文档库 最新最全的文档下载
当前位置:文档库 › 弦振动实验

弦振动实验

弦振动实验
弦振动实验

弦振动实验

一、实验目的

1.了解弦振动形成驻波的机理、条件与特征。

吉它上有四支钢质弦线,中间两支是用来测定弦线张力,旁边两支用来测定弦线线密度。实验时,弦线3与音频信号源接通。这样,通有正弦交变电流的弦线在磁场中就受到周期性的安培力的激励。根据需要,可以调节频率选择开关和频率微调旋钮,从显示器上读出频率。移动劈尖的位置,可以改变弦线长度,并可适当移动磁钢的位置,使弦振动调整到最佳状态。

根据实验要求:挂有砝码的弦线可用来间接测定弦线线密度或横波在弦线上的传播速度;利用安装在张力调节旋钮上的弦线,可间接测定弦线的张力。

弦线通过导轮与砝码连接,改变砝码可以改变弦线的张力。弦线接通正弦信号,通有交变电流,在磁钢产生的磁场中,弦线受安培力作用产生正弦振动,此振动向弦两边传播,在劈尖与吉他骑码两处反射后反向传播,当弦长是半波长的整数倍时,形成稳定的驻波。

波。向右传播的用细实线表示,向左传播的用细虚线表示,当传至弦线上相应点时,位相差为恒定时,它们就合成驻波用粗实线表示。由图2可见,两个波腹或波节间的距离都是等于半个波长,这可从波动方程推导出来。

下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射波,沿X 轴负方向传播的波为反射波,取它们振动相位始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:

Y1=Acos2π(ft-x/ λ)

Y2=Acos2π(ft+x/ λ)

式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为:

Y1 +Y2=2Acos2π(x/ λ)cos2πft ······①

由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Acos2π(x / λ) |,只与质点的位置X有关,与时间无关。

由于波节处振幅为零,即|cos2π(x / λ) |=0

2πx / λ=(2k+1) π / 2 ( k=0.1. 2. 3. ······)

可得波节的位置为:

X=(2K+1)λ /4 ······②

而相邻两波节之间的距离为:

X K+1-X K =[2(K+1)+1] λ/4-(2K+1)λ / 4)=λ / 2 ······③

又因为波腹处的质点振幅为最大,即|cos2π(X / λ) | =1

2πX / λ =K π ( K=0. 1. 2. 3. ······)

可得波腹的位置为:

X =K λ / 2= 2k λ / 4 ······ ④

这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节(或相邻两波腹)间的距离,就能确定该波的波长。

在本实验中,由于弦的两端是固定的,故两端点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,其数学表达式为: L =n λ / 2 ( n=1. 2. 3. ······) 由此可得沿弦线传播的横波波长为:

λ=2L / n ······ ⑤

式中n 为弦线上驻波的段数,即半波数。

根据波动理论,弦线横波的传播速度为:

V =(T/ρ)1/2 ······ ⑥ 即:2

V T ρ=

式中T 为弦线中张力,ρ为弦线单位长度的质量,即线密度。

根据波速、上面频率及波长的普遍关系式V =f λ,将⑤式代入可得:

V =2Lf/n ······⑦

再由⑥⑦式可得

ρ=T(n/2Lf)2 ( n=1. 2. 3. ······) ······⑧ 即:T=ρ(2Lf/n) 2 ( n=1. 2. 3. ······)

由⑧式可知,当给定T 、ρ、L ,频率f 只有满足该式关系才能在弦线上形成驻波。

当金属弦线在周期性的安培力激励下发生共振干涉形成驻波时,通过骑码的振动激励共鸣箱的薄板振动,薄板的振动引起吉他音箱的声振动,经过释音孔释放,我们能听到相应频率的声音,当用间歇脉冲激励时尤为明显。

四、实验内容

1. 频率f 一定,测量两种弦线的线密度ρ和弦线上横波传播速度(弦线a ,a’为同一种规格,b ,b’为另一种规格)

测弦线a ’的线密度:波形选择开关7选择连续波位置,将信号发生器输出插孔1与弦线a’接通。选取频率f = 240Hz ,张力T 由挂在弦线一端的砝码及砝码钩产生,以100g 砝码为起点逐渐增加至180g 为止。在各张力的作用下调节弦长L ,使弦线上出现n=2,n=3个稳定且明显的驻波段。记录相应的f 、n 、L 的值,由公式()22Lf n T =ρ计算弦线的线密度ρ。

弦线上横波传播速度 V=2L f/n

*作T~2

V 拟合直线,由直线的斜率亦可求得弦线的线密度。(T=ρV 2) 2. 张力Τ一定,测量弦线的线密度ρ和弦线上横波传播速度V

在张力T 一定的条件下,改变频率f 分别为200Hz 、220 Hz 、240Hz 、260 Hz 、280

Hz ,移动劈尖,调节弦长L ,仍使弦线上出现n=2,n=3个稳定且明显的驻波段。记录相应的f 、n 、L 的值,由公式⑦可间接测量出弦线上横波的传播速度V 。

五、数据记录及处理: 砝码钩的质量m = kg 重力加速度g = 9.8 m/s 2

1. 频率f 一定,测弦线的线密度ρ和弦线上横波传播速度V 弦线a’ 线密度的测定:

*作T~2

V 拟合直线,由直线的斜率()T V ?2

求弦线的线密度。(T=ρV 2

)

2. 张力T 一定,测量弦线的线密度ρ和弦线上横波传播速度V

六、使用注意事项:

1、 在线柱4与弦线连接时、应避免与相邻弦线短路。

2、 改变挂在弦线一端的砝码后,要使砝码稳定后再测量。

3、 磁钢不能处于波节下位置。要等波稳定后,再记录数据。

弦振动实验报告

弦振动的研究 '、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密p、弦长L和弦的张力T的关系,并进行测 量。 、、实验仪器 弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺 、实验原理 为了研究问题的方便,认为波动是从A 点发出的,沿弦线朝E端方向传播,称为入射波,再由E端反射沿弦线朝A端传播,称为反射 波。入射波与反射波在同一条弦线上沿相反方向传 播时将相互干涉,移动劈尖E 到适合位置?弦线上 的波就形成驻波。这时, 弦线上的波被分成几段形 成波节和波腹。驻波形成如图(2)所示。 设图中的两列波是沿X轴相向方向传 播的振幅相等、频率相同振动方向一致的简谐波。向右传播的用细实线表示,向 图(2)左传播的用细虚线 表示,它们的合成驻波用粗 实线表示。由图可见,两个 波腹间的距离都是等于半 个波长,这可从波动方程推

导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “0”,且在X二0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y i = Acos2 (ft —x/ ) Y2 = Acos[2 (ft + x/ "+ ] 式中A为简谐波的振幅,f为频率,为波长,X为弦线上质点的坐标位置。两波 叠加后的合成波为驻波,其方程为: Y i + 丫2 = 2Acos[2 (x/ ) + /2]Acos2 ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动, 它们的振幅为丨2A cos[2 (x/ )+ /2] | ,与时间无关t,只与质点的位置 x有关。 由于波节处振幅为零,即:丨cos[2 (x/ ) + /2] | =0 2 (x/ ) + /2 = (2k+1) / 2 (k=0. 2. 3. …) 可得波节的位置为: x = k /2 ②而相邻两波节之间的距离为: X k+1 —X k = (k + 1) 12—k / 2 = / 2③又因为波腹处的质点振幅为最大,即I cos[2 (x/ ) + /2] | =1

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒定的位相差,当它们在媒质内沿一条直线相向传播时,将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A 端振动,由A 端振动引起的波沿弦线向右传播,称为入射波。同时波在C 点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C 点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波 在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示 向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位 始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为:

弦振动研究试验(教材)

弦振动研究试验 传统的教学实验多采用音叉计来研究弦的振动与外界条件的关系。采用柔性或半柔性的弦线,能用眼睛观察到弦线的振动情况,一般听不到与振动对应的声音。 本实验在传统的弦振动实验的基础上增加了实验内容,由于采用了钢质弦线,所以能够听到振动产生的声音,从而可研究振动与声音的关系;不仅能做标准的弦振动实验,还能配合示波器进行驻波波形的观察和研究,因为在很多情况下,驻波波形并不是理想的正弦波,直接用眼睛观察是无法分辨的。结合示波器,更可深入研究弦线的非线性振动以及混沌现象。 【实验目的】 1. 了解波在弦上的传播及弦波形成的条件。 2. 测量拉紧弦不同弦长的共振频率。 3. 测量弦线的线密度。 4. 测量弦振动时波的传播速度。 【实验原理】 张紧的弦线4在驱动器3产生的交变磁场中受力。移动劈尖6改变弦长或改变驱动频率,当弦长是驻波半波长的整倍数时,弦线上便会形成驻波。仔细调整,可使弦线形成明显的驻波。此时我们认为驱动器所在处对应的弦为振源,振动向两边传播,在劈尖6处反射后又沿各自相反的方向传播,最终形成稳定的驻波。 图 1

为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从左端劈尖发出的,沿弦线朝右端劈尖方向传播,称为入射波,再由右端劈尖端反射沿弦线朝左端劈尖传播,称为反射波。入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,在适当的条件下,弦线上就会形成驻波。这时,弦线上的波被分成几段形成波节和波腹。如图1所示。 设图中的两列波是沿X轴相向方向传播的振幅相等、频率相同、振动方向一致的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,当传至弦线上相应点时,相位差为恒定时,它们就合成驻波用粗实线表示。由图1可见,两个波腹或波节间的距离都是等于半个波长,这可从波动方程推导出来。 下面用简谐波表达式对驻波进行定量描述。设沿X轴正方向传播的波为入射波,沿X轴负方向传播的波为反射波,取它们振动相位始终相同的点作坐标原点“O”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为:Y1=Acos2π(ft-x/ λ) Y2=Acos2π(ft+x/ λ) 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos2π(x/ λ)cos2πft ······①由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2Acos2π(x / λ) |,只与质点的位置X有关,与时间无关。 由于波节处振幅为零,即|cos2π(x / λ) |=0 2πx / λ=(2k+1) π / 2 ( k=0.1. 2. 3. ······) 可得波节的位置为: X=(2K+1)λ /4 ······②而相邻两波节之间的距离为: X K+1-X K =[2(K+1)+1] λ/4-(2K+1)λ / 4)=λ / 2 ·····③又因为波腹处的质点振幅为最大,即|cos2π(X / λ) | =1 2πX / λ=Kπ ( K=0. 1. 2. 3. ······) 可得波腹的位置为: X=Kλ / 2= 2kλ / 4 ·····④这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节(或相邻两波腹)间的距离,就能确定该波的波长。 1

大学物理《弦振动》实验报告文档

2020 大学物理《弦振动》实验报告文 档 Contract Template

大学物理《弦振动》实验报告文档 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 (报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一.实验目的 1.观察弦上形成的驻波 2.学习用双踪示波器观察弦振动的波形 3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二.实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有

惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。理论和实验证明,波在弦上传播的速度可由下式表示: = ρ 1 -------------------------------------------------------① 另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ--------------------------------------------------------② 将②代入①中得γ =λ1 -------------------------------------------------------③ρ1 又有L=nλ/2或λ=2L/n代入③得γ n=2L ------------------------------------------------------④ρ1 四实验内容和步骤

弦振动实验报告

弦振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L和弦的张力Τ的关系, 并进行测量。 三、 波,沿X轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点“O”,且在X=0处,振动质点向上达最大位移时开始计时,则它们的波动方程

分别为: Y1=Acos2π(ft-x/ λ) Y2=Acos[2π (ft+x/λ)+ π] 式中A为简谐波的振幅,f为频率,λ为波长,X为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y1+Y2=2Acos[2π(x/ λ)+π/2]Acos2πft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2π(x/ λ)+π/2] |,与时间无关t,只与质点的位置x有关。 由于波节处振幅为零,即:|cos[2π(x/ λ)+π/2] |=0 2π(x/ λ)+π/2=(2k+1) π/ 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=kλ /2 ② 而相邻两波节之间的距离为: x k+1-x k =(k+1)λ/2-kλ / 2=λ / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2π(x/ λ)+π/2] | =1 2π(x/ λ)+π/2 =kπ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)λ/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=nλ/ 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: λ=2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=λf,将⑤式代入可得弦线上横波的

驻波实验报告

实验目的: 1、观察弦振动及驻波的形成; 3、在振动源频率不变时,用实验确定驻波波长与张力的关系; 4、在弦线张力不变时,用实验确定驻波波长与振动频率的关系; 4、定量测定某一恒定波源的振动频率; 5、学习对数作图法。 实验仪器: 弦线上驻波实验仪(FD-FEW-II型)包括:可调频率的数显机械振动源、平台、固定滑轮、可动刀口、可动卡口、米尺、弦线、砝码等;分析天平,米尺。 实验原理: 如果有两列波满足:振幅相等、振动方向相同、频率相同、有固定相位差的条件,当它们相向传播时,两列波便产生干涉。一些相隔半波长的点,振动减弱最大,振幅为零,称为波节。两相邻波节的中间一点振幅最大,称为波腹。其它各点的振幅各不相同,但振动步调却完全一致,所以波动就显得没有传播,这种波叫做驻波。驻波相邻波节间的距离等于波长λ的一半。 如果把弦线一端固定在振动簧片上,并将弦线张紧,簧片振动时带动弦线由左向右振动,形成沿弦线传播的横波。若此波前进过程中遇到阻碍,便会反射回来,当弦线两固定端间距为半波长整数倍时,反射波与前进波便形成稳定的驻波。波长λ、频率f和波速V满足关系:V = fλ (1) 又因在张紧的弦线上,波的传播速度V与弦线张力T及弦的线密度μ有如下关系:(2) 比较(1)、(2)式得:(3) 为了用实验证明公式(3)成立,将该式两边取自然对数,得: (4) 若固定频率f及线密度μ,而改变张力T,并测出各相应波长λ ,作ln T -lnλ图,若直线的斜率值近似为,则证明了的关系成立。同理,固定线密度μ及张力T,改变振动频率f,测出各相应波长λ,作ln f - lnλ图,如得一斜率为的直线就验证了。 将公式(3)变形,可得:(5) 实验中测出λ、T、μ的值,利用公式(5)可以定量计算出f的值。 实验时,测得多个(n个)半波长的距离l,可求得波长λ为:(6) 为砝码盘和盘上所挂砝码的总重量;用米尺测出弦线的长度L,用分析天平测其质量,求出弦的线密度(单位长度的质量):(7) 实验内容: 1、验证横波的波长λ与弦线中的张力T 的关系(f不变) 固定波源振动的频率,在砝码盘上添加不同质量的砝码,以改变同一弦上的张力。每改变一次张力(即增加一次砝码),均要左右移动可动卡口支架⑤的位置,使弦线出现振幅较大而稳定的驻波。将可动刀口支架④移到某一稳定波节点处,用实验平台上的标尺测出④、⑤之间的距离l,数出对应的半波数n,由式(6)算出波长λ。张力T改变6次,每一T下测2次λ,求平均值。作lnλ- ln T图,由图求其斜率。

均匀弦振动实验报告

实验八 固定均匀弦振动的研究 XY 弦音计是研究固定金属弦振动的实验仪器,带有驱动和接收线圈装置,提供数种不同的弦,改变弦的张力,长度和粗细,调整驱动频率,使弦发生振动,用示波器显示驱动波形及传感器接收的波形,观察拨动的弦在节点处的效应,进行定量实验以验证弦上波的振动。它是传统的电子音叉的升级换代产品。它的优点是无燥声污染,通过函数信号发生器可以方便的调节频率,而这两点正好是电子音叉所不及的。 [实验目的] 1. 了解均匀弦振动的传播规律。 2. 观察行波与反射波互相干涉形成的驻波。 3. 测量弦上横波的传播速度。 4. 通过驻波测量,求出弦的线密度。 [实验仪器] XY 型弦音计、函数信号发生器、示波器、驱动线圈和接收线圈等。 [实验原理] 设有一均匀金属弦线,一端由弦码A 支撑,另一端由 弦码B 支撑。对均匀弦线扰动,引起弦线上质点的振动, 假设波动是由A 端朝B 端方向传播,称为行波,再由B 端 反射沿弦线朝A 端传播,称为反射波。行波与反射波在同 一条弦线上沿相反方向传播时将互相干涉,移动弦码B 到 适当位置。弦线上的波就形成驻波。这时,弦线就被分成 几段,且每段波两端的点始终静止不动,而中间的点振幅 最大。这些始终静止的点称为波节,振幅最大的点称为波 腹。驻波的形成如图4-8-1所示。 设图4-8-1中的两列波是沿x 轴相反方向传播的振幅相等、频率相同的简谐波。向右传播的用细实线表示,向左传播的用细虚线表示,它们的合成驻波用粗实线表示。由图4-8-1可见,两个波腹间的距离都是等于半个波长,这可以从波动方程推导出来。 下面用简谐表达式对驻波进行定量描述。设沿x 轴正方向传播的波为行波,沿x 轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点,且在x =0处,振动质点向上达最大位移时开始计时,则它们的波动方程为: )(2cos 1λπx ft A y -= )(2cos 2λ πx ft A y += 式中A 为简谐波的振幅,f 为频率,λ为波长,x 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: 图 4-8-1

弦振动实验-报告

弦振动实验-报告

实验报告 班级姓名学号 日期室温气压成绩教师 实验名称弦振动研究 【实验目的】 1.了解波在弦上的传播及驻波形成的条件 2.测量不同弦长和不同张力情况下的共振频率 3.测量弦线的线密度 4.测量弦振动时波的传播速度 【实验仪器】 弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台 【实验原理】 驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播,波动方程为 ()λ πx =2 y- cos A ft 当波到达端点时会反射回来,波动方程为 ()λ πx cos =2 y+ A ft

式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为 ft x A y y y πλπ2cos 2cos 22 1=+= 这就是驻波的波函数,称为驻波方程。式中,λπx A 2cos 2是各点的振幅 ,它只与x 有关,即各点 的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ πx A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λπx A ,可得波节的位置坐标为 () 412λ +±=k x Λ2,1,0=k 令12cos 2=λπx A ,可得波腹的位置坐标为 2λ k x ±= Λ 2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。 在本试验中,由于弦的两端是固定的,故两端 点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。 既有 2λ n L = 或 n L 2=λ Λ2,1,0=n

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一. 实验目的 1. 观察弦上形成的驻波 2. 学习用双踪示波器观察弦振动的波形 3. 验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二. 实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。论和实验证明,波在弦上传播的速度可由下式表示: ρ 1 另外一方面,波的传播速度v 和波长λ及频率γ之间的关系是:

v= λ γ -- ② 将②代入①中得 γ =λ1 -- ③ρ 1 又有L=n* λ/2或λ =2*L/n 代入③得γ n=2L --- ④ρ 1 四实验内容和步骤 1. 研究γ和n 的关系 ①选择 5 根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。 ②设置两个弦码间的距离为60.00cm ,置驱动线圈距离一个弦码大约5.00cm 的位置上,将接受线圈放在两弦码中间。将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。 ③将1kg 砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必

要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g 是重力加速度;若砝码挂在第二个槽,则 T=2mg;若砝码挂在第三个槽,则T=3mg??. )④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1 时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5 时的共振频率,做γn 图线,导出γ和n 的关系。 2. 研究γ和T 的关系保持L=60.00cm,ρ 1 保持不变,将1kg 的砝码依次挂在第1、2、3、4、5 槽内,测出n=1 时的各共振频率。计算lg r 和lgT,以lg2 为纵轴,lgT 为横轴作图,由此导出r 和T 的关系。 3. 验证驻波公式 根据上述实验结果写出弦振动的共振频率γ与张力T、线密度ρ关系,验证驻波公式 1、弦长l1 、波腹数n 的 五数据记录及处理

弦振动实验报告

实验13 弦振动得研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动就是产生波动得根源,波动就是振动得传播。均匀弦振动得传播,实际上就是两个振幅相同得相干波在同一直线上沿相反方向传播得叠加,在一定条件下可形成驻波。本实验验证了弦线上横波得传播规律:横波得波长与弦线中得张力得平方根成正比,而与其线密度(单位长度得质量)得平方根成反比、 一、 实验目得 1、 观察弦振动所形成得驻波。 2、 研究弦振动得驻波波长与张力得关系、 3. 掌握用驻波法测定音叉频率得方法。 二。 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三。 实验原理 1、 两列波得振幅、振动方向与频率都相同,且有恒定得位相差,当它们在媒质内沿一条直线相向传播时,将产生一种特殊得干涉现象——形成驻波、如图3—13—1所示。在音叉一臂得末端系一根水平弦线,弦线得另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A 端振动引起得波沿弦线向右传播,称为入射波。同时波在C 点被反射并沿弦线向左传播,称为反射波。这样,一列持续得入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉、当C 点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波得波节;而有些点振动最强,称为驻波得波腹。 2、 图3—13-2所示为驻波形成得波形示意图。在图中画出了两 列波在T=0,T/4,T/2时刻得波形,细实线表示向右传播得波,虚线表示 向左传播得波,粗实线表示合成波。如取入射波与反射波得振动相位 始终相同得点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们得波动方程分别为:

弦振动实验报告

弦 振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L 和弦的张力Τ的关系,并进行测量。 三、波。示。轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “O ”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y 1=Acos2(ft -x/ ) Y 2=Acos[2 (ft +x/λ)+ ]式中A 为简谐波的振幅,f 为频率,为波长,X 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y 1 +Y 2=2Acos[2(x/ )+/2]Acos2ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2(x/ )+/2] |,与时间无关t ,只与质点的位置x 有关。 由于波节处振幅为零,即:|cos[2(x/ )+/2] |=0

2(x/ )+/2=(2k+1) / 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=k /2 ②而相邻两波节之间的距离为: x k+1-x k =(k+1)/2-k / 2= / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2(x/ )+/2] | =1 2(x/ )+/2 =k ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=n / 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: =2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=f,将⑤式代入可得弦线上横波的传播速度: V=2Lf/n ⑥ 另一方面,根据波动理论,弦线上横波的传播速度为: V=(T/ρ)1/2 ⑦ 式中T为弦线中的张力,ρ为弦线单位长度的质量,即线密度。 再由⑥⑦式可得 f =(T/ρ)1/2(n/2L) 得 T=ρ / (n/2Lf )2 即ρ=T (n/2Lf )2 ( n=1. 2. 3. … ) ⑧ 由⑧式可知,当给定T、ρ、L,频率f只有满足以上公式关系,且积储相应能量时才能在弦线上有驻波形成。 四、实验内容 1、测定弦线的线密度:用米尺测量弦线长度,用电子天平测量弦线质量,记录数据 2、测定11个砝码的质量,记录数据

弦振动实验的研究.

论文题目来源: 国家自然科学基金项目 编号: 四川省自然科学研究项目 编号: 校级自然科学研究项目 编号:

弦振动实验的研究 学生:王彬 指导老师:吴英 摘要:弦振动实验存在着诸多困难,弦的张力会因弦的振动发生变化,弦的线密度会发生微小变化,当波腹数增多时现象不明显,低频信号器共振频率读取不准确等。本研究通过文献综述、理论研究、比较研究等方法,针对上述原因,利用实验室的装置验证弦振动理论采集相应数据并进行结果处理,通过在体验实验过程和数据处理方面的困难,对本实验装置提出切合实际的改进方法,以克服主观和客观方面的困难,使实验现象更加明显。 关键字:弦振动;共振;波腹;张力;线密度

The Research of String Vibration Experiment Undergraduate:Wang Bin Supervisor:Wu Ying Abstract:String vibration experiment is an important experiment of college physics. The experiment is also a deep exploration and application of string vibration knowledge. There are many difficulties in the experiment. For example, string tension will change because of the vibration of the string. And the linear density of the string will inevitably have subtle change. Besides, we can not get precise data of the resonance frequency of low frequency signal generator when the increase of the wave loop is not obvious. As for the above reasons, this research, with the following methods, such as literature review, theoretical research and comparative approach and so on, uses the equipments in the lab to prove the theory of string vibration and collects relevant data and then deal with the data. After knowing the difficulties in the experiment and in dealing with the data, I will propose some practical methods to improve and reform the experiment equipments so that we can overcome subjective and objective difficulties and so that the experimental phenomenon can become more obvious. Key words:string vibration; resonance frequency; wave loop; string tension; linear density.

弦振动实验_报告

弦振动的研究报告 班级:工程力学二班 学号:120107020045 姓名:康昕程

实 验 报 告 【实验目的】 1. 了解波在弦上的传播及驻波形成的条件 2. 测量不同弦长和不同张力情况下的共振频率 3. 测量弦线的线密度 4. 测量弦振动时波的传播速度 【实验仪器】 弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台 【实验原理】 驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播,波动方程为 ()λπx ft A y -=2cos 当波到达端点时会反射回来,波动方程为 ()λπx ft A y +=2cos 式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为 ft x A y y y πλ π 2cos 2cos 221=+= 这就是驻波的波函数,称为驻波方程。式中,λ π x A 2cos 2是各点的振幅 ,它只与x 有关, 即各点的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ π x A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λ π x A ,可得波节的位置坐标为 ()4 12λ +±=k x 2,1,0=k 令12cos 2=λ π x A ,可得波腹的位置坐标为 2 λ k x ±= 2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。 在本试验中,由于弦的两端是固定的,故两端点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。

清华弦振动实验报告

竭诚为您提供优质文档/双击可除清华弦振动实验报告 篇一:弦振动试验实验报告 弦振动试验 一、实验目的 1.观察在弦线上形成的驻波 2.用弦驻波法测量张紧弦线上驻波的波长 3.研究弦线上张力与弦线上驻波波长之间的关系; 4.研究均匀弦线横波的传播速度与张力、弦线密度之间的关系 二、数据处理 1.在张力一定的条件下(加9个砝码),求波的传播速度 2.求横波的波长与弦线中的张力的关系 1 2 lgλ lgT

由以上可知,波长的对数和张力的对数成线性关,且相关的线性方程是:Y=0.0035x+1034543. 3 篇二:大学物理实验报告-弦振动 华南理工大学实验报告 课程名称:大学物理实验 理学院系数学专业创新班姓名任惠霞 实验名称弦振动20XX.9.6指导老师 (报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一.实验目的 1.观察弦上形成的驻波 2.学习用双踪示波器观察弦振动的波形 3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二.实验仪器 xY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小

段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。理论和实验证明,波在弦上传播的速度可由下式表示:??= ρ ??1 -------------------------------------------------------① 另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ --------------------------------------------------------② 将②代入①中得γ =λ 1 ?? -------------------------------------------------------③ρ1 又有L=n*λ/2或λ=2*L/n代入③得γ n=2L

弦振动实验研究报告

弦振动地研究 一、实验目地 1观察固定均匀弦振动共振干涉形成驻波时地波形,加深驻波地认识? 2 了解固定弦振动固有频率与弦线地线密 p、弦长L和弦地张力T地关系, 并进行 测量? 二、实验仪器 弦线,电子天平,滑轮及支架,砝码,电振音叉,米尺 三、实验原理 为了研究问题地方便,认为波动是从A 点发 出地,沿弦线朝E端方向传播,称为入射波,再 由E端反射沿弦线朝A端传播,称为反射波.入 射波与反射波在同一条弦线上沿相反方向传播时 将相互干涉,移动劈尖E 到适合位置?弦线上地 波就形成驻波.这时,弦线上地波被分成几段形 成波节和波腹.驻波形成如图(2)所示.b5E2RGbCAP 设图中地两列波是沿X轴相向方向传播地振 幅相等、频率相同振动方向一致地简谐波.向右 传播地用细实线表示,向左传播地用细虚线表 示,它们地合成驻波用粗实线表示.由图可见, 两个波腹间地距离都是等于半个波长,这可从波 动方程推导出来QEanqFDPw 下面用简谐波表达式对驻波进行定量描述 .设沿X轴正方向传播地波为入射波,沿X轴负方向传播地波为反射波,取它们振 动位相始终相同地点作坐标原点 “0”,且在X二0处,振动质点向上达最大位移时开始计时,则它们地波动方程

分别为:DXDiTa9E3d Y i = Acos2二(ft — x/ ) 丫2= Acos[2 二(ft + x/ 入)+ -:] 式中A为简谐波地振幅,f为频率,■为波长,X为弦线上质点地坐标位置.两波叠加后地合成波为驻波,其方程为:RTCrpUDGiT Y i + 丫2 = 2Acos[2 二(x/ ■) + 二/2]Acos2二ft① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们地振幅为丨2A cos[27:(x/ ■) +二/2] 与时间无关t,只与质点地位置x有关.5PCzVD7HxA 由于波节处振幅为零,即:| cos[2二(x/ ■) +二/2] | = 0 2 二(x/ ■) + 二/2 = (2k+1)二/ 2 ( k=0. 2. 3. …) 可得波节地位置为: x = k /2 ② 而相邻两波节之间地距离为: X k +1 — X k= (k + 1)和./2 — k". / 2=和"/ 2 ③ 又因为波腹处地质点振幅为最大,即| cos[2二(x/ ■) +二/2] |=1 2二(x/ ) + 二/2= k二(k=0. 1.2. 3.…) 可得波腹地位置为: x = (2k-1) /4④ 这样相邻地波腹间地距离也是半个波长.因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间地距离,就能确定该波地波长.jLBHrnAILg 在本实验中,由于固定弦地两端是由劈尖支撑地,故两端点称为波节,所以,只有当弦线地两个固定端之间地距离(弦长)等于半波长地整数倍时,才能形成驻波,这就是均匀弦振动产生驻波地条件,其数学表达式为:XHAQX74J0X L= n / 2 ( n=1.2. 3. …) 由此可得沿弦线传播地横波波长为: =2L/n ⑤ 式中n为弦线上驻波地段数,即半波数. 根据波速、频率及波长地普遍关系式:V = f,将⑤式代入可得弦线上横波地传播速度:

弦振动实验报告

弦振动实验报告

一. 实验目的 1. 观察弦振动形成的驻波并用实验确定弦振动时共振频率与实验参数的关 系; 2. 学习用一元线性回归和对数作图法处理数据; 3. 学习检查和消除系统误差的方法。 二. 实验原理 一根柔软均匀的弦线两端被拉紧时,加以初始激励(如打击)之后,弦不再受外加激励,将以一定的频率自由振动,在弦上将产生驻波。自由振动的频率称为固有频率。如果对弦外加连续周期性激励,当外激励频率与弦的固有频率相近时,弦上将产生稳定的较大振幅的驻波,说明该振动系统可以吸收频率相同的外部作用的能量而产生并维持自身的振动,外加激励强迫的振动称为受迫振动。当外激励频率等于固有频率时振幅最大将出现共振,共振是受迫振动中激励频率任何微小变化都会使响应(振幅)减小的情形。最小的固有频率称为基频率。实验还发现:当外激励频率为弦基频的2倍、3倍或其他整数倍时,弦上将形成不同的驻波。这种能以一系列频率与外部周期激励发生共振的情形,在宏观体系(如机械、桥梁、天体)和微观体系(如原子、分子)中都存在。弦振动能形成简单而且典型的共振。 弦振动的物理本质是力学的弹性振动,即弦上各质元在弹性力作用下,沿垂直于弦的方向振动,形成驻波。(驻波的一般定义是:同频率的同类自由行波相互干涉形成的空间分布固定的周期波,其特征是它的波节、半波节或波腹在空间的位置固定不变)。弦振动的驻波可以这样简化分析,看作是两列频率和振幅相同而传播方向相反的行波叠加而成。在弦上,由外激励所产生振动以波的形式沿弦传播,经固定点反射后相干叠加而形成驻波。固定点处的合位移为零,反射波有半波损失,即其相位与入射波的相位之差为π,在此处形成波节。在距波节λ/4处,入射波与反射波相位相同,此处合位移最大,即振幅最大,形成波腹。相邻的波节或波腹之间的距离为半个波长。两关固定的弦能以其固有频率的整数倍振动,因此弦振动的波长应满足: ()...3,2,1 2== N N L λ

弦振动的实验研究

弦振动的实验研究 弦是指一段又细又柔软的弹性长线,比如二胡、吉它等乐器上所用的弦。用薄片拨动或者用弓在张紧的弦上拉动就可以使整个弦的振动,再通过音箱的共鸣,就会发出悦耳的声音。对弦乐器性能的研究与改进,离不开对弦振动的研究,对弦振动研究的意义远不只限于此,在工程技术上也有着极其重要的意义。比如悬于两根高压电杆间的电力线、大跨度的桥梁等,在一定程度上也是一根“弦”,它们的振动所带来的后果可不象乐器上的弦的振动那样使我们们感到愉快。对于弦振动的研究,有助于我们理解这些特殊“弦”的振动特点、机制,从而对其加以控制。同时,弦的振动也提供了一个直观的振动与波的模型,对它的分析、研究是处理其它声与振动问题的基础。欧拉最早提出了弦振动的二阶方程,而后达朗贝尔等人通过对弦振动的研究开创了偏微分方程论。 本实验意在通过对一段两端固定弦振动的研究,了解弦振动的特点和规律。 预备问题 1. 复习DF4320示波器的使用。 2. 什么是驻波?它是如何形成的? 3. 什么是弦振动的模式?共振频率与哪些因素有关? 4. 张力对波速有何影响?试比较以基频和第一谐频共振时弦中的波速。 一、 实验目的: 1、了解驻波形成的条件,观察弦振动时形成的驻波; 2、学会测量弦线上横波传播速度的方法: 3、用作图法验证弦振动频率与弦长、频率与张力的关系。 二、实验原理 一根两端固定并张紧的弦,静止时处于水平平衡位置,当在弦的垂直方向被拉离平衡位置后,弦会有回到平衡位置的趋势,在这种趋势和弦的惯性作用下,弦将在平衡位置附近振动。令弦线长度方向为x 轴,弦被拉动的方向(与x 轴垂直的方向)为y 轴,如图1所示。若设弦的长度为L ,线密度为ρ,弦上的张力为T ,对一小段弦线微元dl 进行受力分析,运用牛顿第二定律定律,可得在y 方向的运动微分方程 ()2222t y dx dx x y T ??=??ρ (1) 若令ρ/2 T v =, 上式可写为 2222 21t y v x y ??=?? (2) y 图1

弦振动研究

弦振动研究 【实验目的】 1.了解波在弦上的传播及驻波形成的条件。 2.测量不同弦长和不同张力情况下的共振频率。 3.测量弦线的先行密度。 4.测量弦振动时波的传播速度。 【实验仪器】 弦振动研究实验仪及弦振动实验信号源各一台、双踪示波器一台。 实验仪器结构描述见图3-23-1 【实验原理】 驻波是有振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播时,波动方程为 )(2cos λ πx ft A y - = 当波到达端点时会反射回来,波动方程为 ) (2cos λ πx ft A y + = 式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两波叠加后的波方程为 ft x A y y y πλ π2cos 2cos 221=+= 这就是驻波的波函数,称之为驻波方程。式中,λ πx A 2cos 2是各点的振幅,它只与x 有关,即各点的振幅随着其与远点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ πx A 2cos 2、频率皆为f 的简谐振动。

由式(3-23-3)可知,另02cos 2=λ πx A ,可得波节的位置坐标为 4 ) 12(λ +±=k x ???=,,, 210k 另12cos 2=λπx A ,可得波腹的位置坐标为 2 λ k x ±= ???=,,, 210k 由式(3-23-4)、式(3-23-5)可得相邻两波腹(波节)的距离为半个波长,由此 可见,只要从实验中的测得波节或波腹间的距离,就可以确定波长。 在本实验中,由于弦的两端是固定的,故两端点为波节,所以,只有当均匀弦线的连个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。 即有 2 λ = L 或 n L 2= λ ???=,,, 210n 式中,L 为弦长;λ为驻波波长;n 为半波数(波腹数)。 另外,根据波动理论,假设弦柔韧性很好,波在弦上的传播速度v 取决于线密度μ和弦的张力T ,其关系为 μ T v = 又根据波速、频率与波长的普遍关系式λf v =,可得 μ λT f v = = 由式(3-23-6)、式(3-23-8)可得横波传播速度 n L f v 2= 如果已知张力和频率,由式(3-23-6)、式(3-23-8)可得线密度 2 )2( Lf n T =μ 如果已知线密度和频率,则由式(3-23-10)可得张力 2 ) 2( n Lf T μ= 如果已知线密度和张力,则由式(3-23-11)可得张力 μ T L n f 2= 【实验内容】 一、实验前准备

相关文档