刻开始,电路将重复以上过程。

3 主变压器二次为双半波整流电路的电压毛刺无损吸收电路

二次为双半波整流电路如图6所示。为分析方便,仍忽略D1,D2,D3的压降。显然uAB的波形、S的驱动脉冲波形与图5完全一致。其工作过程与桥式整流电路相似,在此不再赘述。

图6 双半波整流电路与电压尖峰吸收电路

4 关于LC选取的原则

为使上述电压毛刺无损吸收电路正常工作,在设计LC时注意下述2个问题:

1)过大的C将会使整流二极管开机瞬间冲击电流增加,过小的C将导致吸收毛刺过程中过大的电压增量ΔU,因此C要选择适当;

2)过大的L将使C中的ΔU能量无法及时转移到L中,因为ΔU=Ldi/dt,L过大,将使其中的电流增长速度减慢;L过小,则di/dt过大将使承受的应力加大只能选取大电流的开关管,同时对向输出端释放电感能量的二极管(图4中的D,图6中的D4)也提高了容量要求,因此,L的选择也要适当。

高频脉冲电化学去毛刺

高频脉冲电化学去毛刺 一、电化学去毛刺的原理 ? ECM电化学去毛刺(electrochemical machining-ECM)是利用金属在电解 液中发生阳极溶解反应而去除工件上多余的材料、将零件去毛刺的一种方法。 电化学去毛刺决定因素 一、决定去毛刺去除量的主要参数: ? 去毛刺电流:根据去毛刺工件的所去毛刺的范围而定。 ? 去毛刺时间:根据去毛刺工件的毛刺大小有关。 ? 工件材料导电率:根据去毛刺工件的材质有关。 二、决定去毛刺质量的参数: 1、电流密度:电流的密度决定着切削量和表面质量。

2、电导率:电化学液的浓度决定着电导率,单位[mS]。根据去毛刺要求,电化学液的浓度应控制在8%-25%.(根据实际工件)。当然,温度对电导率也有影响。 3、间隙:夹具(阴极)和工件(阳极)之间的间隙决定着电流大小和电解液的冷却能力。 4、电化学液压力:间隙中电化学液的压力影响着电流和材料的去除,它同时决定着电解液的流量和流速。 5、电化学液温度:温度影响着电解液的传导率,根据去毛刺要求,温度应控制在20℃到35℃。(根据产品而定) 6、电化学液的PH值:电化学液的PH值应该控制在6.5到8.5之间,(根据产品而定)电化学液的PH值决定着电解液的浓度和质量。 7、电化学液的纯度:纯净的电化学液能确保恒量生产,并且可防止工件和/或夹具被阻塞。 电化学液在工作的作用 ? 为电化学去毛刺提供电路导通。 ? 冷却夹具。 ? 冲走去毛刺中产生的废屑。 电化学加工的反应 (钢在与NaCl水溶液) 一、阳极反应 ? Fe—2e Fe+2

? Fe—3e Fe+3 ? 4OH-—4e O2↑+2H2O ? 2CL-—2e CL2 ↑ ? Fe+2+2OH- Fe(OH)2↓(墨绿色的絮状物) ? 沉淀为4Fe(OH)2+2H2O+O2 4Fe(OH)3↓ (黄褐色沉淀) 二、阴极反应(按可能性为) ? 2H++2e H2↑ ? Na++e Na↓ ? 按照电极反应的基本原理,电极电位最正的粒子将首先在阴极反应。因此, 在阴极上只会析出氢气,而不可能沉淀出钠。 ? 电化学去毛刺过程中,由于水的分解消耗,电化学液的浓度逐渐变大,而 电化学液中的Cl-和Na+仅起导电作用,本身并不消耗,因此对于NaCl 电解液,只要过滤干净,适当添加水分,就可长期使用。 ? 工具也可长期使用。 二、电化学去毛刺的特点 (1)去毛刺范围 电化学去毛刺适用于不锈钢、锌合金、铝制品、钛材、铜、银、金、中低碳钢等导电材质零件。 如:各种阀体、活塞、缸体铸件等汽车配件、电器、电脑、LED制品、电子数码配件、 精密模具及五金制品行业。

FPGA消除毛刺的方法

如何解决FPGA电路设计中的毛刺问题 如何解决FPGA电路设计中的毛刺问题 武汉大学电气工程学院张志杰汪翔 引言 随着半导体技术的飞速发展,FPGA(Field Programmable Gate Array)的计算能力、容量以及可靠性也有了很大的提高。它正以高度灵活的用户现场编程功能、灵活的反复改写功能、高可靠性等优点,成为数字电路设计、数字信号处理等领域的新宠。但和所有的数字电路一样,毛刺也是FPGA电路中的棘手问题。它的出现会影响电路工作的稳定性、可靠性,严重时会导致整个数字系统的误动作和逻辑紊乱。因此,如何有效正确的解决设计中出现的毛刺,就成为整个设计中的关键一环。 本文就FPGA设计中出现的毛刺问题,根据笔者自己的经验和体会,提出了几种简单可行的解决方法和思路,供同行供交流与参考。 FPGA电路中毛刺的产生 我们知道,信号在FPGA器件中通过逻辑单元连线时,一定存在延时。延时的大小不仅和连线的长短和逻辑单元的数目有关,而且也和器件的制造工艺、工作环境等有关。因此,信号在器件中传输的时候,所需要的时间是不能精确估计的,当多路信号同时发生跳变的瞬间,就产生了“竞争冒险”。这时,往往会出现一些不正确的尖峰信号,这些尖峰信号就是“毛刺”。另外,由于FPGA以及其它的CPLD器件内部的分布电容和电感对电路中的毛刺基本没有什么过滤作用,因此这些毛刺信号就会被“保留”并传递到后一级,从而使得毛刺问题更加突出。 可见,即使是在最简单的逻辑运算中,如果出现多路信号同时跳变的情况,在通过内部走线之后,就一定会产生毛刺。而现在使用在数字电路设计以及数字信号处理中的信号往往是由时钟控制的,多数据输入的复杂运算系统,甚至每个数据都由相当多的位数组成。这时,每一级的毛刺都会对结果有严重的影响,如果是多级的设计,那么毛刺累加后甚至会影响整个设计的可靠性和精确性。下面我们将以乘法运算电路来说明毛刺的产生以及去除,在实验中,我们使用的编程软件是Quartus II2.0,实验器件为Cyclone EP1CF400I7。需要说明一点,由于示波器无法显示该整数运算的结果,我们这里将只给出软件仿真的结果。而具体的编程以及程序的下载我们在这里也不再详述,可以参考相关的文献书籍。 毛刺的消除方法 首先,我们来设计一个简单的乘法运算电路。运算电路所示。 (c)所示,如果在不加任何的去除毛刺的措施的时候,我们可以看到结果c中含有大量的毛刺。产生的原因就是在时钟的上升沿,每个输入(a和b)的各个数据线上的数据都不可能保证同时到达,也就是说在时钟读取数据线上的数据的时候,有的数据线上读取的已经是新的数据,而有的数据线上读取的仍然是上一个数据,这样无疑会产生毛刺信号,而当数据完全稳定的时候,毛刺信号也就自然消失了。 输出加D触发器

一种新型无源无损软开关Boost变换器

一种新型无源无损软开关Boost变换器Boost 对一种新型无源无损软开关Boost变换器的丄作原理和参数选择进行分析,并 给出理论波形和仿真波形。 1 开关电源訂前存在五个挑战性的问题,能否更加小型化就是其中之一。使开关电源小型 化的重要途径是提高开关频率。高频化能使变压器和电感等磁性元件以及电容体积和重量大为减少,从而提高变换器的功率密度。但是提高开关频率的同时也增加了开关损耗,并使电磁干扰更加严重。采用软开关技术可以降低开关损耗,使开关电源可以在低损耗情况下实现高频运行。其实现方法可分为有源和无源软开关技术。有源软开关技术在原有电路上附加有源器件(如开关),价格比较昂贵,工作时还要增加控制电路以对附加开关进行控制,电路复杂,可靠性比较差。相比之下,无源软开关电路简单,可黑性高,价格便宜。这些优点使得无源软开关近儿年倍受青睐。对于PWM变换器,无源软开关通过降低有源开关的di/dt和dv/dt来实现零电流导通和/或零电压关断,以减少开关损耗。文献[1]对无源软开关技术进行了总结,并提出了无源无损软开关PWM变换器合成方法。根据这种方法,可以合成多种性能良好的软开关PWM变换器。本文对其中的一种合成新型软开关Boost变换器的工作原理及参数选择进行了分析,给出理论波形和仿真波形,并对其进行分析。 2 这种新型无源软开关变换器在Boost基本拓扑基础上附加了一个子电路,如图 1虚框中所示。

子电路包括一个电感L,两个电容C 、C,三个二极管D 、D 和D 。L 提供主开关 rsrl23r 零电流开通条件,限制二极管D 的反向恢复电流。电容Cs 提供开关零电压关 断条件。电容 C 为电感L 能量恢复提供能量。这种变换器有七种运行模态。假设各种元器件 为理想元器rr 件,且C 〈C 下面对其进行分析。。sr (1) t

有源和无源器件

一、常见的无源电子器件 电子系统中的无源器件可以按照所担当的电路功能分为电路类器件、连接类器件。 1.电路类器件 (1)二极管(diode) (2)电阻器(resistor) (3)电阻排(resistornetwork) (4)电容器(capacitor) (5)电感(inductor) (6)变压器(transformer) (7)继电器(relay) (8)按键(key) (9)蜂鸣器、喇叭(speaker) (10)开关(switch) 2.连接类器件 (1)连接器(connector) (2)插座(shoket) (3)连接电缆(line) (4)印刷电路板(PCB) 二、常见的有源电子器件 有源器件是电子电路的主要器件,从物理结构、电路功能和工程参数上,有源器件可以分为分立器件和集成电路两大类。 1.分立器件 (1)双极型晶体三极管(bipolartransistor),一般简称三极管,BJT (2)场效应晶体管(fieldeffectivetransistor) (3)晶闸管(thyristor),也叫可控硅 (4)半导体电阻与电容——用集成技术制造的电阻和电容,用于集成电路中。 2.模拟集成电路器件 模拟集成电路器件是用来处理随时间连续变化的模拟电压或电流信号的集成电路器件。 基本模拟集成电路器件一般包括:

(1)集成运算放大器(operationamplifier),简称集成运放 (2)比较器(comparator) (3)对数和指数放大器 (4)模拟乘/除法器(multiplier/divider) (5)模拟开关电路(analogswitch) (6)PLL电路(phaselockloop),即锁相环电路 (7)集成稳压器(voltageregulator) (8)参考电源(referencesource) (9)波形发生器(wave-formgenerator) (10)功率放大器(poweramplifier) 3.数字集成电路器件 (1)基本逻辑门(logicgatecircuit) (2)触发器(flip-flop) (3)寄存器(register) (4)译码器(decoder) (5)数据比较器(comparator) (6)驱动器(driver) (7)计数器(counter) (8)整形电路 (9)可编程逻辑器件(PLD) (10)微处理器(microprocessor,MPU) (11)单片机(Microcontroller,MCU) (12)DSP器件(Digitalsignalprocessor,DSP) 有源无源器件 1.无源器件的简单定义 如果电子元器件工作时,其内部没有任何形式的电源,则这种器件叫做无源器件。 从电路性质上看,无源器件有两个基本特点: (1)自身或消耗电能、或把电能转变为不同形式的其他能量。 (2)只需输入信号,不需要外加电源就能正常工作。 2.有源器件的基本定义 如果电子元器件工作时,其内部有电源存在,则这种器件叫做有源器件。

FPGA中的毛刺信号解析

FPGA设计中毛刺信号解析 在FPGA的设计中,毛刺现象是长期困扰电子设计工程师的设计问题之一, 是影响工程师设计效率和数字系统设计有效性和可靠性的主要因素。由于信号在FPGA的内部走线和通过逻辑单元时造成的延迟,在多路信号变化的瞬间,组合逻辑的输出常常产生一些小的尖峰,即毛刺信号,这是由FPGA 内部结构特性决定的。毛刺现象在FPGA的设计中是不可避免的,有时任何一点毛刺就可以导致系统出错,尤其是对尖峰脉冲或脉冲边沿敏感的电路更是如此。 任何组合电路、反馈电路和计数器都可能是潜在的毛刺信号发生器,但毛刺并不是对所有输入都有危害,如触发器的D输入端,只要毛刺不出现在时钟的上升沿并满足数据的建立保持时间,就不会对系统造成危害。而当毛刺信号成为系统的启动信号、控制信号、握手信号,触发器的清零信号(CLEAR)、预置信号(PRESET)、时钟输入信号(CLK)或锁存器的输入信号时就会产生逻辑错误。在实际设计过程中,应尽量避免将带有毛刺的信号直接接入对毛刺敏感的输入端上,对于产生的毛刺,应仔细分析毛刺的来源和性质,针对不同的信号,采取不同的解决方法加以消除。 因此,克服和解决毛刺问题对现代数字系统设计尤为重要。本文从FPGA的原理结构的角度探讨了产生毛刺的原因及产生的条件,在此基础上,总 结了多种不同的消除方法,在最后结合具体的应用对解决方案进行深入的分析。 1毛刺产生的原因 以图1的例子分析毛刺产生的起因:图1是一个3位同步加法计数器,当使能端为高电平时,在每个时钟上升沿时刻,QA ,QB,QC从000逐步变到111,进入到全1状态后,进位输出端输出半个时钟脉冲宽度的高电平,但从图2仿真结果中可以看到在011变化到100时刻ROC出现了尖脉冲,即毛刺。 以Xilinx的FPGA为例分析其内部结构,如图3所示[2]。

无源器件和有源器件概念及常见分类

无源器件和有源器件概念及常见分类 天缘博客有硬件应用这个栏目,但是很少有硬件知识总结,今天再来一篇,不知道天缘网友有多少做过硬件设计的,当然了硬件里还分数字和模拟,在大公司里还要细分,比如模拟还分高低频、前端后端模块、布板等,数字还分DSP、逻辑CPLD等等,实际上硬件比软件更有意思,对硬件感兴趣的网友可以看看,天缘博客今后一段时间仍会以系统、软件应用为重点,穿插一些硬件基础文章,必要的时候,也会跟网友一同关注硬件设计。 天缘之前写过一篇关于dB知识的文章《dB、dBm、dBc、dBi、dBd 单位的区别与比较》,本文似乎算是第二篇纯硬件类,从整体上介绍一下硬件器件的常见分类:有源和无源知识。一、无源器件和有源器件概念 无源器件(Passive Device)是指工作时不需要外部能量源(Source Energy)的器件。 有源器件(Active Device)则是指工作时需要外部能量源(Source Energy)的器件,该器件有个输出,并且是输入信号的一个函数。 备注: 1、有源器件和无源器件都是翻译名称,实际上从英文名称更好理解,Active表示活跃、主动、可变之意,而Passive器件则有被动、消极等意思。 2、以上说的能量源并不只是指电源,也可能指光、波等,都是天缘根据自己理解下的定义,跟网上的一些说法可能有所出入。 二、常见有源器件

分立器件: LED二极管(LED)、三极管(Transistor)、场效应管(Field Effective Transistor,FET)、可控硅(SCR)等。 模拟集成电路: 模拟乘法器(Analog multiplier)、模拟除法器(Analog divider)、模拟开关(Analog Switches)、比较器(Comparator)、控制电源(Controlled Power)、指数放大器(Index Amplifier)、集成运放(Integrated Operational Amplifier)、对数放大器(Logarithmic Amplifier)、稳压器(Regulators)、功率放大器(Power Amplifier,PA)、锁相环(Phase Lock Loop,PLL)、发射器(Transmitter)、波形发生器(Waveform Generator)等。 数字集成电路: 编码器(Encoder)、比较器(Comparator)、计数器(Counter)、译码器(Decoder)、驱动器(Driver)、逻辑门(Logic Gate)、触发器(Trigger)、寄存器(Register)、可编程逻辑器件(PLD)、单片机(Single-Chip Microcomputer ,SCM)、DSP(Digital Signal Processor,DSP)等。

加无源无损缓冲吸收的推挽正激变换器设计

加无源无损缓冲吸收的推挽正激变换器设计 中心议题:推挽正激变换推挽正激变换器的工作原理加无源无损缓冲吸收缓冲吸收的推挽正激变换器变换器设计 解决方案:缓冲吸收电路参数设计 推挽正激变换器是低压大电流输入场合的理想拓扑之一,但其输出整流二极管上由于反向恢复产生很高的电压尖峰。这将导致整流二极管选取困难,并影响其使用寿命。本文研究了一种加无源无损缓冲吸收的推挽正激变换器,整流二极管上尖峰电压小,可靠性高。并给出了该变换器的工作原理和缓冲电容的参数设计,还通过lkW实验样机给出了加缓冲吸收电路前后的实验波形。样机取得了高效率和高可靠性。0 引言在输入低压大电流场合,推挽正激变换器(Push-Pull Forward,PPF)因具有以下3方面的优点而得到广泛应用:(1)输入滤波器的体积和重最小;(2)箝位电容无损耗地抑制了功率管的电压尖峰;(3)变压器磁芯利用率高。在输出高电压时(本文为360V),变压器副边线圈匝数较多,副边漏感不可忽略。在整流二极管反向恢复时间内,整流二极管上存在很高的电压尖峰,给整流二极管的选取带来困难,并降低了整流二极管的可靠性。虽然RC或者RCD缓冲电路可以一定程度上抑制二极管的电压尖峰,但是电阻上损耗较大。文献[3]提出了一种简单的无源无损缓冲吸收电路,可以较好地抑制整流二极管的电压尖峰。本文将该无损缓冲吸收电路应用于蓄电池供电的推挽正激变换器中,显著降低了整流二极管的电压尖峰。制作的原理样机电路结构简单,功率器件工作可靠性高,并且实现了高的整机变换效率。1 工作原理图1为加无损缓冲吸收的PPF电路。Ds1、Ds2分别为开关管S1、S2寄生的反并二极管,变压器的Np1=Np2=Np、Ns1=Ns2=Ns分别为原、副边的匝数,匝比n=Ns/Np,原边两个绕组的励磁电感均为Lm,Lo(图1中未标出)为变压器原边绕组的漏感.Lo’为折算到变压器副边绕组的漏感,D5、D6、D7、C1、C2构成无损缓冲吸收电路,且C1=C2=Cc。变压器副边两个绕组的连接点与输出滤波电容C3和C4的中点相连,输出电压为±V0/2。 在分析电路原理前,假定:(1)S1、S2,D1、D2、D3、D4导通压降忽略不计;(2)箝位电容C 较大,在稳态工作时两端电压保持为Vin不变;C3=C4=C0足够大,将它看作电压恒定为V0/2的电压源;L1=L2=L足够大,将它看作电流为I0的电流源;(3)开关周期为Ts,S1、S2每个周期开通时间均为Ton,S1、S2工作的占空比D=Ton/Ts。根据输出电感的伏秒积分平衡,可得变换器输入输出关系:V0=4nDVin。图2为加无损缓冲吸收的PPF电路工作原理波形图,一共分为14个工作模态。 (1)工作模态l[t0-t1] ,在t0以前,S1和S2都是关断的,输入电流沿回路Vin-Np-C-Np2环流,环流为Ia=2nDI0。原、副边绕组电压为零,整流二极管同时导通,iD1=iD2=I0/2。t0时刻,S1导通,Vin加在原边漏感Lo上,ip1迅速增加;Vc加在绕组的漏感上,ip2迅速减小并反向增人。同时,流过iD1、iD4的电流增大,流过iD2、iD3的电流减小,此过程持续到iD2减小到0并且增大到最大反向恢复电流时结束。模态l中,Vc1=Vc2=0,VD5=VD6=Vo/2,VD7=0。(2)工作模态2[t0-t2] ,t1时刻,D2、D3中反向恢复电流达到最大值,D5、D6导通,D2、D3达到瞬时反向电压Vo,缓冲电容C1(C2)和副边漏感Lo’开始谐振。Vin、VC分别加在原边绕组Np1、Np2上,ip1正向增大,ip2减小并反向增大。两端电压从零开始谐振增大,在半个谐振周期后达到最大值VC1max=VC2max=2nVin-Vo,此时模态2结束。模态2中,VD5=VD6=0,VD7=Vo。二极管D2、D3两端反向电压从V0逐渐增大VD2=VD3=4nVin-V0。(3)工作模态3[t2-t3] ,t2时刻,D2、D3两端电压回落到稳态关断值2nVin,D5、D6关断。变压

内孔去毛刺的十一种方法

1、内孔人工去毛刺 这个也是一般企业普遍采用的方式,采用锉刀、砂纸、磨头等作为辅助工具。锉刀有人工锉刀和气动错动。 简评: 人工成本较贵,效率不是很高,且对复杂的交叉孔很难去除。 对工人技术要求不是很高,适用毛刺小,产品结构简单的产品。 2、内孔化学药水去毛刺 无锡市欧谱表面处理科技有限公司引进德国的一种用化学药水去毛刺的药水技术,这个去毛刺工艺是纯化学的方法,是用一种叫化学OPULL(欧谱)产品。是一种纯化学的浸泡工艺,生产效率高,可大批量,一次性去除毛刺,节省了大量人工,降低了劳动强度,去毛刺效果非常理想,而且能够提高企业的经济效益可以适用于铁素体钢材,有色金属或者铝的零件。这个方法简便,不需要专业人员操作。可以对构造非常复杂的工件(例如:内角孔)或者容易受损的零件或者易弯曲的零件去除毛刺而不损坏工件,以得到更精密的工件。跟传统的去毛刺方法相比更容易,更省钱,更省力工件质量质量大大改善。许多复杂壳体零件内有一,二百个内孔、交叉孔,台肩孔,盲孔等,要求去除各交叉孔的毛刺都是十分困难的,往往要采用很多种方法都很难解决.OPULL化学去毛刺工艺采用浸泡工艺来去除毛刺,不管你工件 的内孔有多少,有多小,只要是药水能进入的地方毛刺都可以去除,目前欧谱公司化学表面处理加工技术被主要应用于制造工具、纺织机械、缝纫零配件、液压件、汽车零部件、医疗器械、以及航空零部件等行业精密产品。 简评: 生产效率高,可大批量,一次性去除毛刺,节省了大量人工,降低了劳动强度,去毛刺效果非常理想,而且能够提高企业的经济效益。 3、冲模去毛刺 采用制作冲模配合冲床进行去毛刺。 简评: 需要一定的冲模(粗模+精冲模)制作费,可能还需要制作整形模。 适合分型面较简单的产品,效率及去毛刺效果比人工佳。 4、研磨去毛刺 此类去毛刺包含振动、喷砂、滚筒等方式,目前企业采用较多。 简评: 存在去除不是很干净的问题,可能需要后续人工处理残余毛刺或者配合其他方式去毛刺。 适合批量较大的小产品。 5、冷冻去毛刺 利用降温使毛刺迅速脆化,然后喷射弹丸去除毛刺。 简评: 设备价格大概在二三十万; 适合毛刺壁厚较小且产品也较小的产品。 6、热爆去毛刺 也叫热能去毛刺、爆炸去毛刺。通过将一些易然气体,通入到一个设备炉中,然后通过一些介质及条件的作用,让气体瞬间爆炸,利用爆炸产生的能量来溶解去除毛刺。 简评:

免毛刺时钟切换电路设计方法

免毛刺时钟切换电路设计方法 基于网上资料整理,并进一步作了分析。 这篇文章讲述了时钟切换的时候毛刺(glitch)带来的危害,以及如何设计防止毛刺发生的时钟切换电路。但是没有讲到电路设计的构思从何而来,大家看了之后知道直接用这个电路,但是假如不看这篇文章,自己从头设计还是无从下手。 在这里,我换另外一个角度,通过电路设计技巧来阐述防毛刺时钟切换电路的设计思路。希望看过之后,不用参考文章就能够自己设计出这个电路。 对于一个时钟切换电路,输入两个异步时钟clk0、clk1,以及一个选择信号sel。 (1) 假设不考虑glitch,直接使用Mux就可以完成切频。电路如下: 由于clk0/clk1/sel之间是异步关系,时钟切换会发生在任意时刻,有一定的概率会发生glitch. glitch的危害文章里已经详述,这里不再重复。Glitch可能导致无法满足setup或hold时序要求而导致寄存器输出为不定态。 (2) 由于sel和clk0和clk1都是不同步的,我们可以从sel同步的方向入手,假如sel需要和clk0和clk1进行同步,那么sel必须分成两路,一个和clk0同步,一个和clk1同步,同步之后的sel信号再和clk0/clk1 gating起来,就可以让问题简单化。为了将sel分成两路,并且clk0/clk1需要分别gating, 那么可以将mux逻辑用and/or设计出来,如下:

当然此Mux电路还可以用两个or加上一个and来实现,都可以。注意G0和G1两点就是分别对clk0和clk1进行gating. 将来会在G0/G1点插入同步DFF. (3) 将上面电路拆开成两部分,一部分电路通过sel产生sel+和sel-两路,另一部分电路是gating mux电路, 如下: 只需要将sel-接上G0, sel+接上G1就是一个mux电路。将电路分开,是为了后续技巧性的功能替换。 (4) 将part0电路换成同样功能的带反馈的组合电路(为何要这样做,属于电路设计直觉和技巧。原因有2。其一,可以防抖。以part0_a为例,Sel从1到0的跳变,若仅为非常短的glitch,则可能sel+还来不及从1到0跳变,故sel-也保持为0,从而防止了输出因glitch 而抖动。其二,利用反馈,让时钟切换按照安全的顺序,即先关闭当前时钟,再打开目标时钟。而不管关闭还是使能,都必须保证当前时钟或目标时钟的使能信号的跳变都是分别在时

无源无损缓冲电路及其新拓扑

无源无损缓冲电路及其新拓扑 摘要:在分析无源无损缓冲电路的拓扑分类和硬开关转换过程中开关损耗的基础上,总结了无源无损缓冲电路的结构原理和一般实现方法。重点介绍了其在DC/DC变换器中两种新颖的拓扑结构,并简要地分析了它们的工作原理和优缺点。 关键词:无源无损缓冲电路;DC/DC变换器;功率因数校正 1 概述 在硬开关电路中,有源开关器件连接在刚性的电压源或电流源上,开关损耗大、电磁干扰严重、可靠性低,且随着开关频率的提高,这种现象更为严重。为了克服这些缺陷,软开关技术被广泛采用。 有源缓冲电路、RCD缓冲电路、谐振变换器、无源无损缓冲电路是常用的软开关技术。其中,有源缓冲电路通过增添辅助开关以减少开关损耗,但这也增加了主电路和控制电路的复杂程度,从而增大了性价比,也降低了可靠性;RCD缓冲电路虽然结构最简单,价格最便宜,但由于电阻消耗了能量,效率较低,在各种软开关技术中性能最差;而谐振变换器虽然实现了ZVS或ZCS,减少了开关损耗,但谐振能量必须足够大,才能创造ZVS或ZCS条件,而且谐振电路中循环电流较大,还必须在特定的软开关控制器的控制信号下工作,增加了通态损耗、增加了成本、降低了可靠性。与这三种方法不同,无源无损缓冲电路既不使用有源器件,也不使用耗能元件,因而兼具以上三种方法的优点。其结构与RCD缓冲电路一样简单,效率与有源缓冲电路、谐振变换器一样高,电磁干扰小、造价低、性能好、可靠性高,因而获得了广泛的应用。 目前,无源无损缓冲技术虽已比较成熟,但在国内外仍不时有新的拓扑和研究成果发表。本文在参考了最近20多年中无源无损缓冲电路研究成果的基础上,总结了无源无损缓冲电路的结构原理和一般实现方法。此外,重点介绍了其在PWM DC/DC变换器中两种最新的拓扑结构,分析了它们的工作原理,并比较了它们的优缺点。 2 拓扑分类 在过去的几十年里,出现了许多不同的无源无损缓冲电路的拓扑结构,它们可以用一套属性来描述[1]。为此,可划分为两类:一类是最小电压应力单元(MVS),如图1(a),图1(b)所示;另一类是非最小电压应力单元(Non-MVS),如图1(c),图1(d),图1(e),图1(f)所示。最小电压应力单元[2]仅使用一个电感和电容值较小的电容就能使主开关管电压应力最小,但实现软开关的范围不大;非最小电压应力单元[3]增加了一个电感,同时也增加了主开关管的电压应力,但与最小电压应力单元相比,在同样的电感和电容下,其软开关范围较大。而且,在小功率情况下,具有较高的效率。 (a) MVS (b) MVS (c)Non-MVS (d)Non-MVS

11种去毛刺除毛刺方法选择

11种去毛刺除毛刺方法选择 1、人工去毛刺 这个也是一般企业普遍采用的方式,采用锉刀、砂纸、磨头等作为辅助工具。锉刀有人工锉刀和气动错动。 简评: 人工成本较贵,效率不是很高,且对复杂的交叉孔很难去除。 对工人技术要求不是很高,适用毛刺小,产品结构简单的产品。 2、化学药水去毛刺 无锡市欧谱表面处理科技有限公司引进德国的一种用化学药水去毛刺的药水技术,这个去毛刺工艺是纯化学的方法,是用一种叫化学OPULL(欧谱)产品。是一种纯化学的浸泡工艺,生产效率高,可大批量,一次性去除毛刺,节省了大量人工,降低了劳动强度,去毛刺效果非常理想,而且能够提高企业的经济效益可以适用于铁素体钢材,有色金属或者铝的零件。这个方法简便,不需要专业人员操作。可以对构造非常复杂的工件(例如:内角孔)或者容易受损的零件或者易弯曲的零件去除毛刺而不损坏工件,以得到更精密的工件。跟传统的去毛刺方法相比更容易,更省钱,更省力工件质量质量大大改善。许多复杂壳体零件内有一,二百个内孔、交叉孔,台肩孔,盲孔等,要求去除各交叉孔的毛刺都是十分困难的,往往要采用很多种方法都很难解决.OPULL化学去毛刺工艺采用浸泡工艺来去除毛刺,不管你工件的内孔有多少,有多小,只要是药水能进入的地方毛刺都可以去除,目前欧谱公司化学表面处理加工技术被主要应用于制造工具、纺织机械、缝纫零配件、液压件、汽车零部件、医疗器械、以及航空零部件等行业精密产品。 简评:

生产效率高,可大批量,一次性去除毛刺,节省了大量人工,降低了劳动强度,去毛刺效果非常理想,而且能够提高企业的经济效益?。 3、冲模去毛刺 采用制作冲模配合冲床进行去毛刺。 简评: 需要一定的冲模(粗模+精冲模)制作费,可能还需要制作整形模。 适合分型面较简单的产品,效率及去毛刺效果比人工佳。 4、研磨去毛刺 此类去毛刺包含振动、喷砂、滚筒等方式,目前企业采用较多。 简评: 存在去除不是很干净的问题,可能需要后续人工处理残余毛刺或者配合其他方式去毛刺。适合批量较大的小产品。 5、冷冻去毛刺 利用降温使毛刺迅速脆化,然后喷射弹丸去除毛刺。 简评: 设备价格大概在二三十万; 适合毛刺壁厚较小且产品也较小的产品。 6、热爆去毛刺 也叫热能去毛刺、爆炸去毛刺。通过将一些易然气体,通入到一个设备炉中,然后通过一些介质及条件的作用,让气体瞬间爆炸,利用爆炸产生的能量来溶解去除毛刺。 简评:

时钟无毛刺切换电路

Techniques to make clock switching glitch free From: https://www.wendangku.net/doc/8512320749.html,/articles/exit/?id=5827&url=http://www.eetime https://www.wendangku.net/doc/8512320749.html,/story/OEG20030626S0035 Rafey Mahmud With more and more multi-frequency clocks being used in today's chips, especially in the communications field, it is often necessary to switch the source of a clock line while the chip is running. This is usually implemented by multiplexing two different frequency clock sources in hardware and controlling the multiplexer select line by internal logic. The two clock frequencies could be totally unrelated to each other or they may be multiples of each other. In either case, there is a chance of generating a glitch on the clock line at the time of the switch. A glitch on the clock line is hazardous to the whole system, as it could be interpreted as a capture clock edge by some registers while missed by others. In this article, two different methods of avoiding a glitch at the output clock line of a switch are presented. The first method is used when clocks are multiples of each other, while the second deals with clocks totally unrelated to each other. The problem with on-the-fly clock switching Figure 1 shows a simple implementation of a clock switch, using an AND-OR type multiplexer logic.

IGBT无损缓冲吸收电路设计

IGBT无损缓冲吸收电路设计 1 IGBT无损吸收网络 工作在硬开关方式下的IGBT,若不断地提高其工作频率会引起以下问题。 1)开关损耗大。开通时,开关器件的电流上升和电压下降同时进行;关断时,电压上升 和电流下降同时进行。电压、电流波形的交叠产生了开关损耗,该损耗随开关频率的提高 而急速增加。 2)感性关断电压尖峰大。当器件关断时,电路中的感性元件感应出尖峰电压。开关频率 愈高,关断愈快,该感应电压愈高。此电压加在开关器件两端,易造成IGBT模块击穿。3)容性开通电流尖峰大。当开关器件在很高的电压下开通时,储存在开关器件结电容中 的能量将以电流形式全部耗散在该器件内。频率愈高,开通电流尖峰愈大,从而会引起IGBT器件过热损坏。另外,二极管由导通变为截止时存在着反向恢复期,开关管在此期间的开通动作易产生很大的冲击电流。频率愈高,该冲击电流愈大,对器件的安全运行造成 危害。 4)电磁干扰严重。随着频率提高,电路中的di/dt和du/dt增大,从而使电磁干扰增大,影响变换器和周围电子设备的工作。 上述问题严重妨碍了开关器件工作频率的提高,降低变换器的效率,并危及开关器件的安 全可靠工作。近年来开展的软开关技术研究为克服上述缺陷提供了一条有效途径。软开关 工方式与硬开关工作方式不同,理想的零电流软关断过程是电流先降到零,电压再缓慢上 升到断态值,所以关断损耗近似为零。由于器件关断前电流已下降到零,解决了感性关断 问题。理想的零电压软开通过程是电压先降到零后,电流再缓慢上升到通态值,所以开通 损耗近似为零,器件结电容上的电压亦为零,解决了容性开通问题。同时,开通时二极管 反向恢复过程已经结束,因此二极管反向恢复问题亦不存往。di/dt和du/dt的降低使得EMI问题得以解决。 软开关技术实际上是利用电容与电感缓冲吸收原理,使开关器件中电流(或电压)按正弦 或准正弦规律变化。当电流过零时,使器件关断;当电压过零时,使器件开通-实现开关损耗为零。 软开关技术在改善功率开关器件工作状态方面效果明显,使电力变换器的高频化成为可能,提高了功率器件工作的可靠性和安全性,实现了开关器件的软开关,使开关器件的电压、 电流应力减小,在减小电力变换器的体积、重量以及降低电磁干扰方面效果明显。 1.缓冲吸收原理 缓冲电路(阻容吸收电路)主要用于抑制模块内部的IGBT单元的过电压和du/dt或者过 电流和di/dt,同时减小IGRT的开关损耗。由于缓冲电路所需的电阻、电容的功率、体积都较大,所以在IGBT模块内部并没有专门集成这部分电路,因此,在实际的系统中设有 缓冲电路,通过电容可把过电压的电磁能量变成静电能量储存起来,电阻可防止电容与电

[知识]电化学去毛刺工艺

[知识]电化学去毛刺工艺 电化学去毛刺工艺 摘要:介绍了脉冲电化学去毛刺工艺的加工机理及工艺要点(工具阴极、脉冲电源、电解液 等),并给出了加工实例。 1 引言 机械零件在制造加工过程中产生的毛刺不仅直接影响零件本身的精度和外观质量,还会影响整个产品的使用性能和寿命。此外,由于去毛刺工序要花费工时和费用,因此将直接影响产品的成本和价格,成为降低生产成本的障碍之一,全世界每年花费在去毛刺方面的费用约为100亿美元。目前,国外已从系统工程的角度来研究毛刺问题,并成立了“世界去毛刺协 会”(Worldwide Burr Technology Committee,WBTC),大力实施“毛刺工程”(Burr Engineering)。去毛刺工艺属于表面光整加工范畴,目前主要采用刮刀、油石、砂布、钢丝刷轮、滚磨、振动、喷沙和撞击等手工或机械方式以及化学、高温、水射流、磨粒挤压、电化学、脉冲电化学等非机械方式去除毛刺(航空业还采用机器人打磨等方式去毛刺),这些不同的去毛刺方法各有利弊。去毛刺一般为零件的最终精加工工序,因此在去除毛刺的同时还 必须保证零件具有良好的表面质量,其加工效果与选用的去毛刺工艺方法密切相关。 2 脉冲电化学去毛刺加工机理 脉冲电化学去毛刺是一种符合“绿色制造”要求的先进去毛刺工艺。该工艺采用脉冲电源代替直流电源,并在非线性电解液中进行加工;加工时,工件接脉冲电源的正极,与毛刺部位相对应的工具电极接脉冲电源的负极,工件阳极与工具阴极

之间保持较小的加工间隙,且工具阴极无进给。该工艺具有以下特点:?由于加工所用电解液为中性无机盐水溶液,因此不会污染环境;?由于脉冲电流的间隙作用和压力波的搅拌作用改善了加工间隙内的电场和流场条件,降低了对电解液流动特性的要求,因此有利于获得稳定、理想的加工过程;?由于在加工过程中无切削力,不会形成附加应力和表面变质层,因此可改善加工表面微观几何形貌 以及零件的物理、化学和机械性能。 图1 脉冲电化学去毛刺加工的基本原理脉冲电化学去毛刺加工的基本原理如图1所示。工件接脉冲电源的正极,工具电极接脉冲电源的负极,工具阴极与工件毛刺部位对应放置。加工时,首先在加工间隙内加入电解液,然后接通脉冲电源,此时工件阳极表面将发生氧化反应,工具阴极则将发生还原反应。工件阳极的基本电化学反应式为 n+M-ne?M n+M+n(OH)?Fe(OH)? n 工具(阴极)的基本电化学反应式为 +2H+2e?H? 2 加工时,在工件阳极附近形成一层很薄的氧化膜,可在工件阳极与电解液之间起到隔离作用。该氧化膜具有较高的电阻和较小的电导率,可阻止工件阳极表面进一步溶解,对工件阳极具有一定保护作用。在电解液的快速冲刷作用下,工件阳极表面凹陷处的氧化膜因不易扩散而较厚;工件阳极表面凸出处(如毛刺、微观凸出部位等)的氧化膜因容易扩散而较薄。由于氧化膜的分布不均匀,使毛刺等凸出部位始终与新鲜的电解液接触,因此毛刺部位的金属溶解

电路中如何消除方波跳变时产生的尖刺

电路中如何消除方波跳变时产生的尖刺? 解释一: 在组合逻辑中,由于门的输入信号通路中经过了不同的延时,导致到达该门的时间不一致叫竞争。产生毛刺叫冒险。如果布尔式中有相反的信号则可能产生竞争和冒险现象。解决方法:一是添加布尔式的(冗余)消去项,但是不能避免功能冒险,二是在芯片外部加电容。三是增加选通电路。 在组合逻辑中,由于多少输入信号变化先后不同、信号传输的路径不同,或是各种器件延迟时间不同(这种现象称为竞争)都有可能造成输出波形产生不应有的尖脉冲(俗称毛刺),这种现象成为冒险。 解释二: 竞争与冒险是数字电路中存在的一种现象。由于元器件质量和设备工艺已达到相当高的水平,因而数字电路的故障往往是竞争与冒险引起的,所以要研究它们。在一个复杂的数字电路的设计阶段,就完全预料电路中的竞争与冒险是困难的,有一些要通过实验来检查。下面将说明组合数字电路中竞争与冒险的基本概念和确定消除它的一些基本方法。 竞争:在组合电路中,信号经由不同的途径达到某一会合点的时间有先有后,这种现象称为竞争。 冒险:由于竞争而引起电路输出发生瞬间错误现象称为冒险。表现为输出端出现了原设计中没有的窄脉冲,常称其为毛刺。 竞争与冒险的关系:有竞争不一定会产生冒险,但有冒险就一定有竞争。 在组合逻辑中,由于门的输入信号通路中经过了不同的延时,导致到达该门的时间不一致叫竞争。 产生毛刺叫冒险。如果布尔式中有相反的信号则可能产生竞争和冒险现象。 解决方法:一是添加布尔式的消去项,二是在芯片外部加电容。 当组合逻辑电路存在冒险现象时,可以采取修改逻辑设计,增加选通电路,增加输出滤波等多种方法来消除冒险现象。 当一个门的输入有两个或两个以上的变量发生改变时,由于这些变量是经过不同路径产生的,使得它们状态改变的时刻有先有后,这种时差引起的现象称为竞争(Race)。竞争的结果若导致冒险或险象(Hazard)发生(例如毛刺),并造成错误的后果,那么就称这种竞争为临界竞争。若竞争的结果没有导致冒险发生,或虽有冒险发生,但不影响系统的工作,那么就称这种竞争为非临界竞争。 组合逻辑电路的险象仅在信号状态改变的时刻出现毛刺,这种冒险是过渡性的,它不会使稳态值偏离正常值,但在时序电路中,冒险是本质的,可导致电路的输出值永远偏离正常值或者发生振荡。 组合逻辑电路的冒险是过渡性冒险,从冒险的波形上,可分为静态冒险和动态冒险。 输入信号变化前后,输出的稳态值是一样的,但在输入信号变化时,输出信号产生了毛刺,这种冒险是静态冒险。若输出的稳态值为0,出现了正的尖脉冲毛刺,称为静态0险象。若输出稳态值为1,出现了负的尖脉冲毛刺,则称为静态1冒险。 输入信号变化前后,输出的稳态值不同,并在边沿处出现了毛刺,称为动态险象(冒险)。 从引起冒险的具体原因上,冒险可以分为函数冒险和逻辑冒险。函数冒险是逻辑函数本身固有的,当多个输入变量发生变化时,常常会发生逻辑冒险。避免函数冒险的最简单的方法是同一时刻只允许单个输入变量发生变化,或者采用取样的办法。 单个输入变量改变时,不会发生函数冒险,但电路设计不合适时,仍会出现逻辑冒险。通过精心设计,修改电路的结构,可以消除逻辑冒险。 解释三: 当一个门的输入有两个或两个以上的变量发生改变时,由于这些变量是经过不同组合逻辑路径产生的,使得它们状态改变的时刻有先有后,这种时差引起的现象称为竞争(Race)。竞争的结果若导致冒险或险象(Hazard)发生(例如毛刺(glitch)),并造成错误的后果,那么就称这种竞争为临

LCD无损缓冲电路原理

LCD 无损缓冲电路原理 反激变换器加入无损缓冲电路后,可以大大减少开关损耗。LCD 无损缓冲电路图如图2-6 图2-6 LCD 无损缓冲电路图 LCD 无损缓冲电路工作原理及分析[4]如下,其工作波形如图2-7所示。 1)工作模态 1:t0~t1。 当t = t0时,开关管S 开始导通,缓压电容C r 与电感L r 、二极管D 1组成谐振支路,C r 端压下降。 2)工作模态 2:t1 ~ t2 当t=t1时,功率开关S 及原边电感电流线性增加,二极管D 0反偏,工作状态和硬开关工作情况相同。 3)工作模态 3:t2 ~ t3 当t =t2时,开关管S 关断,储能电感 L 1、漏感 L k 沿C r ,D 2释放能量,C r 两端电压缓慢上升,原边电感电压L u 下降。 4)工作模态 4:t 3~ t4 当t=t3时,L u 下降到使 D 0正偏导通,随后原边电感被箝位,o L U N N u 2 1-=,C r 与L 1,L k ,直流输入电源、D 1和 L r 形成谐振回路。等效电感L e =L 1+L k +L r 。ds u 在t= t3时刻突然下降,以后近似按线性规律下降。 5)工作模态 5:t4 ~ t5 电容C r 两端电压U cr 不变,D0I 线性减小。 6)工作模态 6:t5 ~ t6

当t= t5时,D0关断,对原边绕组的箝位作用消失,C r沿L1、L k、直流输入电源、D1和L r释放能量。 7)工作模态7:t6 ~ t7 当t=t6时,电容C r端压保持U d不变,输出滤波电容向负载提供能量,直至下一周期开始。 图2-7 LCD无损缓冲电路工作波形

相关文档