文档库 最新最全的文档下载
当前位置:文档库 › 移动通信仿真实验-MATLAB仿真

移动通信仿真实验-MATLAB仿真

移动通信仿真实验-MATLAB仿真
移动通信仿真实验-MATLAB仿真

2012级移动通信仿真实验

——1234567 通信S班一、实验目的:

(1)通过利用matlab语言编程学会解决移动通信中基本理论知识的实验分析和验证方法;

(2)巩固和加深对移动通信基本理论知识的理解,增强分析问题、查阅资料、创新等各方面能力。

二、实验要求:

(1)熟练掌握本实验涉及到的相关知识和相关概念,做到原理清晰,明了;

(2)仿真程序设计合理、能够正确运行;

(3)按照要求撰写实验报告(基本原理、仿真设计、仿真代码(m文件)、仿真图形、结果分析和实验心得)

三、实验内容:

1、分集技术在Rayleigh衰落信道下的误码率分析

内容要求:

1)给出不同调制方式(BPSK/MPSK/QPSK/MQAM任选3种,M=4/8/16)在AWGN和Rayleigh 衰落环境下的误码率性能比较,分析这些调制方式的优缺点;

2)给出Rayleigh衰落信道下BPSK在不同合并方式(MRC/SC/EGC)和不同路径(1/2/3)时的性能比较,分析合并方式的优缺点;

3)给出BPSK在AWGN和Rayleigh衰落信道下1条径和2条径MRC合并时理论值和蒙特卡洛仿真的比较。

3、直接扩频技术在Rayleigh衰落信道下的误码率分析

内容要求:

1)m-序列、Gold序列和正交Gold序列在AWGN信道下的QPSK误码率分析;

2)m-序列、Gold序列和正交Gold序列在Rayleigh信道下的QPSK误码率分析;

3)m-序列在AWGN和Rayleigh信道下的QPSK误码率分析;

4)m-序列Rayleigh信道下不同调制方式MQAM(M=4/8/16)时的误码率分析。

四、实验数据

1、基于MATLAB中的BPSK误码性能研究

BPSK(Binary Phase Shift Keying )即双相频移键控,是把模拟信号转换成数据值的转换方式之一。利用偏离相位的复数波浪组合来表现信息键控移相方式的一种。本实验将简要介绍BPSK调制方式的特点,调制解调方法,以及在Matlab中在AWGN信道中的误码性能。(1)BPSK调制原理

二进制相移键控(BPSK)是利用载波的相位的变换来传递信息,而振幅和频率保持不变,BPSK的时域表达式为:

π

g

t

t

u

A

+

=t f

)

2

cos(

)(Φ

)(

m

c

T

Φ

=

n0(发送“0”时)或1(发送“1”时)

改写之后为

t

f t

g A t u c T m π2cos )()(=或

t

f t

g A c T π2cos )(-

另外BPSK 信号一般用双极性(bipolarity )全占空矩形脉冲序列与一个正弦载波相乘表征。

PSK 各信号具有相同的能量,即s

T m dt g A dt t u εε===??∞∞∞

∞2

2

2)(

m ε表示每个传输符号能量,

T

t g T 2

)(=

定义为一个矩形脉冲 ,0≤t ≤T

于是在符号区间0≤t ≤T 内传输的信号波形可表示为(其中A=

s

ε)

则 )

2cos(2)(n c s

m t f T t u φπε+=

如果将其看成两相角之和,即可表示为

t f M m

t g t f M m t g t u c T s c T s m ππεππε2sin )2sin()(2cos )2cos(

)()(-=

其中

)(1t Φ)(2t Φ是两个正交基函数,定义为t f t g t c T πφ2cos )()(1=

t f t g t c T πφ2sin )()(2-=

并把改两个基函数能量归一化到1

BPSK 相位解调与检测

AWGN 信道中,接受信号可表示为:

)()()(t n t u t r m +==)2sin()()2cos()()(t f t n t f t n t u c s c c m ππ-+ 其中

)(t n c 和)(t n s 是加性噪声的两个正交分量。

将接受信号与

)(1t Φ和)(2t Φ做互相关,

两个相关器的输出即可产生受噪声污染的

信号分量,可表示为

n u r m +==

s s c s n M m

n M m ++)2sin()2cos(

πεπε,m=0,1,2,3

其中?∞∞=dt t n t g n c T c )()(21 ?∞

∞=dt

t n t g n s T c )()(21

且两正交噪声分量是零均值互不相关的高斯随机过程,于是

)(t n c 和)(t n s 的方差是:

2

)()(0

2

2

N n E n E s c =

=

最佳检测器将接受信号向量r 投射到所有可能的传输信号向量之一上,并选对应于最大投影的向量,据此相关准则即为

m m s r s r C *),(=

m=0,1,2,3

由于全部信号都具有相等的能量,因此数字相位调制的一种等效检测器标准就是计算接收信号向量

),(s c r r r 的相位:

c

s r r r arctan

并从信号集

}{m s 中选取其相位最接近r θ的信号。

在AWGN 信道中,二相相位调制与二进制PAM 相同,差错概率为:

)

2(0

N Q P b

e ε=,其中为每比特能量。

(2)程序代码

% BPSK 在AWGN 平坦衰落信道的无码性能仿真************************************* %*************************** ************************************* clf; clc;

SNRindB1=0:2:15; % 给定要进行仿真的信噪比(dB) SNRindB2=0:0.1:15; % 给定要进行理论计算的信噪比(dB)

%************对SNRindB1进行Monte Carlo 仿真******************************** for i=1:length(SNRindB1)

pb=BPSK2(SNRindB1(i)); % 调用BPSK2函数对给定信噪比进行仿真 smld_bit_err_prb(i)=pb; % 通过调用函数仿真获得比特误码率 end ;

%**************************************************************************

%*************对SNRindB2进行理论分析*************************************** for i=1:length(SNRindB2)

SNR=exp(SNRindB2(i)*log(10)/10); % dB 单位信噪比化成一般式信噪比 theo_err_prb(i)=Qfunct(sqrt(2*SNR)); % 调用Q 函数计算理论值 end ;

%**************************************************************************

% *************绘制相关曲线************************************************ colordef white

h1=semilogy(SNRindB1,smld_bit_err_prb,'g*'); %绘制比特误码率曲线

hold

h2=semilogy(SNRindB2,theo_err_prb,'g'); %绘制理论比特误码率曲线legend('BPSK仿真误码率','BPSK理论误码率');

xlabel('E/N(dB)')

ylabel('Pe')

title('BPSK在AWGN信道中的误码性能 ')

(3)在AWGN信道中BPSK的误码率分析

基于前面的仿真原理,将理论值与仿真值进行对比,分析合理性,首先由MATLAB程序产生信号源,再模拟AWGN平坦衰落信道中叠加加性高斯白噪声,在接收端对接收信号进行检测与估值,并对信号进行判决恢复原始信号。得到仿真比特误码率和理论比特误码率如下:

分析:从上图可以看出,仿真比特误码率和理论比特误码率非常接近,不管是在信噪比较低的情况下,还是信噪比较高的情况下,两者都符合得很好,但可以看出,随着信噪比逐渐加大,两者渐渐有了分叉,慢慢显示出差距来,这说明在大信噪比的情况下,理论值还是会偏离实际值的,但是误码率越来越小,越来越向好的方向发展。

下面则给出了三种调制方式的误码性能比较

分析:将QPSK,BPSK,16QAM,FSK四种调制方式,包括理论值与实际值,放在同一个图下,对他们进行对比,可以很清晰地发现,QPSK在信噪比较小时,仿真值和理论值就有了偏离,且两者数值都比较大,当信噪比越来越大时,仿真值成直线几乎没变化,而实际值的Pe值逐渐变小,这种调制方式不是很可取;16QAM的性能跟QPSK相比,在低信噪比时,Pe值较大(还要大于QPSK的),随着信噪比逐渐增大,16QAM的Pe值逐渐减小,且理论值与实际值比较契合,在大信噪比情况下,误码性能略逊与QPSK的;FSK的理论值和实际值在各种信噪比下都比较契合,两者几乎没有大的差距,非常理想,无论是在低,高信噪比下,性能都要比QPSK的优越一些;BPSK性能最优!理论值与实际值契合得比较理想,而在低,高信噪比情况下,Pe值都是最低的,且随着信噪比逐渐增大,Pe实际值迅速减小,实现起来性能十分优越。因此在选择对误码性能要求较高的系统时,BPSK可作为首选,FSK次之,QPSK和16QAM再考虑实际情况选择,而在其他状态时,也可优先选择BPSK。

2、QPSK在AWGN信道下的仿真(上图已有)

clear;

close all;

N=10000;

Fd=1;

Fs=1*Fd;

M=4;

SNR_db=0:2:14;

for n=1:length(SNR_db)

Eb_N0=10^(SNR_db(n)/10);

sgma=sqrt(1/(2*Eb_N0));

x=randint(N,1,M);

y=dmodce(x,Fd,Fs,'psk',M);

a11=randn(1,N);

b11=randn(1,N);

%产生低通滤波器

b=-ones(1,Fs);b=b/Fs;a=1;

fad1=filter(b,a,a11);

fad2=filter(b,a,b11);

ynoise=y.*(abs(fad1+j*fad2))'+sqrt(Fs/Fd)*sgma*(randn(length(y),1)+j*randn(leng th(y),1));

ynoise1=y+sqrt(Fs/Fd)*sgma*(randn(length(y),1)+j*randn(length(y),1))

z=ddemodce(ynoise,Fd,Fs,'psk',M);

z1=ddemodce(ynoise1,Fd,Fs,'psk',M);

[numbers,p1m(n)]=symerr(x,z);

[numbers,p2m(n)]=symerr(x,z1)

end;

semilogy(SNR_db,p1m,'*-',SNR_db,p2m,'rx-');

xlabel('信噪比(dB)');

ylabel('误码率');

legend('瑞利信道仿真得到的误码率','高斯信道仿真得到的误码率');axis([0 15 10^(-4) 1]);

clear;

close all;

N=10000; Fd=1;

Fs=1*Fd;

M=4;

for SNR_db=0:10:20

Eb_N0=10^(SNR_db/10);

sgma=sqrt(1/(8*Eb_N0));

x=randint(N,1,M);

y=dmodce(x,Fd,Fs,'psk',M);

ynoise=y+sqrt(Fs/Fd)*sgma*(randn(length(y),1)+j*randn(length(y),1));

figure(SNR_db+1);

axis([1.2 1.2 1.2 1.2]);

hold on;

for i=0:M-1

plot(cos(2*pi*i/M),sin(2*pi*i/M),'.','MarkerSize',20);

end

plot(ynoise,'+');

hold off;

end;

3、M-QAM 调制在高斯信道和Rayleigh 衰落信道中的平均误码率性能研究

(1)QAM 的调制和相干解调框图如图(1)、图(2)所示。在调制端,输入数据经过串/并变换后分成两路。为了抑制已调信号的带外辐射,两路电平映射出的信号还要经过预调制低通滤波器,才分别与相互正交的各路载波相乘。最后两路信号相加就可以以得到已调输出信号y 。

串并转换

基带信号x

电平映射

电平映射

成形滤波

成形滤波

X

X

载波发生器

90度相移

coswt

-sinwt

+

已调信号y

Qn

In

图(1)正交调制原理框图 解调是调制的逆过程,在接收端解调器中可以采用正交的相干解调方法。接受到的信号分两路进入两个正交的载波的相干解调器,再分别进入判决器形成L 进制信号并输出二进制信号,最后经并/串变换后得到基带信号。

EPF

恢复信号x

时钟恢复

LPF

并串转换

抽样判决

X

X

载波恢复

90度相移

coswt

-sinwt

已调信号y

Qn

In

LPF

抽样判决

(2)相干解调原理框图 对于方型QAM 来说,它可以看成是两个脉冲振幅调制信号之和,因此利用脉冲振幅调制的分析结果,可以得到M 进制QAM 的误码率公式:

131132(1)(log 2()))*[1(1)(log 2())]

2(1)22(1)M P erfx M snrpBit erfx M snrpBit M M M M

=-

----log 2()M 为每个码元内的比特数,snrpBit 为每比特的平均信噪比。

(3)程序代码

clear;

M=16;%设置进制 k=log2(M);

L=sqrt(M);

x=randint(30000,1);%产生二进制随机数

y=modulate(modem.qammod('M',16,'InputType','Bit'),x);%调制

snrpBit=0:1:15;%信噪比

s_b2d=bi2de(reshape(x,k,length(x)/k).','left-msb');%二进制变为十进制

for n=1:length(snrpBit)

snr(n)=snrpBit(n)+10*log10(k);%Ratio of symbol energy to noise power spectral density

ynoisy=awgn(y,snr(n),'measured');%加入高斯白噪声

z=demodulate(modem.qamdemod('M',16,'OutputType','Bit'),ynoisy);%解调

r_b2d=bi2de(reshape(z,k,length(z)/k).','left-msb');%二进制变为十进制

[sym(n),sym_rate(n)]=symerr(s_b2d,r_b2d);%计算仿真误码率

a=3*log2(L);b=L^(2)-1;c=1-L^(-1);

theo_sym_rate(n)= (erfc(sqrt((10.^(snrpBit(n).*0.1)).*a./b)).*2*c).*(1- erfc(sqrt((10.^(snrpBit(n).*0.1)).*a./b)).*(1/2)*c);%计算理论误码率

end

disp(sym);

disp(sym_rate);

semilogy(snrpBit,sym_rate,'r*');%仿真误码率曲线

hold on;

semilogy(snrpBit,theo_sym_rate,'b-');%理论误码率曲线

%text(3,10^-2,'M=2');

%text(4,10^-2,'M=4');

%text(6,10^-2,'M=8');

%text(8,10^-2,'M=16');

%text(10.5,10^-2,'M=32');

%text(12.5,10^-2,'M=64');

title('QAM误码率性能');

xlabel('SNR');

ylabel('误码率');

legend('仿真误码率','理论误码率');

axis([0 15 1e-4 1]);%坐标范围

7.2 M-QAM在Rayleigh信道下误码率性能源程序

(1)主程序

% simulation for M-QAM transmission

M=input('Enter the order of M-QAM, M(2^k) =');%输入

EbNodB = [0:2:20];% 设置Eb/N0为0-20dB,间隔为2.

EbNolin = 10.^(EbNodB/10) ;%转换为线性刻度

Pe_sim=[];%设置函数,清零

for i = 1:11,

Pe_sim=[Pe_sim QAM_rayleigh(M, EbNodB(i))];%依次带入EBNO值计算出瑞利信道下相对应误码率

end

% 画瑞利衰落信道下误码率曲线

semilogy(EbNodB,Pe_sim,'r*')

hold on

% 计算理论误码率

if(M==4)

a=1;

else

a=4/log2(M);

end

b=3*log2(M)/(M-1);

Pe=[];

for i = 1:11,

Pe= [Pe 0.5*a*(1-sqrt(0.5*b*EbNolin(i)/(1+0.5*b*EbNolin(i))))];

end % 计算方式出处: Wireless Communication, A. Goldsmith %绘制理论误码率曲线

semilogy(EbNodB,Pe)

xlabel('snr, EbNo(dB)');

ylabel('Bit error probability, Pe');

title('Comparison between theoretical & simulated results of BER of M-QAM'); legend('simulated result','theoretical results');

hold off

(2)子函数:

function[ber]= QAM_rayleigh(M, EbNodB)

% 数据送入,M-QAM 调制

k=log2(M);%转换为多路并行

EbNo=10^(EbNodB/10);%转换为线性刻度

N=k*10^4;%信源数

x=0+(1-0)*round(rand(1,N))';%产生随机数,转置,去整,输入序列

h=modem.qammod(M);%调制方式

h.inputtype='bit';%输入为二进制

y=modulate(h,x);%调制

% 加入信道

m=mean((abs(y)).^2)/k;%已调信号的平均功率

sigma=sqrt(m/(2*EbNo));%噪声(标准差)

w=sigma*(randn(N/k,1)+1i*randn(N/k,1));%噪声

H=(1/sqrt(2))*(randn(N/k,1)+1i*randn(N/k,1));%瑞利信道

r=H.*y+w;%输出=信道*输入+高斯噪声

% M-QAM 解调及误码率

r=r./H;%信道均衡

h_n=modem.qamdemod(M);%解调方式

h_n.outputtype='bit';%输出为二进制

z=demodulate(h_n,r);%解调

ber=(N-sum(x==z))/N;%计算误码率并赋值给ber

(4) QAM调制方式,信道为高斯信道的系统误码率分析图:

QAM调制方式,信道为瑞利衰落信道的系统误码率分析图:

M=4和8

M=16

(5)分析:首先对QAM 调制解调系统基本原理进行了较为深入地理解与分析,并得到了M 进制QAM 的误码率公式。其次,对高斯信道和瑞丽衰落信道进行了简介与分析,最后根据QAM 在这两类信道下的误码率性能编写了程序并通过仿真得到了误码率曲线。从误码率曲线图中可以看出,仿真误码率曲线与理论误码率曲线拟合情况良好,说明本文采用方法正确。

4、MPSK 调制在高斯信道和Rayleigh 衰落信道中的平均误码率性能研究

(1)基本原理

一个MPSK 信号码元可以表示为 )cos()(0k k t A t S θω+= M k ,,2,1 =

式中:A 为常数;k θ为一组间隔均匀的受调制相位,其值取决于基带码元的取值。

所以它可以写为

)1(2-=

k M k π

θ M k ,,2,1 =

通常M 取2的某次幂: k

M 2= 为正整数k

在后面的分析中,为了不失一般性,可令其中的A=1,然后将MPSK 信号码元表示为

t b t a t t s o k k k k ωωθωsin cos )cos()(00-=+=

式中:

k k k k b a θθsin ,cos ==。

上式表明,MPSK 信号可以看作是由正弦和余弦两个正交分量合成的信号。它们

的振幅分别是k a 和k b ,并且

12

2=+k k b a 。这就是说,MPSK 信号码元可以看做是两

个特定的MASK信号之和。

(2)程序代码

function [pb,ps]=cm_sm32(snr_in_dB)

% [pb,ps]=cm_sm32(snr_in_dB)

% CM_SM3发现误码和误符号的概率

% snr_in_dB的给定值,信号以dB为单位的信噪比。

counter=0;

numofsymbolerror=0;

numofbiterror=0;

while (numofbiterror<100) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

N=10000;

E=1; % 每个符号的能量

snr=10^(snr_in_dB/10); % 信噪比

sgma=sqrt(E/snr)/2; % 噪声方差

s00=[1 0]; s01=[0 1]; s11=[-1 0]; s10=[0 -1]; % 信号映射

% generation of the data source

for i=1:N,

temp=rand; % 0和1之间均匀分布的随机变量 if (temp<0.25), % 概率小于1/4时,源极输出为“00”

dsource1(i)=0; dsource2(i)=0;

elseif (temp<0.5), % 概率小于1/2时,源极输出为"01"

dsource1(i)=0; dsource2(i)=1;

elseif (temp<0.75), % 概率小于3/4时,源极输出为"10"

dsource1(i)=1; dsource2(i)=0;

else % 其余,源极输出为"11",与星座图对应 dsource1(i)=1; dsource2(i)=1;

end;

end;

% 检测和计算误差的概率

for i=1:N,

% 在检测所接收的信号,对于第i个符号,方法是:

n=sgma*randn(1,2); % 正态分布,方差

if ((dsource1(i)==0) & (dsource2(i)==0)),

r=s00+n;

elseif ((dsource1(i)==0) & (dsource2(i)==1)),

r=s01+n;

elseif ((dsource1(i)==1) & (dsource2(i)==0)),

r=s10+n;

else

r=s11+n;

end;

% 相关指标如下计算

c00=dot(r,s00); c01=dot(r,s01); c10=dot(r,s10); c11=dot(r,s11); % 在第i个符号的判定为下一次

c_max=max([c00,c01,c10,c11]);

if (c00==c_max), decis1=0; decis2=0;

elseif (c01==c_max), decis1=0; decis2=1;

elseif (c10==c_max), decis1=1; decis2=0;

else decis1=1; decis2=1;

end;

% 增加错误计数器,如果决定是不正确的

symbolerror=0;

if (decis1~=dsource1(i)), numofbiterror=numofbiterror+1; symbolerror=1;

end;

if (decis2~=dsource2(i)), numofbiterror=numofbiterror+1; symbolerror=1;

end;

if (symbolerror==1), numofsymbolerror=numofsymbolerror+1;

end;

end;

counter=counter+1;

end

ps=numofsymbolerror/(N*counter); % 误信率

pb=numofbiterror/(2*N*counter); % 误码率function [pb_rayleigh,ps_rayleigh]=rayleigh(snr_in_dB)

% [pb_rayleigh,ps_rayleigh]=rayleigh(snr_in_dB)

% CM_SM3发现误码和误符号的概率

% snr_in_dB的给定值,信号以dB为单位的信噪比。

counter=0;

numofsymbolerror=0;

numofbiterror=0;

while (numofbiterror<100) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

N=10000;

E=1; % 每个符号的能量

snr=10^(snr_in_dB/10); % 信噪比

sgma=sqrt(E/snr)/2; % 噪声方差

s00=[1 0]; s01=[0 1]; s11=[-1 0]; s10=[0 -1]; % 信号映射

% generation of the data source

for i=1:N,

temp=rand; % 0和1之间均匀分布的随机变量 if (temp<0.25), % 概率小于1/4时,源极输出为"00"

dsource1(i)=0; dsource2(i)=0;

elseif (temp<0.5), % 概率小于1/2时,源极输出为"01"

dsource1(i)=0; dsource2(i)=1;

elseif (temp<0.75), % 概率小于3/4时,源极输出为"10"

dsource1(i)=1; dsource2(i)=0;

else % 否则为"11"

dsource1(i)=1; dsource2(i)=1;

end;

end;

% 检测和计算误差的概率

for i=1:N,

% the received signal at the detection, for the ith symbol,is: m=raylrnd(0.7);

n=sgma*randn(1,2); % 正态分布,方差

if ((dsource1(i)==0) & (dsource2(i)==0)),

r=m*s00+n;

elseif ((dsource1(i)==0) & (dsource2(i)==1)),

r=m*s01+n;

elseif ((dsource1(i)==1) & (dsource2(i)==0)),

r=m*s10+n;

else

r=m*s11+n;

end;

(3)把自己编写的function函数和主函数放在同一个文件夹diaoyonghanshu中,如下图:

打开Matlab,在current folder中打开文件夹diaoyonghanshu添加两个function函数,如下图:

然后在Matlab中运行QPSK_System_BER_Simulation.m,得到高斯信道和Rayleigh衰落信道波形图。

(4)仿真结果

高斯信道和瑞利衰落信道的误码率对比,由图可知瑞利衰落信道下的误码率比高斯信道下的误码率高。

1.随着信噪比的增大,高斯信道和瑞利衰落信道的误码率均降低。

2.相同信噪比时,高斯信道和瑞利衰落信道的实际误码率比理论情况下的误码率高。

五、实验心得

通过本次课程设计,感觉有很多收获。在做的过程中遇到了很多问题,像对问题不知道应该从哪里入手分析、对MATLAB编程及软件使用不熟练等等,最后通过查资料及组员之间相互沟通解决了这些问题。在这个工程中,组员的分析解决问题的能力及对MATLAB的掌握都有了很大提高。最后还要感谢本学期老师对移动通信课程的讲授,使我们获得了重要的专业知识同时对通信专业有了更深刻

的认识,为以后的深造及工作打下了良好的基础。

移动通信原理课程设计-实验报告-

电子科技大学 通信抗干扰技术国家级重点实验室 实验报告 课程名称移动通信原理 实验内容无线信道特性分析; BPSK/QPSK通信链路搭建与误码性能分析; SIMO系统性能仿真分析 课程教师胡苏 成员姓名成员学号成员分工 独立完成必做题第二题,参与选做题SIMO仿 真中的最大比值合并模型设计 参与选做题SIMO仿真中的 等增益合并模型设计 独立完成必做题第一题 参与选做题SIMO仿真中的 选择合并模型设计

1,必做题目 1.1无线信道特性分析 1.1.1实验目的 1)了解无线信道各种衰落特性; 2)掌握各种描述无线信道特性参数的物理意义; 3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。 1.1.2实验内容 1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰 落信道,观察信号经过衰落前后的星座图,观察信道特性。仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0 -3 -6 -9]dB,最大多普勒频移为200Hz。例如信道设置如下图所示:

1.1.3实验仿真 (1)实验框图 (2)图表及说明 图一:Before Rayleigh Fading1 #上图为QPSK相位图,由图可以看出2比特码元有四种。

图二:After Rayleigh Fading #从上图可以看出,信号通过瑞利信道后,满足瑞利分布,相位和幅度发生随机变化,所以图三中的相位不是集中在四点,而是在四个点附近随机分布。 图三:Impulse Response #从冲激响应的图可以看出相位在时间上发生了偏移。

移动通信实验报告

邮电大学 移动通信实验报告 班级: 专业: : 学号:

班序号: 一、实验目的 (2) 1、移动通信设备观察实验 (2) 2、网管操作实验 (3) 二、实验设备 (3) 三、实验容 (3) 1、TD_SCDMA系统认识 (3) 2、硬件认知 (3) 2.1移动通信设备 (3) 2.2 RNC设备认知 (4) 2.3 Node B设备(基站设备) (6) 2.4 LMT-B软件 (7) 2.5通过OMT创建基站 (8) 四、实验总结 (20) 一、实验目的 1、移动通信设备观察实验 1.1 RNC设备观察实验 a) 了解机柜结构 b) 了解RNC机框结构及单板布局 c) 了解RNC各种类型以及连接方式 1.2 基站设备硬件观察实验 a) 初步了解嵌入式通信设备组成 b) 认知大唐移动基站设备EMB5116的基本结构 c) 初步分析硬件功能设计

2、网管操作实验 a) 了解OMC系统的基本功能和操作 b) 掌握OMT如何创建基站 二、实验设备 TD‐SCDMA 移动通信设备一套(EMB5116基站+TDR3000+展示用板卡)电脑 三、实验容 1、TD_SCDMA系统认识 全称是时分同步的码分多址技术(英文对应Time Division-Synchronous Code Division Multiple Access)。 TD_SCDMA系统是时分双工的同步CDMA系统,它的设计参照了TDD(时分双工)在不成对的频带上的时域模式。运用TDSCDMA这一技术,通过灵活地改变上/下行链路的转换点就可以实现所有3G对称和非对称业务。合适的TDSCDMA时域操作模式可自行解决所有对称和非对称业务以及任何混合业务的上/下行链路资源分配的问题。 TD_SCDMA系统网络结构中的三个重要接口(Iu接口、Iub接口、Uu接口),认识了TD_SCDMA系统的物理层结构,熟悉了TD_SCDMA系统的六大关键技术以及其后续演进LTE。

MATLAB仿真实验报告

MATLAB 仿真实验报告 课题名称:MATLAB 仿真——图像处理 学院:机电与信息工程学院 专业:电子信息科学与技术 年级班级:2012级电子二班 一、实验目的 1、掌握MATLAB处理图像的相关操作,熟悉相关的函数以及基本的MATLAB语句。 2、掌握对多维图像处理的相关技能,理解多维图像的相关性质 3、熟悉Help 命令的使用,掌握对相关函数的查找,了解Demos下的MATLAB自带的原函数文件。 4、熟练掌握部分绘图函数的应用,能够处理多维图像。 二、实验条件

MATLAB调试环境以及相关图像处理的基本MATLAB语句,会使用Help命令进行相关函数查找 三、实验内容 1、nddemo.m函数文件的相关介绍 Manipulating Multidimensional Arrays MATLAB supports arrays with more than two dimensions. Multidimensional arrays can be numeric, character, cell, or structure arrays. Multidimensional arrays can be used to represent multivariate data. MATLAB provides a number of functions that directly support multidimensional arrays. Contents : ●Creating multi-dimensional arrays 创建多维数组 ●Finding the dimensions寻找尺寸 ●Accessing elements 访问元素 ●Manipulating multi-dimensional arrays操纵多维数组 ●Selecting 2D matrices from multi-dimensional arrays从多维数组中选择二维矩 阵 (1)、Creating multi-dimensional arrays Multidimensional arrays in MATLAB are created the same way as two-dimensional arrays. For example, first define the 3 by 3 matrix, and then add a third dimension. The CAT function is a useful tool for building multidimensional arrays. B = cat(DIM,A1,A2,...) builds a multidimensional array by concatenating(联系起来)A1, A2 ... along the dimension DIM. Calls to CAT can be nested(嵌套). (2)、Finding the dimensions SIZE and NDIMS return the size and number of dimensions of matrices. (3)、Accessing elements To access a single element of a multidimensional array, use integer subscripts(整数下标). (4)、Manipulating multi-dimensional arrays

《移动通信技术》实验教学大纲(18.6)教学文案

《移动通信技术》实验教学大纲(18.6)

《移动通信技术》实验教学大纲 1.实验课程号: B453L07500 2.课程属性:(限选) 3.实验属性:非独立设课 4.学时学分:总学时36,实验学时10 5.实验应开学期:秋季 6.先修课程:数据通信与计算机网络,信号与系统,通信原理等。 一、课程的性质与任务 本实课程是移动通信技术的配套实验课,要求通过实验课的练习与实践使 学生加深对现代移动通信技术的基本概念和基本原理的理解,并掌握典型通信 系统的基本组成和基本技术,以适应信息社会对移动通信高级工程技术人才的 需求。 二、实验的目的与基本要求 通过实验使学生对比较抽象的移动通信理论内容产生一个具体的感性认 识,通过具体的实验操作使学生达到“知其然,且知其所以然”,从而提高分析 问题、解决问题的能力。 三、实验考核方式及办法 实验成绩评分办法:实验成绩占课程成绩的15%。 四、实验项目一览表 移动通信技术实验项目一览表 序实验项目实验实验适用学 号名称类型要求专业时 1 数字调制与解调技术验证性必做信息工程/电子信息工程 2 2 扩频技术验证性必做信息工程/电子信息工程 2 3 抗衰落技术验证性必做信息工程/电子信息工程 2 4 GSM通信系统实验综合性必做信息工程/电子信息工程 2 5 CDMA通信系统实验综合性必做信息工程/电子信息工程 2

五、实验项目的具体内容:

实验一数字调制与解调技术 1.本次实验的目的和要求 通过本实验了解QPSK, OQPSK,MSK,GMSK调制原理及特性、解调原理及载波在相干及非相干时的解调特性。将它们的原理及特性进行对比,掌握它们的差别。掌握星座图的概念、星座图的产生原理及方法。 2.实验内容 1)观察I、Q两路基带信号的特征及与输入NRZ码的关系。 2)观察IQ调制解调过程中各信号变化。 3)观察解调载波相干时和非相干时各信号的区别。 4)观察各调制信号的区别。 5)观察QPSK、OQPSK、MSK、GMSK基带信号的星座图,并比较各星 座图的不同及他们的意义。 3.需用的仪器 移动通信原理实验箱(主控&信号源模块、软件无线电调制模块10号模块、软件无线电解调模块11号模块),示波器。 4.实验步骤 1)准备:阅读实验教程,了解QPSK, OQPSK,MSK,GMSK的调制解调原 理; 2)QPSK调制及解调实验 (1)按实验要求完成所有连线,形成调制解调电路。 (2)QPSK调制。设置主控菜单,选择QPSK调制及解调;用示波器观测10号模块的TP8(NRZ-I)和TP9(NRZ-Q)测试点,观测基带信号经过串并变换后输出的两路波形,与输入信号对比;示波器探头接10号模块TH7(I-Out)和 TH9(Q-Out),调节示波器为XY模式,观察QPSK星座图;示波器探头接10号模块TH7(I-Out)和TP3(I),对比观测I路成形波形的载波调制前后的波形;示波器探头接10号模块TH9(Q-Out)和TP4(Q),对比观测Q路成形波形的载波调制前后的波形;示波器探头接10模块的TP1,观测I路和Q路加载频后的叠加信号,即QPSK调制信号。

《移动通信原理与应用》仿真实验报告格式 (2)

重庆交通大学信息科学与工程学院综合性设计性实验报告 专业:通信工程专业10级 学号: 姓名: 实验所属课程:移动通信原理与应用 实验室(中心):软件与通信实验中心 指导教师:李益才 2013年3月

一、题目 扩频通信系统仿真实验 二、仿真要求(以下两种要求满足其中一种即可) 要求一:扩频通信系统的多用户数据传输 ①传输的数据随机产生,要求采用频带传输(DBPSK调制); ②扩频码要求采用周期为63(或127)的m序列; ③仿真从基站发送数据到三个不同的用户,各不同用户分别进行数据接收; ④设计三种不同的功率延迟分布,从基站到达三个不同的用户分别经过多径衰落(路径数分别为2,3,4); ⑤三个用户接收端分别解出各自的数据并与发送前的数据进行差错比较。 要求二:利用蒙特卡罗仿真方法对扩频增益进行性能仿真 设计仿真方案,得到在数据传输过程中进行扩频(扩频序列用m序列)和不进行扩频的BER性能结论,要求得到的BER曲线较为平滑,并说明这种结论与理论上的结论是否相符,为什么? 三、仿真方案详细设计 扩频通信的信号带宽与信息带宽之比则高达100~1000,属于宽带通信。信号的频带宽度与其脉冲宽度近似成反比;如果很窄的脉冲序列被所传信息调制,则可产生很宽频带的信号,这种很窄的脉冲码序列(其码速率是很高的)可作为扩频码序列。在扩频通信中接收端用与发送端完全相同的扩频码序列与收到的扩

频信号进行相关解扩,恢复所传信息。 DSSS: 直扩系统的特点主要有以下几个方面: (1) 具有较强的抗干扰能力。扩频系统通过相关接收,将干扰功率扩展到很宽的频带上去,使进入信号频带内的干扰功率大大降低,提高了解调器输入端的信干比,从而提高了系统的抗干扰能力,这种能力的大小与处理增益成正比。 (2) 具有很强的隐蔽性和抗侦察、抗窃听、抗测向的能力。扩频信号的谱密度很低,可使信号淹没在噪声之中,不易被敌方截获、侦察、测向和窃听。直扩系统可在-15~-10dB乃至更低的信噪比条件下工作。 (3)具有选址能力,可实现码分多址。扩频系统本来就是一种码分多址通信系统。用不同的码可以组成不同的网,组网能力强,其频谱利用率并不因占用的频带扩展而降低。采用多址通信后,频带利用率反而比单频单波系统的频带利用率高。 (4) 抗衰落,特别是抗频率选择性能好。直扩信号的频谱很宽,一小部分衰落对整个信号的影响不大。 5.抗多径干扰。直扩系统有较强的抗多径干扰的能力,多径信号到达接收端,由于利用了伪随机码的相关特性,只要多径时延超过伪随机码的一个切普(chip),则通过相关处理后,可消除这种多径干扰的影响,甚至可以利用这些多径干扰

MATLAB仿真实验全部

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些 2、 如何判断系统稳定性 3、 系统的动态性能指标有哪些 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

移动通信原理实验 移动台开机、关机实验

课程名称移动通信原理 实验序号实验七 实验项目移动台开机、关机实验实验地点 实验学时实验类型验证性指导教师实验员 专业班级 学号姓名 年月日

图2-5-1 MS 进行IMSI附着的信令过程 (3)收到IMMEDIATE ASSIGNMENT信息,MS的调整到分配的专用信道上,发送SABM帧,其中包含的层3消息为LOCATION UPDATING REQUEST,这个消息中包含的参数有:位置更新的类型(可以是正常位置更新、IMSI附着或者周期性位置更新,则这里位置更新类型就是IMSI附着);MS所在位置域的LAI;MS的IMSI。 (4)BS收到包含有LOCATION UPDATING REQUEST内容的SABM帧后,所做的操作:①向MS回发SABM 的响应UA帧,UA帧的内容同SABM中的内容完成相同,MS收到内容与SABM完全相同的UA帧后,则MS的数据链路层进入证实传递模式。②BS将LOCATION UPDATING REQUEST消息转发给MSC/VLR。因为MM层的程序执行是由MSC/VLR完成的。 (5)MSC/VLR收到LOCATION UPDATING REQUEST消息,则要进行位置更新程序。则位置更新程序之前,要进行MM层的一个公共程序,也就是鉴权程序,鉴权程序的目的是确认移动台通过空中接口传送的IMSI是否为合法的签约IMSI,即鉴别用户SIM卡的真实性,防止无权用户接入网络。在每次位置登记,呼叫(主呼与被呼)建立,或执行某些补充业务的登记、删除前均需要鉴权。鉴权的执行过程如下:MSC/VLR向MS发送鉴权请求消息AUTHENTICATION REQUEST。在MSC/VLR中存储了来自AUC

移动通信仿真实验

移动通信仿真实验报告 一、实验目的 通过仿真,加深对移动通信中电波传播的路径损耗和阴影衰落的理解; 通过仿真,掌握蜂窝网中频率复用、同频干扰等基本概念,加深对载波干扰比的理解; 二、实验原理 1.无线信道的衰落 无线信道的衰落通常分为大尺度衰落和小尺度衰落。 大尺度衰落是由移动通信信道路径上的固定障碍物(建筑物、山丘、树林等)的阴影引起的,衰减特性一般服从d?n律,其中n称为路径损耗指数,平均信号衰落和关于平均衰落的变化具有对数正态分布的特征。大尺度衰落主要影响到无线区的覆盖区域。 小尺度衰落由移动台运动和地点的变化而产生,主要特征是多径。多径产生时间扩散,引起符号间码间干扰;运动产生多普勒频移,引起信号随机调频。多径衰落严重影响信号传输质量,并且不可避免,只能采用抗衰落技术减少其影响。 1)阴影衰落 在无线信道里,造成慢衰落的最主要原因是建筑物或其它物体对电波的遮挡。在测量过程中,不同位置遇到的建筑物遮挡情况不同,因此接收功率也不同,这样就会观察到衰落现象。由于这种原因造成的衰落也叫“阴影效应”或“阴影衰落”。在阴影衰落的情况下,移动台被建筑物所遮挡,它收到的信号是各种绕射,反射,散射波的合成。所以,在距基站距离相同的地方,由于阴影效应的不同,它们收到的信号功率有可能相差很大,理论和测试表明,阴影衰落一般表示为电波传播距离r的m次幂与表示阴影损耗的正态对数分量的乘积。移动用户和基站 间距离为r时,传播路径损耗和阴影衰落可以表示为 l r,ξ=r m×10ξ10 式中,ξ是由于阴影产生的对数损耗(单位为dB),ξ~N(0,σ)。当用dB表示时,上式变为 10lg l r,ξ=10m lg r+ξ 式中m称为路径损耗指数,实验数据表明m=4,σ=8 dB是合理的。

移动通信 实验 解扩实验

实验十二解扩实验 一.实验目的: 1、通过本实验掌握载波已调信号m序列解扩原理及方法,掌握解扩前后信号在时 域及频域上的变化。 2、通过本实验掌握载波已调信号GOLD序列解扩原理及方法,掌握解扩前后信号在 时域及频域上的变化。 二.实验内容: 1、观察解扩时本地扩频码与扩频时扩频码的同步情况。 2、观察已调信号在解扩前后的频域变化。 三.基本原理: m序列解扩的是在接收到的RF信号上进行的,其实解扩的原理很简单,即用一个与发送端完全相同的m序列与接收到的信号直接相乘就可以完成信号的解扩,两个m序列的相位必须一致,即接收端产生的m序列必须进行捕获和跟踪,以使其速率和相位与发送端m序列保持一致。 四.实验原理: 1、实验模块简介 (1)CDMA发送模块: 本模块的主要功能:产生PN31伪随机序列,将伪随机序列或外部输入的其它数字序列扩频,扩频增益为32,扩频后输出码速率为512kbps,可输出两条不同扩 频码信号。 (2)CDMA接收模块: 本模块的主要功能:完成10.7MHz射频信号的选频放大,当本地扩频码设置为与发送端扩频码相同时,可完成扩频码的捕获及跟踪,进而完成射频信号的解扩。 (3)IQ调制解调模块: 本模块的主要功能:产生调制及解调用的正交载波;完成射频正交调制及小功率线性放大;完成射频信号正交解调。 2、扩频后的PSK已调信号分为三路送入CDMA接收模块中,分别与结婚搜模块中产 生的m序列的超前、同相、滞后序列相乘。在扩频码没有捕获到时,同相支路的捕获输出为低电平,扣码电路工作,每周期扣掉1/4个码元,使发送端和接收端的两个PN序列产生相对滑动,当滑动到两个序列的相位差小于一个码元时,电平,扣码电路停止工作,系统进入跟踪状态。此时超前-滞后支路产生的复合相关特性出现,经低通滤波后控制VCO,使收发端PN序列完全同步,此后跟踪过程一直存在,维持PN序列的同步。 PN码同相支路的相乘信号经带通滤波后即为解扩后的信号。该信号时一个基带信元的PSK调制信号,扩频码调制部分已经被去除。 五.实验步骤: (一)m序列扩频实验 1、在实验箱上正确安装CDMA发送模块、CDMA接收模块及IQ调制解 调模块 2、正确连线,检查无误后打开电源 3、将发送模块上“GOLD1 SET”拨码开关拨为全“0”,将接收模块上“GOLD SET” 拨码开关拨为全“0”,按复位键以完成设置。 4、示波器探头接接收模块“输出2”测试点,调整“幅度”电位器使该点信号电压

移动通信原理的实验报告范文

移动通信原理的实验报告范文 一、实验目的 1、掌握用数字环提取位同步信号的原理及对信息代码的要求。 2、掌握位同步器的同步建立时间、同步保持时间、位同步信号同步抖动等概念。 二、实验内容 1、观察数字环的失锁状态和锁定状态。 2、观察数字环锁定状态下位同步信号的相位抖动现象及相位抖动大小与固有频差的关系。 3、观察数字环位同步器的同步保持时间与固有频差之间的关系。 三、实验器材 1、移动通信原理实验箱 2、20M双踪示波器 一台一台 四、实验步骤 1、安装好发射天线和接收天线。 2、插上电源线,打开主机箱右侧的交流开关,再按下开关POWER301、POWER302、POWER401和POWER402,对应的发光二极管LED301、LED302、LED401和LED402发光,CDMA系统的发射机和接收机均开始工作。

3、发射机拨位开关“信码速率”、“扩频码速率”、“扩频”均拨下,“编码”拨上,接收机拨位开关“信码速率”、“扩频码速率”、“跟踪”均拨下,“调制信号输入”和“解码”拨上。此时系统的信码速率为1Kbit/s,扩频码速率为 100Kbit/s。将“第一路”连接,“第二路”断开,这时发射机发射的是第一路信号。将拨码开关“GOLD3置位”拨为与“GOLD1置位”一致。 4、根据实验四中步骤8~11的方法,调节“捕获”和“跟踪”旋钮,使接收机与发送机GOLD码完全一致。 5、根据实验五中步骤6~7的方法,调节“频率调节”旋钮,恢复出相干载波。 6、用示波器双踪同时观察“整形前”和“整形电平”,并将双通道置于直流耦合,零电平、电压设为一致。调节“整形”旋钮,使整形电平置于“整形前”波形上部凸出部分。用示波器观察“整形后”的波形,并与“整形前”比较,如完全相同,则整形电平调节正确。 7、用示波器观察接收机“BS”信号,该点即为接收机恢复出的位同步信号,将其与发射机的“S1-BS”进行比较。 8、改变系统的信码速率,按“发射机复位”和“接收机复位”键,通过与发射机的“S1-BS”对比观察“BS”信号的变化。 9、将“第一路”断开,再连接,通过与发射机的“S1-BS”对比观察接收机“BS”信号的变化。

《移动通信技术》实验教学大纲(18.6)

《移动通信技术》实验教学大纲 1.实验课程号:B453L07500 2.课程属性:(限选) 3.实验属性:非独立设课 4.学时学分:总学时36,实验学时10 5.实验应开学期:秋李 6.先修课程:数据通信与计算机网络,信号与系统,通信原理等。 一、课程的性质与任务 本实课程是移动通信技术的配套实验课,要求通过实验课的练习与实践使学生加深对现代移动通信技术的基本概念和基本原理的理解,并掌握典型通信系统的基本组成和基本技术,以适应信息社会对移动通信高级工程技术人才的需求。 二、实验的目的与基本要求 通过实验使学生对比较抽象的移动通信理论容产生一个具体的感性认识,通过具体的实验操作使学生达到“知其然,且知英所以然”,从而提髙分析问题、解决问题的能力。 三、实验考核方式及办法 实验成绩评分办法:实验成绩占课程成绩的15%。 四、实验项目一览表 移动通信技术实验项目一览表 序实验项目实验实验适用学 号名称类型要求专业时 1数字调制与解调技术验证性必做信息工程/电子信息工程 2 2扩頻技术验证性必做信息工程/电子信息工程 2 3抗衰落技术脸证性必做信息工程/电子信息工程2 4GSM通信系统实验综合性必做信息工程/电子信息工程2 5CDMA通信系统实验综合性必做信息工程/电子信息工程2 五、实验项目的具体容:

实验一数字调制与解调技术 1.本次实验的目的和要求 通过本实验了解QPSK. OQPSK.MSK.GMSK调制原理及特性、解调原理及载波在相干及非相干时的解调特性。将它们的原理及特性进行对比,掌握它们的差别。掌握星座图的槪念、星座图的产生原理及方法。 2.实验容 1)观察I、Q两路基带信号的特征及与输入NRZ码的关系。 2)观察IQ调制解调过程中各信号变化。 3)观察解调载波相干时和非相干时各信号的区别。 4)观察各调制信号的区别。 5)观察QPSK、OQPSK、MSK、GMSK基带信号的星座图,并比较各星座图的不同及他 们的意义。 3.需用的仪器 移动通信原理实验箱(主控&信号源模块、软件无线电调制模块10号模块、软件无线电解调模块11号模块),示波器。 4.实验步骤 1)准备:阅读实验教程,了解QPSK. OQPSK.MSK.GMSK的调制解调原理: 2)QPSK调制及解调实验 (1)按实验要求完成所有连线,形成调制解调电路。 (2)QPSK调制。设置主控菜单,选择QPSK调制及解调:用示波器观测10号模块的TP8(NRZ-I)和TP9(NRZ-Q)测试点,观测基带信号经过串并变换后输出的两路波形,与输入信号对比:示波器探头接10号模块TH7(I-Out)和TH9(Q-Out),调廿示波器为XY模式,观察QPSK星座图;示波器探头接10号模块TH7(I-Out)和TP3(I),对比观测I路成形波形的载波调制前后的波形:示波器探头接10号模块TH9(Q-Out)和TP4(Q),对比观测Q路成形波形的载波调制前后的波形;示波器探头接10模块的TP1,观测I路和Q路加载频后的叠加信号,即QPSK调制信号。 (3)QPSK相干解调实验。用示波器观测10号模块的TH3(DIN1), 11号模块的TH4(Dout),适当调右11号模块压控偏宜电位器W1来改变载波相位,对比观测原始基带信号和解调输出信号的波形;用示波器观测10号模块的TH1(BSIN),11号模块的TH5(BS-out), 对比观测原始时钟信号和解调恢复时钟信号的波形:用示波器对比观测原始I路信号与解调后I路信号的波形,以及原始Q路信号与解调后Q路信号的波形。 3)OQPSK调制及解调实验。选择OQPSK调制模式,实验步骤同2) 4)MSK调制及相干解调实验。

3G移动通信实验前3

3G移动通信实验 指导教师:章坚武 学生姓名:周云杰 学生学号: 12081437 实验日期: 2015/3、4

n B 实验一 话务量呼损率计算机仿真 【实验目的】 ? 加深话务量和呼损率概念的理解; ? 能够使用C 语言(或者Matlab )计算话务量和呼损率之间的关系; 【实验内容】 ? 使用C 语言(或者Matlab )仿真话务量、呼损率和信道数之间的数值关系; ? 分析话务量和呼损率之间的关系; 【实验设备】 ? 一台PC 机 【实验步骤】 1. 采用话务量、呼损率和信道数之间解析表达式计算出不同信道数和不同话务量条件下的呼损率,画出三维图。(可以使用Matlab 三维绘图语句Mesh ) 2. 分析话务量、呼损率和信道数之间的关系。 【实验结果】 clc; clear all; A=1:0.5:60; n=1:50; for i=1:length(A) for j=1:length(n) temp(i,j)=A(i)^n(j)/factorial(n(j)); sum(i,j)=1; for k=1:n(j) end end end B=temp./sum; mesh(n,A,B); xlabel('n'); ylabel('A'); zlabel('B'); 由图可得结论:当话务量不变,呼损率随着信道数增加而降低;当信道数不变时,呼损率随着话务量增加而增加。

实验二Okumura-Hata方法计算机仿真 一、实验目的 1、加深对奥村模型的理解; 2、能够使用C语言(或者Matlab)利用Okumura-Hata方法计算基本传输损耗; 二、实验内容 1、使用C语言(或者Matlab)利用Okumura-Hata方法计算基本传输损耗; 2、分析Okumura-Hata方法的误差; 三、实验步骤 1、采用Okumura-Hata方法分别计算大城市市区地区准平滑地形、郊区和开阔区,基站 天线高度是200米,手机天线高度是3米情况下,不同传播距离和不同载波频率条件下的传播损耗中值。画出相应的曲线。 2、将计算结果和通过奥村模型实测测得的结果进行比较,验证计算结果的正确性。 3、分析Okumura-Hata方法在何距离以及何频率范围内存在较大的误差。 四、实验结果 clear all; close all; clc; hb=200; hm=3; lb1=0; lb2=0; lb3=0; lb4=0; for d=[1 2 5 10 30 50 60 80 100] f1=100:0.1:300; f2=300:0.1:3000; lb11=69.55+26.16*log10(f1)-13.82*log10(hb)-(8.29*(log10(1.54*hm).^2)-1.1)+((44. 9-6.55*log10(hb))*log10(d)); lb12=69.55+26.16*log10(f2)-13.82*log10(hb)-(3.2*(log10(11.75*hm).^2)-4.97)+((44 .9-6.55*log10(hb))*log10(d)); lb21=lb11-2*(log10(f1/28)).^2-5.4; lb22=lb12-2*(log10(f2/28)).^2-5.4; lb31=lb11-4.78*(log10(f1)).^2+18.33*log(f1)-40.98; lb32=lb12-4.78*(log10(f2)).^2+18.33*log(f2)-40.98; f=[f1 f2]; lb1=[lb11 lb12];

移动通信实验指导书

目录 移动通信系统实验指导 (1) 实验一:AWGN信道中BPSK调制系统的 BER仿真计算 (2) 实验二:移动信道建模的仿真分析 (4) 实验三: CDMA通信系统仿真 (5)

移动通信系统实验指导 上机实验是移动通信课程的重要环节,它贯穿于整个“移动通信”课程教学过程中。本课程的实验分为3个阶段进行,它要求学生根据教科书的内容,在MATLAB仿真平台上并完成相应系统及信道建模仿真,帮助学生直观的了解移动通信系统的相关工作原理。最后要求学生根据实验内容完成实验报告。 试验的软件环境为Microsoft Windows XP + MATLAB。

实验一:AWGN信道中BPSK调制系统的 BER仿真计算 一、实验目的 1.掌握二相BPSK调制的工作原理 2.掌握利用MATLAB进行误比特率测试BER的方法 3.掌握AWGN信道中BPSK调制系统的BER仿真计算方法 二、实验原理 1.仿真概述及原理 在数字领域进行的最多的仿真任务是进行调制解调器的误比特率测试,在相同的条件下 进行比较的话,接收器的误比特率性能是一个十分重要的指标。误比特率的测试需要一个发送器、一个接收器和一条信道。首先需要产生一个长的随机比特序列作为发送器的输入,发送器将这些比特调制成某种形式的信号以便传送到仿真信道,我们在传输信道上加上一定的可调制噪声,这些噪声信号会变成接收器的输入,接收器解调信号然后恢复比特序列,最后比较接收到的比特和传送的比特并计算错误。 误比特率性能常能描述成二维图像。纵坐标是归一化的信噪比,即每个比特的能量除以噪声的单边功率谱密度,单位为分贝。横坐标为误比特率,没有量纲。

增量调制MATLAB仿真实验

增量调制MATLAB仿真实验

增量调制(DM)实验 一、实验目的 (1)进一步掌握MATLAB的应用。 (2)进一步掌握计算机仿真方法。 (3)学会用MATLAB软件进行增量调制(DM)仿真实验。 二、实验原理 增量调制是由PCM发展而来的模拟信号数字化的一种编码方式,它是PCM的一种特例。增量调制编码基本原理是指用一位编码,这一位码不是表示信号抽样值的大小,而是表示抽样幅度的增量特性,即采用一位二进制数码“1”或“0”来表示信号在抽样时刻的值相对于前一个抽样时刻的值是增大还是减小,增大则输出“1”码,减小则输出“0”码。输出的“1”,“0”只是表示信号相对于前一个时刻的增减,不表示信号的绝对值。 增量调制最主要的特点就是它所产生的二进制代码表示模拟信号前后两个抽样值的差别(增加、还是减少)而不是代表抽样值本身的大小,因此把它称为增量调制。在增量调制系统的发端调制后的二进制代码1和0只表示信号这一个抽样时刻相对于前一个抽样时刻是增加(用1码)还是减少(用0码)。收端译码器每收到一个1码,译码器的输出相对于前一个时刻的值上升一个量化阶,而收到一个0码,译码器的输出相对于前一个时刻的值下降一个量化阶。 增量调制(DM)是DPCM的一种简化形式。在增量调制方式下,采用1比特量化器,即用1位二进制码传输样值的增量信息,预测器是

一个单位延迟器,延迟一个采样时间间隔。预测滤波器的分子系数向量是[0,1],分母系数为1。当前样值与预测器输出的前一样值相比较,如果其差值大于零,则发1码,如果小于零则发0码。 三、实验内容 增量调制系统框图如图一所示,其中量化器是一个零值比较器,根据输入的电平极性,输出为 δ,预测器是一个单位延迟器,其输出为前一个采样时刻的解码样值,编码器也是一个零值比较器,若其输入为负值,则编码输出为0,否则输出为1。解码器将输入1,0符号转换为 δ,然后与预测值相加后得出解码样值输出,同时也作为预测器的输入 输入样值 e n e n =δsgn(e n ) 传输 n ) n n-1+δsgn(e n ) x n + - + + 预测输出 + n-1 + 预测输出 解码样值输出 x n-1 预测输入x n =x n-1+δsgn(e n ) 图一 增量调制原理框图 设输入信号为: x(t)=sin2π50t+0.5sin 2π150t 增量调制的采样间隔为1ms,量化阶距δ=0.4,单位延迟器初始值为0。建立仿真模型并求出前20个采样点使客商的编码输出序列以 解码 编码 二电平量化 单位延迟 单位 延迟

高频电子线路Matlab仿真实验

高频电子线路Matlab 仿真实验要求 1. 仿真题目 (1) 线性频谱搬移电路仿真 根据线性频谱搬移原理,仿真普通调幅波。 基本要求:载波频率为8kHz ,调制信号频率为400Hz ,调幅度为0.3;画出调制信号、载波信号、已调信号波形,以及对应的频谱图。 扩展要求1:根据你的学号更改相应参数和代码完成仿真上述仿真;载波频率改为学号的后5位,调制信号改为学号后3位,调幅度设为最后1位/10。(学号中为0的全部替换为1,例如学号2010101014,则载波为11114Hz ,调制信号频率为114,调幅度为0.4)。 扩展要求2:根据扩展要求1的条件,仿真设计相应滤波器,并获取DSB-SC 和SSB 的信号和频谱。 (2) 调频信号仿真 根据调频原理,仿真调频波。 基本要求:载波频率为30KHz ,调制信号为1KHz ,调频灵敏度32310f k π=??,仿真调制信号,瞬时角频率,瞬时相位偏移的波形。 扩展要求:调制信号改为1KHz 的方波,其它条件不变,完成上述仿真。 2. 说明 (1) 仿真的基本要求每位同学都要完成,并且记入实验基本成绩。 (2) 扩展要求可以选择完成。

1.0 >> ma = 0.3; >> omega_c = 2 * pi * 8000; >> omega = 2 * pi * 400; >> t = 0 : 5 / 400 / 1000 : 5 / 400; >> u_cm = 1; >> fc = cos(omega_c * t); >> fa = cos(omega * t); >> u_am = u_cm * (1 + fa).* fc; >> U_c =fft(fc,1024); >> U_o =fft(fa,1024); >> U_am =fft(u_am, 1024); >> figure(1); >> subplot(321);plot(t, fa, 'k');title('调制信号');grid;axis([0 2/400 -1.5 1.5]); >> subplot(323);plot(t, fc, 'k');title('高频载波');grid;axis([0 2/400 -1.5 1.5]); >> subplot(325);plot(t, u_am, 'k');title('已调信号');grid;axis([0 2/400 -3 3]); >> fs = 5000; >> w1 = (0:511)/512*(fs/2)/1000; >> subplot(322);plot(w1, abs([U_am(1:512)']),'k');title('调制信号频谱');grid;axis([0 0.7 0 500]); >> subplot(324);plot(w1, abs([U_c(1:512)']),'k');title('高频载波频谱');grid;axis([0 0.7 0 500]); >> subplot(326);plot(w1, abs([U_am(1:512)']),'k');title('已调信号频谱');grid;axis([0 0.7 0 500]); 1.1 >> ma = 0.8; >> omega_c = 2 * pi * 11138; >> omega = 2 * pi * 138; >> t = 0 : 5 / 400 / 1000 : 5 / 400; >> u_cm = 1; >> fc = cos(omega_c * t);

移动通信技术本专科 16学时 实验1-8 matlab仿真

实验一Matlab/Simulink通信仿真应用 一、实验目的 1、熟悉Simulink的使用界面和常用工具箱。 2、能用Simulink进行简单的仿真实验。 3、培养学生独立思考,发现问题和解决问题的能力 二、实验仪器与软件 1、PC机1台 2、MATLAB7.0环境 三、实验原理 Simulink是MATLAB中的一个建立系统方框图和基于方框图级的系统仿真环境,是一个对动态系统进行建模、仿真和仿真结果分析的软件包。使用Simulink可以更加方便地对系统进行可视化建模,并进行基于时间流的系统级仿真,使得仿真系统建模与工程中的方框图统一起来。 1.使用Simulink进行建d模和仿真的过程 启动MATLAB之后,在命令窗口中输入命令“Simulink”或单击MATLAB工具栏上的Simulink图标,打开 Simulink 模块库窗口。字母大小写不区分。 在Simulink模块库窗口中单击菜单项“File | New | Model”,就可以新建一个Simulink模型文件。 利用鼠标单击Simulink基础库中的子库,选取传递函数模块,将它拖动到新建模型窗口中的适当位置。如果需要对模型模块进行参数设置和修改,只需选中模型文件中的相应模块,单击鼠标右键,弹出快捷菜单,从中选取相应参数进行修改。 Sources子库为激励信号源, Sinks子库为输出模块。用鼠标可将各个模块连接起来。模块外部的大于符号“>”分别表示信号的输入输出节点。 2.MATLAB软件中通信工具箱 双击MATLAB指令窗上面的Simulink 工具条,再双击Communications Blockset。它们包括了通信系统中所需要的功能(模块): Comm Sources(信源)、 Source Cording(信源编码)、 Error Detection and Correction (检错与纠错)、 Modulation(调制)、 Channels (传输信道)、 Interleaving(交织)、 Comm Sink(信宿)、 RF Impairments(射频损耗)、Syncronization(同步)等。 3、创建一个简单的模型大致有以下三个步骤: 1)建立模型窗口并保存为以.mdl为后缀的模型文件; 2)将功能模块由模块库窗口复制到模型窗口,进行参数设置; 3)连接模块,从而构成需要的系统模型。 4)进行仿真操作 ◆设置仿真参数 Simulink模块编辑窗口菜单栏: Simulation /Simulation Parameters ◆启动仿真 启动方式: (1) Simulink模块编辑窗口菜单栏“ Simulation /Start” (2)单击工具栏上的Simulink图标 ◆仿真结果分析

移动通信实验报告

实验一GSM通信系统实验(全球数字移动通信系统) 一、实验目的 通过本实验将正交调制及解调的单元实验串起来,让学生建立起GSM通信系统的概念,了解GSM通信系统的组成及特性。 二、实验内容 1、搭建GSM数据通信系统。 2、观察GSM通信系统各部分信号。 三、基本原理 由于GSM是一个全数字系统,话音和不同速率数据的传输都要进行数字化处理。为了将源数据转换为最终信号并通过无线电波发射出去,需要经过几个连续的过程。相反,在接收端需要经过一系列的反过程来重现原始数据。下面我们主要针对数据的传输过程进行描述。 信源端的主要工作有 1、信道编码 信道编码用于改善传输质量,克服各种干扰因素对信号产生的不良影响,但它是以增加比特降低信息量为代价的。 信道编码的基本原理是在原始数据上附加一些冗余比特信息,增加的这些比特是通过某种约定从圆熟数据中经计算产生的,接收端的解码过程利用这些冗余的比特来检测误码并尽可能的纠正误码。如果收到的数据经过同样的计算所得的冗余比特同收到的不一样时,我们就可以确定传输有误。根据传输模式不同,在无线传输中使用了不同的码型。 GSM使用的编码方式主要有块卷积码、纠错循环码、奇偶码。块卷积码主要用于纠错,当解调器采用最大似然估计方法时,可以产生十分有效的纠错结果,纠错循环码主要用于检测和纠正成组出现的误码,通常和块卷积码混合使用,用于捕捉和纠正遗漏的组误差。奇偶码是一种普遍使用的最简单的检测误码的方法。 2、交织 在移动通信中这种变参的信道上,比特差错通常是成串发生的。这是由于持续较长的深衰落谷点会影响到相继一串的比特。但是,信道编码仅在检测和校正单个差错和不太长差错

Matlab 编程方法及仿真实验

《现代机械工程基础实验》之机械工程控制基础综合实验报告 姓名 学号 班级 山东建筑大学机电工程学院 2012.06.04~06

第一部分 Matlab 编程方法及仿真实验 实验1. 三维曲面的绘制(略) 实验2. 系统零极点绘制例:求部分分式展开式和)(t g 一个线性定常系统的传递函数是 1 5422 3)(2 3 ++++= s s s s s G (1) 使用MATLAB 建立传递函数,并确定它的极点和零点,写出)(s G 的部分分式展开式并绘制 系统的脉冲响应。 实验结果:零点-0.6667 极点-0.8796 + 1.1414i -0.8796 - 1.1414i -0.2408 实验3. 系统的阶跃响应 例. )(s G 的阶跃响应 对例2中由(1)式给出的传递函数)(s G ,增加一个0=s 处的极点,使用impulse 命令绘制其拉普拉斯反变换式曲线,得到阶跃响应图。将该响应与对)(s G 使用step 命令所得到的响应比较,确定系统的DC 增益。利用初值定理和终值定理来校验结果。 实验结果:DC 增益= 2

实验4. 双输入反馈系统单位阶跃响应 考虑一个如图1所示的反馈系统,它既有参考输入也有干扰输入,其中对象和传感器的传递函数是 )12)(15.0(4)(++=s s s G p ,105.01 )(+=s s H 控制器是一个增益为80,有一个在3-=s 处的零点,极点/零点比15=α超前控制器。推导 两个独立的MATLAB 模型,其中一个模型的输入为)(s R ,另一个输入为)(s D 。使用这些模型确定闭环零点和极点,并在同一坐标系内绘制它们的阶跃响应。 D (s ) 图1 具有参考和干扰输入的反馈系统方框图 实验结果: 参考输入的CL 极点:-49.3658 -7.3336 + 7.9786i -7.3336 - 7.9786i -3.4670 参考输入的DC 增益:320 干扰输入的CL 零点:-45 干扰输入的CL 极点:-49.3658 -7.3336 + 7.9786i -7.3336 - 7.9786i -3.4670 干扰输入的DC 增益:4 -20

相关文档
相关文档 最新文档