文档库 最新最全的文档下载
当前位置:文档库 › 步进电机驱动电路设计

步进电机驱动电路设计

步进电机驱动电路设计
步进电机驱动电路设计

步进电机驱动电路设计

摘要

随着数字化技术发展,数字控制技术得到了广泛而深入的应用。步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件, 具有快速起动和停止的特点。因为步进电动机组成的控制系统结构简单,价格低廉,性能上能满足工业控制的基本要求,所以广泛地应用于手工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,投影仪、数码摄像机、大型望远镜、卫星天线定位系统、医疗器件以及各种可控机械工具等等。直流电机广泛应用于计算机外围设备( 如硬盘、软盘和光盘存储器) 、家电产品、医疗器械和电动车上, 无刷直流电机的转子都普遍使用永磁材料组成的磁钢, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。他们都是利用电和磁的相互作用来实现向机械能能的转换。

介绍了步进电机和直流电机原理及其驱动程序控制控制模块,通过AT89S52单片机及脉冲分配器(又称逻辑转换器) L298完成步进电机和直流电机各种运行方式的控制。实现步进电机的正反转速度控制并且显示数据。整个系统采用模块化设计,结构简单、可靠,通过按键控制,操作方便,节省成本。

关键词:步进电机,单片机控制,AT89S52,L297,L298

目录

1 步进电动机 (1)

1.1步进电机简介 (1)

1.2步进电机分类 (2)

2 步进电机工作原理 (3)

2.1步进电机结构 (3)

2.2步进电机的旋转方式 (3)

3 设计原理 (5)

3.1硬件电路组成 (5)

3.2步进电机控制电路 (5)

3.2.1 计数器工作模式 (5)

3.2.2 定时器工作模式 (6)

4 步进电机驱动电路设计 (7)

4.1驱动芯片L297 (7)

4.2驱动芯片L298 (8)

4.3键盘电路 (9)

4.4显示电路 (10)

5 步进电机控制程序 (11)

总结 (15)

致谢 (16)

参考文献 (17)

1 步进电动机

1.1 步进电机简介

步进电动机是一种将电脉冲信号转换成角位移或线位移的精密执行元件,由于步进电机具有控制方便、体积小等特点,所以在数控系统!自动生产线!自动化仪表!绘图机和计算机外围设备中得到广泛应用。微电子学的迅速发展和微型计算机的普及与应用,为步进电动机的应用开辟了广阔前景,使得以往用硬件电路构成的庞大复杂的控制器得以用软件实现,既降低了硬件成本又提高了控制的灵活性,可靠性及多功能性’市场上有很多现成的步进电机控制机构,但价格都偏高。应用SGS公司推出的L297和 L298两芯片可方便的组成步进电机驱动器,并结合51单片机进行控制,即可以实现用相对便宜的价格组成一个性能不错的步进电机驱动电路。

图 1 步进电机

步进电机把电脉冲信号变换成角位移以控制转子转动的微特电机。在自动控制装置中作为执行元件。每输入一个脉冲信号,步进电动机前进一步,故又称脉冲电动机。步进电动机多用于数字式计算机的外部设备,以及打印机、绘图机和磁盘等装置。

步进电动机的驱动电源由变频脉冲信号源、脉冲分配器及脉冲放大器组成,由此驱动电源向电机绕组提供脉冲电流。步进电动机的运行性能决定于电机与驱动电源间的良好配合。

步进电机的优点是没有累积误差,结构简单,使用维修方便,制造成本低,步进电动机带动负载惯量的能力大,适用于中小型机床和速度精度要求不高的地方,缺点是效率较低,发热大,有时会“失步”。

1.2 步进电机分类

步进电动机分为机电式、磁电式及直线式三种基本类型。

1、机电式步进电动机

机电式步进电动机由铁心、线圈、齿轮机构等组成。螺线管线圈通电时将产生磁力,推动其铁心心子运动,通过齿轮机构使输出轴转动一角度,通过抗旋转齿轮使输出转轴保持在新的工作位置;线圈再通电,转轴又转动一角度,依次进行步进运动。

2、磁电式步进电动机

磁电式步进电动机主要有永磁式、反应式和永磁感应子式3种形式。永磁式步进电动机由四相绕组组成。A相绕组通电时,转子磁钢将转向该相绕组所确定的磁场方向;A 相断电、B相绕组通电时,就产生一个新的磁场方向,这时,转子就转动一角度而位于新的磁场方向上,被激励相的顺序决定了转子运动方向。永磁式步进电动机消耗功率较小,步矩角较大。缺点是起动频率和运行频率较低。

3、直线式步进电动机

有反应式和索耶式两类。索耶式直线步进电动机由静止部分(称为反应板)和移动部分(称动子)组成。反应板由软磁材料制成,在它上面均匀地开有齿和槽。电机的动子由永久磁铁和两个带线圈的磁极A和B组成。动子是由气垫支承,以消除在移动时的机械摩擦,使电机运行平稳并提高定位精度。这种电机的最高移动速度可达1.5米/秒,加速度可达2g,定位精度可达20多微米。由两台索耶式直线步进电动机相互垂直组装就构成平面电动机。给x方向和y方向两台电机以不同组合的控制电流,就可以使电机在平面内做任意几何轨迹的运动。大型自动绘图机就是把计算机和平面电动机组合在一起的新型设备。平面电动机也可用于激光剪裁系统,其控制精度和分辨力可达几十微米。

2 步进电机工作原理

2.1 步进电机结构

电机转子均匀分布着40个小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),

图2 定子和转子的展开图

A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1),如图2。

2.2 步进电机的旋转方式

如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。

如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。

如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。

如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て,这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。

由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系,而方

向由导电顺序决定。如图3。

图3 步进电机运转顺序图

不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A 这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。

所以电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。

3 设计原理

由于步进电机是一种将电脉冲信号转换成直线或角位移的执行元件,它不能直接接到交直流电源上,而必须使用专用设备5步进电机控制驱动器。典型步进电机控制系统如图4所示:控制器可以发出脉冲频率从几赫兹到几十千赫兹可以连续变化的脉冲信号,它为环形分配器提供脉冲序列。环形分配器的主要功能是把来自控制环节的脉冲序列按一定的规律分配后,经过功率放大器的放大加到步进电机驱动电源的各项输人端,以驱动步进电机的转动。环形分配器主要有两大类:一类是用计算机软件设计的方法实现环分器要求的功能,通常称软环形分配器。另一类是用硬件构成的环形分配器,通常称为硬环形分配器。功率放大器主要对环形分配器的较小输出信号进行放大,以达到驱动步进电机目的。

图 4 典型步进电机控制系统

3.1 硬件电路组成

文中所控制的步进电机是四相单极式减速步进电动机。本文所设计的步进电机控制驱动器的框图如图5所示。它由 51单片机、集成芯片L297和L298组成。

图 5 步进电机控制驱动器的框图

3.2 步进电机控制电路

本系统的控制电路采用单片机MCS-51进行控制。在工业检测、控制中,许多场合都要用到计数或定时功能。例如,对外部脉冲进行计数、产生精确的定时时间等。MCS-51单片机内有两个可编程的定时器/计数器T1、T0,以满足这方面的需要。两个定时器/计数器都具有定时器和计数器两种工作模式。

3.2.1 计数器工作模式

计数器是对外来脉冲进行计数51单片机芯片有T0(P3.4)和T1(P3.5)两个输入引

脚,分别是这两个计数器的输入端。每当计数器的输入引脚的脉冲发生负跳变时,计数器加1。

3.2.2 定时器工作模式

定时功能也是通过计数器的计数来实现的,不过此时的计数脉冲来自单片机的内部,即每个机器周期产生1个计数脉冲,也就是每经过1个机器周期的时间,计数器加1。如果MCS-51采用12Hz晶体,则计数频率为1MHz,即每过1微妙的时间计数器加1。这样可以根据计数值计算出定时时间,也可根据定时时间的要求计算出计数器的初值。

4 步进电机驱动电路设计

驱动电路由L297和L298芯片组成。L297是步进电动机控制器(包括环形分配器),L298是双H桥式驱动器。这种方式结合的优点是,需要的元件很少,从而使得装配成本低,可靠性高和占空间少。并且通过软件开发,可以简化和减轻微型计算机的负担。另外,4056 和 4057 都是独立的芯片,所以应用是十分灵活的。

4.1 驱动芯片L297

L297是步进电机专用控制器,它能产生4相控制信号,可用于计算机控制的两相双极和四相单相步进电机,能够用单四拍、双四拍、四相八拍方式控制步进电机。芯片内的PWM 斩波器电路可开关模式下调节步进电机绕组中的电机绕组中的电流。该集成电路采用了SGS 公司的模拟/数字兼容的I2L 技术,使用5V 的电源电压,全部信号的连接都与TFL/CMOS 或集电极开路的晶体管兼容。

图 6 L297

图 7 L297引脚图

4.2 驱动芯片L298

L298N 为SGS-THOMSON Microelectronics 所出产的双全桥步进电机专用驱动芯片( Dual Full-Bridge Driver ) ,内部包含4信道逻辑驱动电路,是一种二相和四相步进电机的专用驱动器,可同时驱动2个二相或1个四相步进电机,内含二个H-Bridge 的高电压、大电流双全桥式驱动器,接收标准TTL逻辑准位信号,可驱动46V、2A以下的步进电机,且可以直接透过电源来调节输出电压;此芯片可直接由单片机的IO端口来提供模拟时序信号,但在本驱动电路中用L297 来提供时序信号,节省了单片机IO 端口的使用。L298N 之接脚如图9 所示,Pin1 和Pin15 可与电流侦测用电阻连接来控制负载的电路; OUTl、OUT2 和OUT3、OUT4 之间分别接2 个步进电机;input1~input4 输入控制电位来控制电机的正反转;Enable 则控制电机停转。

图 8 驱动芯片L298

图 9 驱动芯片L298引脚图

设计的模块采用的为H桥芯片L298,内部包含4通道逻辑驱动电路,具有两套H 桥电路。L298N内部H桥驱动电路的工作原理图如图10所示。同一侧的晶体管不能同时导通。当VT1和VT4导通,VT2和VT3截止时,电流由正电流经VT1,从电机正极流入电机,再经由VT4流入,此时电机正向运转。同样当VT2和VT3导通时,电流由负极进入电机,电机反向运转。当VT1和VT3或VT2和VT4同时导通时,电机处于制动(刹车)状态。电路中二极管主要起续流保护作用,由于电机具有较大的感性,电流不能突变,若突然将电流切断,将在功率管两端产生很高的电压,损坏器件。

图 10 L298N内部H桥驱动电路的工作原理图

4.3 键盘电路

本系统采用了4×4键盘实现对功能键的设定。行列式键盘与单片机的接口电路如图11所示,H0-H3为行线,接单片机P2口的高4位,L0-L3为列线,接单片机P2口的低4位。初始化时键盘行线为高电平,列线为低电平。键盘的行线接4输入与门,4输入与门的输出接单片机的外部中断0引脚P3.2口。当有键按下时,将产生中断,在中断程序里对按键进行扫描,得到按键的键值。

图 11 行列式键盘与单片机的接口电路

4.4 显示电路

如图产12所示,根据设计需要,该系统采用4位一体的LED显示。动态扫描显示基本原理,每个数码管的同名端连在一起,每一个数码管的公共端独立受I/O线控制。CPU向字段输出口送出字形码时,虽然所有显示器接收到相同的字形码,但是只有被选中的位才显示。所谓动态扫描就是指采用分时的方法,轮流控制数码管。

图 12 步进电机显示电路

5 步进电机控制程序

步进电机控制程序就是完成环形分配器的任务,从而控制步进电机转动,以达到控制转动角度和位移之目的。首先要进行旋转方向的判断,然后转到相应的控制程序。正反向控制程序分别按要求的控制顺序输出相应的控制模型,再加上脉宽延时程序即可。

图13 程序流程图

脉冲序列的个数可以用寄存器CL进行计数。控制模型可以以立即数的形式一一给出。控制标志单元FLAG为00H时,表示正转;为01H时,表示反转。其程序流程图如图13所示:

步进电机驱动程序编写:

D0 EQU 0

D2 EQU 2

ORG 0000H

START: LJMP MAIN

ORG 0003H

LJMP INT0

ORG 0100H

MAIN: MOV P2,#00H ;等待信号

MOV P0,#FFH

MOV R2,#0

MOV R3,#0

MOV R4,#0

CLR IT0

SETB EA

SETB EX0

LJMP MAIN

INT0: JNB P2.0,ZHENG;正转 JNB P2.1,FAN ;反转 JNB P2.2,JIA ;加速 JNB P2.3,JIAN ;减速 JNB P2.4,TIN ;停 RETI

ZHENG: MOV R2,#1 ;正转 MOV DPTR,CHA

MOV A,D0

MOVC A,@A+DPTR

MOV P0,A

ACALL YAN0

CPL P0.0

CPL P0.2

ACALL YAN0

CPL P0.0

CPL P0.1

ACALL YAN0

LJMP ZHENG

FAN: MOV R2,#0 ;反转 MOV DPTR,CHA

MOV A,D2

MOVC A,@A+DPTR

MOV P0,A

ACALL YAN0

CPL P0.0

CPL P0.1

ACALL YAN0

CPL P0.0

CPL P0.2

LJMP FAN

ZHENG1:MOV DPTR,CHA ;加减速正转 MOV A,D0

MOVC A,@A+DPTR

MOV P0,A

CJNE R3,#0,YIA1

CJNE R4,#0,YIA2

CPL P0.0

CPL P0.2

CJNE R3,#0,YIA1

CJNE R4,#0,YIA2

CPL P0.0

CPL P0.1

CJNE R3,#0,YIA1

CJNE R4,#0,YIA2

LJMP ZHENG

FAN1: MOV DPTR,CHA ;加减速反转 MOV A,D2

MOVC A,@A+DPTR

MOV P0,A

CJNE R3,#0,YIA1

CJNE R4,#0,YIA2

CPL P0.0

CPL P0.1

CJNE R3,#0,YIA1

CJNE R4,#0,YIA2

CPL P0.0

CPL P0.2

CJNE R3,#0,YIA1

CJNE R4,#0,YIA2

LJMP FAN1

JIA: MOV R3,#1 ;加速

MOV R4,#0

CJNE R2,#0,ZHENG1

LCALL FAN

JIAN: MOV R4,#1 ;减速

MOV R3,#0

CJNE R2,#0,ZHENG

LCALL FAN

TIN: LCALL MAIN ;停

YAN0: MOV R0,#25

LOOP00:MOV R1,#100

LOOP01:DJNZ R1,LOOP01

DJNZ R0,LOOP00

RET

YAN1: MOV R0,# 20 LOOP10:MOV R1,#100

LOOP11:DJNZ R1,LOOP11

DJNZ R0,LOOP10

RET

YAN2: MOV R0,#30 LOOP20:MOV R1,#100

LOOP21:DJNZ R1,LOOP21

DJNZ R0,LOOP20 CHA: DB 03H,06H,05H

END

总结

本设计是以AT89C51、步进电机驱动模块L298为核心的步进电机控制电路系统,对该系统的结构原理进行了相应的描述。通过对L298驱动模块进行控制实现步进电机的各种状态的工作,本电路具有使用方便、操作简单等特点。随着单片机的日益发展,它必将在未来显示出更大的活力,为电子设计增加更多精彩。

介绍了步进电机和直流电机原理及其驱动程序控制控制模块,通过AT89S52单片机及脉冲分配器(又称逻辑转换器) L298完成步进电机和直流电机各种运行方式的控制。实现步进电机的正反转速度控制并且显示数据。整个系统采用模块化设计,结构简单、可靠,通过按键控制,操作方便,节省成本。

致谢

经过我的不断的努力探索以及在吴娟老师的耐心指导和热情帮助下,本设计已经基本完成。在这段时间里,老师严谨的治学态度和热忱的工作作风令我十分钦佩,老师的指导使我受益非浅。老师牺牲课余时间为我们讲解课程设计的内容和注意事项,令我非常感动,在此,向吴娟老师表示感谢!

通过这次课程设计,我深刻地认识到学好专业知识的重要性,也理解了理论联系实际的含义,并且检验了大学三年的学习成果。虽然在这次设计中对于知识的运用和衔接还不够熟练。但是我定会在以后的工作和学习中继续努力、不断完善。最近一段时间的课程设计是对过去所学知识的系统提高和扩充的过程,为今后的发展打下了良好的基础。

参考文献

[1] 刘湘涛.江世明.单片机原理与应用[M].北京:电子工业出版社,2006.8.

[2] 徐雅晖.基于80196与PBL3717的步进电机控制系统[J].微计算机信息,2007.

[3] 楼然苗.李光飞.单片机课程设计指导[M].北京航空航天大学出版社,2007.7.

[4] 温希东.路勇. 计算机控制技术[J].陕西:西安电子科技大学出版社,2005

[5] 曹天汉.单片机原理与接口技术.陕西:电子工业出版社,2006

[6] 曹承志.电机拖动与控制[M].江苏:机械工业出版社,2000

[7] 何立民.MCS-51系列单片机应用系统设计系统配置与接口技术[M].北京:北京航空航天大学出版社,1990.1.

4、基于FPGA的步进电机细分驱动控制设计

南京工程学院 自动化学院 大作业(论文) 题目:基于FPGA的步进电机细分驱动 控制设计 专业:测控技术与仪器 班级:学号: 学生姓名: 任课教师:郭婧 成绩:

基于FPGA的步进电机细分驱动控制设计 一、基本要求: 在理解步进电机的工作原理以及细分原理的基础上,利用FPGA实现四相步进电机的8细分驱动控制。 二、评分标准: 1、设计方案介绍(共15分) 要求:详细叙述利用FPGA实现对四相步进电机进行8细分控制的设计方案。 评分标准: 13-15分:方案叙述详细,正确; 10-12分:方案叙述较详细,基本正确; 9分以下:酌情给分 0分:抄袭别人 2、VHDL设计部分(60分) 要求:给出详细的VHDL设计过程,提供详细的程序代码,如果设计中用到LPM模块,则给出生成LPM模块的每一步操作流程的截图,并加以文字描述。 评分标准: 54-60分:代码详细,截图完整,书写规范, 48-53分:代码较详细,截图较完整,书写较规范; 47以下:酌情给分 0分:抄袭别人 3、模拟调试部分(20分) 要求:给出详细的仿真过程,对软件编译、仿真分析、仿真波形进行截图。并给出8细分情况下的仿真测试结果,给出详细的实验结果分析。 评分标准: 18-20分:调试过程详细,正确,截图完整; 15-17分:调试过程较详细,基本正确,有截图; 14分以下:酌情给分 0分:抄袭别人

4、提高部分(5分) 要求:利用FPGA实验箱上的步进电机,实现细分控制。 评分标准:根据完成的程度给分。 0分:抄袭别人

参考:实验十八 FPGA步进电机细分驱动控制设计 示例程序和实验指导课件位置:\EDA_BOOK3_FOR_C35\chpt3\EXP18_MOTO\工程:step_a 一、实验目的 学习用FPGA实现步进电机的驱动和细分控制。 二、实验设备 PC机一台 GW48-PK4试验系统一台 连接线若干 三、实验内容 1、建立工程。完成以图18-1为原理图的工程设计,并保存工程名为step_a。 2、编译仿真。对以上工程进行编译,成功后进行方针测试。 3、引脚锁定。引脚锁定参考图18-2. 图18-1 步进电机PWM细分控制控制电路图 图18-2 引脚锁定图 4、下载测试 参考\EDA_BOOK3_FOR_C35\Chpt3\ALl.PPT\实验17.PPT 选择模式5,短路冒接clock0.根据第一章注释分别“38“和”42“或”“7”连接(见GW48主

步进电机驱动电路设计

步进电机驱动电路设计 摘要 随着数字化技术发展,数字控制技术得到了广泛而深入的应用。步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件, 具有快速起动和停止的特点。因为步进电动机组成的控制系统结构简单,价格低廉,性能上能满足工业控制的基本要求,所以广泛地应用于手工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,投影仪、数码摄像机、大型望远镜、卫星天线定位系统、医疗器件以及各种可控机械工具等等。直流电机广泛应用于计算机外围设备( 如硬盘、软盘和光盘存储器) 、家电产品、医疗器械和电动车上, 无刷直流电机的转子都普遍使用永磁材料组成的磁钢, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。他们都是利用电和磁的相互作用来实现向机械能能的转换。 介绍了步进电机和直流电机原理及其驱动程序控制控制模块,通过AT89S52单片机及脉冲分配器(又称逻辑转换器) L298完成步进电机和直流电机各种运行方式的控制。实现步进电机的正反转速度控制并且显示数据。整个系统采用模块化设计,结构简单、可靠,通过按键控制,操作方便,节省成本。 关键词:步进电机,单片机控制,AT89S52,L297,L298目录

_单片机控制步进电机驱动原理___驱动图

单片机控制步进电机驱动器工作原理 步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。 本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示: a. 单四拍 b. 双四拍 c八拍 图2.步进电机工作时序波形图 2.AT89C2051 步进电机驱动器系统电路原理如图3:

步进电机工作原理

步进式电动机 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴 线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A’与齿5相对齐,(A’就是A,齿5就是齿1)。 2、旋转:如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转 子不受任何力以下均同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、 C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过 一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电

步进电机驱动方式(细分)概述

步进电机驱动方式(细分)概述 众所周知,步进电机的驱动方式有整步,半步,细分驱动。三者即有区别又有联系,目前,市面上很多驱动器支持细分驱动方式。本文主要描述这三种驱动的概述。 如下图是两相步进电机的内部定子示意图,为了使电机的转子能够连续、平稳地转动,定子必须产生一个连续、平均的磁场。因为从宏观上看,电机转子始终跟随电机定子合成的磁场方向。如果定子合成的磁场变化太快,转子跟随不上,这时步进电机就出现失步现象。 既然电机转子是跟随电机定子磁场转动,而电机定子磁场的强度和方向是由定子合成电流决定且成正比。即只要控制电机的定子电流,则可以达到驱动电机的目的。下图是两相步进电机的电流合成示意图。其中Ia是由A-A`相产生,Ib是由B-B`相产生,它们两个合成后产生的电流I就是电机定子的合成电流,它可以代表电机定子产生磁场的大小和方向。 有了以上的步进电机背景描述后,对于步进电机的整步、半步、细分的三种驱动方式,都会是同一种方法,只是电流把一个圆(360°)分割的粗细程序不同。 整步驱动 对于整步驱动方式,电机是走一个整步,如对于一个步进角是3.6°的步进电机,整步驱动是每走一步是走3.6°。

下图是整步驱动方式中,电机定子的电流次序示意图: 由上图可知,整步驱动每一时刻只有一个相通电,所以这种驱动方式的驱动电路可以是很简单,程序代码也是相对容易实现,且由上图可以得到电机整步驱动相序如下: BB’→A’A→B’B→A A’→B B’ 下图是这种驱动方式的电流矢量分割图: 可见,整步驱动方式的电流矢量把一个圆平均分割成四份。 下图是整步驱动方式的A、B相的电流I vs T图: 可以看出,整步驱动描出的正弦波是粗糙的。使用这种方式驱动步进电机,低速时电机会抖动,噪声会比较大。但是,这种驱动方式无论在硬件或软件上都是相对简单,从而驱

实用的步进电机驱动电路图

实用的步进电机驱动电路(图) 概述 步进电机是一种将电脉冲转化为角位移的执行机构,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 目前,对步进电机的控制主要有由分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。本设计选用第三种方案,用PMM8713三相或四相步进电机的脉冲分配器、SI-7300A 两相或四相功率驱动器,组成四相步进电机功率驱动电路,以提高集成度和可靠性,步进电机控制框图见图1。 图1 步进电机控制系统框图 硬件简介 ● PMM8713原理框图及功能 PMM8713是日本三洋电机公司生产的步进电机脉冲分配器,适用于控制三相或四相步进电机。控制三相或四相步进电机时都可以选择3种励磁方式,每相最小吸入与拉出电流为20mA,它不仅满足后级功率放大器的输入要求,而且在其所有输入端上均内嵌施密特触发电路,抗干扰能力强,其原理框图如图2所示。

图2 PMM8713的原理框图 在PMM8713的内部电路中,时钟选通部分用于设定步进电机的正反转脉冲输入发。PMM8713有两种脉冲输入法:双脉冲输入法和单脉冲输入法。采用双脉冲输入法时,CP、CU两端分别输入步进电机正反转的控制脉冲。当采用单脉冲输入时,步进电机的正反转方向由U/D的高、低电位决定。 激励方式控制电路用来选择采用何种励磁方式。激励方式判断电路用于输出检测;而可逆环形计数器则用于产生步进电机在选定的励磁方式下的各相通断时序信号。 ● SI-7300A的结构及功率驱动原理 SI-7300A是日本三青公司生产的高性能步进电机集成功率放大器,该器件为单极性四相驱动,采用SIP18封装。 步进电机功率驱动级电路可分为电压和电流两种驱动方式。电流驱动方式最常用的是PWM恒流斩波驱动电路,也是最常用的高性能驱动方式,其中一相的等效电路图如图3所示。

步进电机驱动电路设计

https://www.wendangku.net/doc/8f12862899.html,/gykz/2010/0310/article_2772.html 引言 步进电机是一种将电脉冲转化为角位移的执行机构。驱动器接收到一个脉冲信号后,驱动步进电机按设定的方向转动一个固定的角度。首先,通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;其次,通过控制脉冲顿率来控制电机转动的速度和加速度,从而达到涮速的目的。目前,步进电机具有惯量低、定位精度高、无累积误差、控制简单等特点,在机电一体化产品中应用广泛,常用作定位控制和定速控制。步进电机驱动电路常用的芯片有l297和l298组合应用、3977、8435等,这些芯片一般单相驱动电流在2 a左右,无法驱动更大功率电机,限制了其应用范围。本文基于东芝公司2008年推出的步进电机驱动芯片tb6560提出了一种步进电机驱动电路的设计方案 1步进电机驱动电路设计 1.1 tb6560简介 tb6560是东芝公司推出的低功耗、高集成两相混合式步进电机驱动芯片。其主要特点有:内部集成双全桥mosfet驱动;最高耐压40 v,单相输出最大电流3.5 a(峰值);具有整步、1/2、1/8、1/16细分方式;内置温度保护芯片,温度大于150℃时自动断开所有输出;具有过流保护;采用hzip25封装。tb6560步进电机驱动电路主要包括3部分电路:控制信号隔离电路、主电路和自动半流电路。 1.2步进电机控制信号隔离电路 步进电机控制信号隔离电路如图1所示,步进电机控制信号有3个(clk、cw、enable),分别控制电机的转角和速度、电机正反方向以及使能,均须用光耦隔离后与芯片连接。光耦的作用有两个:首先,防止电机干扰和损坏接口板电路;其次,对控制信号进行整形。对clk、cw信号,要选择中速或高速光耦,保证信号耦合后不会发生滞后和畸变而影响电机驱动,且驱动板能满足更高脉冲频率驱动要求。本设计中选择2片6n137高速光耦隔离clk、cw,其信号传输速率可达到10 mhz,1片tlp521普通光耦隔离enable信号。应用时注意:光耦的同向和反向输出接法;光耦的前向和后向电源应该是单独隔离电源,否则不能起到隔离干扰的作用。

步进电机细分驱动方式的研究

步进电机作为电磁机械装置,其进给的分辨率取决于细分驱动技术。采用软件细分驱动方式,由于编程的灵活性、通用性,使得步进细分驱动的成本低、效率高,要修改方案也易办到。同时,还可解决步进电机在低速时易出现的低频振动和运行中的噪声等。但单一的软件细分驱动在精度与速度兼顾上会有矛盾,细分的步数越多,精度越高,但步进电机的转动速度却降低;要提高转动速度,细分的步数就得减少。为此,设计了多级细分驱动系统,通过不同的细分档位设定,实现不同步数的细分,同时保证了不同的转动速度。 1 细分驱动原理 步进电机控制中已蕴含了细分的机理。如三相步进电机按A→B→C……的顺序轮流通电,步进电机为整步工作。而按A→AC→C→CB→B→BA→A……的顺序通电,则步进电机为半步工作。以A→B为例,若将各相电流看作是向量,则从整步到半步的变换,就是在IA与IB之间插入过渡向量IAB,因为电流向量的合成方向决定了步进电机合成磁势的方向,而合成磁势的转动角度本身就是步进电机的步进角度。显然,IAB的插入改变了合成磁势的转动大小,使得步进电机的步进角度由θb 变为0.5θb,从而也就实现了2步细分。由此可见,步进电机的细分原理就是通过等角度有规律的插入电流合成向量,从而减小合成磁势转动角度,达到步进电机细分控制的目的。 在三相步进电机的A相与B相之间插入合成向量AB,则实现了2步细分。要再实现4步细分,只需在A与AB之间插入3个向量I1、I2、I3,使得合成磁势的转动角度θ1=θ2=θ3=θ4,就实现了4步细分。但4步细分与2步细分是不同的,由于I1、I2、I33个向量的插入是对电流向量IB的分解,故控制脉冲已变成了阶梯波。细分程度越高,阶梯波越复杂。 在三相步进电机整步工作时,实现2步细分合成磁势转动过程为 IA→IAB→IB;实现4步细分转动过程为IA→I2→IAB……;而实现8步细分则转

本教程介绍步进电机驱动和细分的工作原理

本教程介绍步进电机驱动和细分的工作原理,以及stm32103为主控芯片制作的一套自平衡的两轮车系统,附带原理图pcb图和源代码,有兴趣的同学一起来吧.本系统还有一些小问题,不当之处希望得到大家的指正. 一.混合式步进电机的结构和驱动原理 电机原理这部分不想讲的太复杂了,拆开一台电机看看就明白了。 电机的转子是一个永磁体,它的上面有若干个磁极SN组成,这些磁极固定的摆放成一定角度。电机的定子是几个串联的线圈构成的磁体。出线一般是四条线标记为A+,A-,B+,B-。A相与B相是不通的,用万用表很容易区分出来,至于各相的+-出线实际是不用考虑的,任意一相正负对调电机将反转。另外一种出线是六条线的只是在A相和B相的中间点做两条引出线别的没什么差别,六出线的电机通过中间出线到A+或A-的电流来模拟正向或负向的电流,可以在没有负相电流控制的电路中实现电机驱动,从而简化驱动电路,但是这种做法任意时刻只有半相有电流,对电机的力矩是有损失的。步进电机的转动也是电磁极与永磁极作用力的结果,只不过电磁极的极性是由驱动电路控制实现的。 我们做这样的一个实验就可以让步进电机转动起来。1找一节电池正负随意接入到A相两端;然后断开;(记为A正向)2再将电池接入到B相两端; 然后断开;(记为B正向)3电池正负对调再次接入A相; 然后断开;(记为A负向)4保持正负对调接入B相;然后断开;(记为B负向)…如此循环你会看到步进电机在缓慢转动。注意电机的相电阻是很小的接

通时近乎短路。我们将相电流的方向记录下来应该为:A+B+A-B-A+…, 如果我们更换接线顺序使得相电流顺序为A+B-A-B+A+…这时我们会看 到电机向反方向运动。这里每切换一次相电流电机都会转动一个很小的角度,这个角度就是电机的步距角。步距角是步进电机的一个固有参数,一般两相电机步距角为1.8度即切换200次可以让电机转动一圈。这里我们比较正反转的电流顺序可以看出A+和A-;B+和B-的交换后的顺序 和正反顺序是一致的,也就是前面所说的”任意一相正负对调电机将反转”。以上为四排工作方式,为了使相电流更加平滑另外可以使用八排的工作方式即: A+;A+B+;B+;B+A-;A-;A-B-;B-;B-A+;从前往后循环正转,从后往前循环反转。 为了用单片机实现相电流的正负流向控制必须要有一个H桥的驱动电路,这种带H桥的驱动模块还是很多的,比较便宜的是晶体管H桥比如L298N,晶体管开关速度比较慢,无法驱动电机高速运动。有些模块将细分控制电路也包含在内,我们也不用这种,因为我们的细分由软件控制。实际应用中使用ST的mos管两桥驱动芯片L6205一片即可驱 动一台步进电机。有了H桥通过PWM就可以控制相电流大小,改变输入极IN1、IN2的状态(参看手册第8页)可以控制相电流的方向。 二.细分的原理和输出控制 从这里开始重点了,别的地方看不到哦。 一个理想的步进电机电流曲线应该是相位相差90度的正弦曲线如

步进电机驱动器及细分控制原理

步进电机驱动器及细分控制原理 步进电机驱动器原理: 步进电机必须有驱动器和控制器才能正常工作。驱动器的作用是对控制脉冲进行环形分配、功率放大,使步进电机绕组按一定顺序通电。 以两相步进电机为例,当给驱动器一个脉冲信号和一个正方向信号时,驱动器经过环形分配器和功率放大后,给电机绕组通电的顺序为AA BB A A B B ,其四个状态周而复始 进行变化,电机顺时针转动;若方向信号变为负时,通电时序就变为 AA B B A A BB ,电机就逆时针转动。 随着电子技术的发展,功率放大电路由单电压电路、高低压电路发展到现在的斩波电路。其基本原理是:在电机绕组回路中,串联一个电流检测回路,当绕组电流降低到某一下限值时,电流检测回路发出信号,控制高压开关管导通,让高压再次作用在绕组上,使绕组电流重新上升;当电流回升到上限值时,高压电源又自动断开。重复上述过程,使绕组电流的平均值恒定,电流波形的波顶维持在预定数值上,解决了高低压电路在低频段工作时电流下凹的问题,使电机在低频段力矩增大。 步进电机一定时,供给驱动器的电压值对电机性能影响较大,电压越高,步进电机转速越高、加速度越大;在驱动器上一般设有相电流调节开关,相电流设的越大,步进电机转速越高、力距越大。 细分控制原理: 在步进电机步距角不能满足使用要求时,可采用细分驱动器来驱动步进电机。细分驱动器的原理是通过改变A,B相电流的大小,以改变合成磁场的夹角,从而可将一个步距角细分为多步。

定子 A 转子 S N B B B S N A A (a)(b) A S N B B N S B S N A (c)(d) 图3.2步进电机细分原理 图 仍以二相步进电机为例,当A、B相绕组同时通电时,转子将停在A、B相磁极中间,如图3.2。 若通电方向顺序按AA AA BB BB BB AA AA AA BB BB BB AA,8个状态周而 复 始进行变化,电机顺时针转动;电机每转动一步,为45度,8个脉冲电机转一周。与图2.1相比,它的步距角小了一半。 驱动器一般都具有细分功能,常见的细分倍数有:1/2,1/4,1/8,1/16,1/32,1/64;或:1/5,1/10,1/20。 细分后步进电机步距角按下列方法计算:步距角=电机固有步距角/细分数 例如:一台1.8°电机设定为4细分,其步距角为 1.8°/4=0.45°。当细分 等级大于1/4后,电机的定位精度并不能提高,只是电机转动更平稳。

DS步进电机驱动电路

步进电机驱动电路讲解 打印机的字车电机、走纸电机、头间隙控制电机大多采用步进电机。步进电机具有控制精度高,控制方便的特点。只要通过控制步进电机转动的步数,就可以控制步进电机的转动角度实现对纸张移动、字车移动定位、打印头间隙的精确控制。 步进电机的驱动主要有以下三点: 1)由cpu产生4相控制信号,这4个相位控制信号的相位顺序不同,将控制电机正向或反向转动。输出相位信号 脉冲的个数来控制步进电机转动的角度。 2)通过控制电机驱动电流的大小来控制转动力矩。 3)在打印间隙步进电机不转的时候需要一个比较小的电流来使电机产生一个静力矩。来保证字车,纸张的位置精 度不被破坏。 以上三条是要控制步进电机的必须具备的条件。其中第一项式打印机cpu通过程序运算来实现的,并且4个相位的控制信号也是从cup输出的。在电路图中只能看到有4条信号线从cup或者门阵输出到驱动电路,在这里我们就不做进一步的讨论了。我们在这里讲解的步进电机驱动电路将只解决后两项要求的问题,这是我们的重点和核心。(如何控制电机的工作电流包括:开启、稳定调整电流、锁定电流) 根据实现方法不同步进电机驱动电路主要分下列常见的是3种电路形式,这三种电路形式在不同型号的打印机里有被用于字车电机的驱动电路,也有被用于走纸电机的驱动电路。下面我们将逐一为大家进行介绍: 1高压驱动低压锁定电路 1.1 电路组成 1.2 工作原理 电机是一个4相步进电机,采用1—2相激励方式工作,当接收到一个驱动脉冲时,电机转过一定角

度,如图4-33、4-34分别是送纸电机驱动电路和1—2相激励方式产生的送纸电机控制信号图。 图4-34 送纸电机驱动信号 送纸电机电压使用情况如下: 状态电压作用 操作+35 V 电机驱动 准备+5V 保持偏压,锁定电机 通过设置门阵列的PCMN口为高或低电平,及三极管TR1和三极管阵列TA1的导通与截止,输入送纸电机的电压可被改变。当TA1被打开,+35V电压供给送纸电机,电机被驱动,进行送纸;当TA1被断开,+5V电压经二极管D1供给送纸电机,给送纸电机一个偏压,该偏压使步进电机产生静转矩阻止轴摆动,使字车锁定在该位置,以保证送纸精度,这就是所谓的“高压驱动、低压锁定”的驱动原理。 1.3 特点总结 这种电路的优点是比较简单,他没有单独的电流控信号,其工作电流的控制是通过控制公共通路三极管的导通与截止实现的,缺点是如果输出功率太大时,需要使用太多的大功率元器件成本较高。另外他的锁定电流是从5V 逻辑回路电源共给的,如果锁定电流过大的话会影响逻辑电路工作的稳定性。 以前的老型号打印机中使用的比较多,打印机中字车电机和走纸电机驱动电路使用的都是这种电路。在新型号打印机种主要用于小功率电机(例如走纸电机、打印头间隙电机等)的控制。 1.4 应用电路介绍 在DS1700打印机中,送纸电机是一个4相步进电机,采用1—2相激励方式工作,当接收到一个驱动脉冲时,电机转过一定角度,如图3-1是送纸电机驱动电路。

基于FPGA的步进电机的PWM控制__细分驱动的实现

姓名___ _ _ _ 学号201016050136 院系电气信息工程学院 专业电子信息工程 班级___信息10-1______ __

目录 目录 (2) 摘要 (3) 关键词 (3) Abstract (3) Keywords (3) 一、引言 (4) 二、步进电机细分驱动的基本原理 (4) 三、Quartus II概述 (5) 四、课题设计 (5) (一)总体设计 (5) (二)细分电流的实现 (6) (三)细分驱动性能的改善 (6) (四)程序设计 (6) 六、仿真与测试结果分析 (10) 七、结论 (12) 参考文献 (12) 注释 (13) 附录 (14) 心得体会 (20)

摘要 在对步进电机细分驱动原理进行分析研究的基础上,提出一种基于FPGA 控制的步进电机细分驱动器。利用FPGA中的嵌入式EAB构成LPM-ROM,存放步进电机各相细分电流所需的PWM控制波形数据表,并通过FPGA设计的数字比较器,同时产生多路PWM电流波形,实现对步进电机转角进行均匀细分控制。实验证明,所研制的步进电机驱动器不仅体积小,简化了系统的设计,减少了延迟,改善了低频特性,有良好的适应性和自保护能力,提高了驱动器的稳定性和可靠性。 关键词 步进电机;细分驱动;脉宽调制;FPGA Abstract In this paper, a divided driving circuit for stepping motor controlled by FPGA is put forward, based on the analysis of the principle of stepping motor divided driving. Using embedded EAB in FPGA to compose LPM-ROM, store PWM control wave form data which stepping motor each phase subdivided driving current is needed.The magnitude comparator designed with FPGA generates several PWM current waveform synchronously, to realize the step angles even division control for three–phase stepping motor.Experimments have proved that the developed subdivision driver is not only smaller,sampler in system, can shorten the delay time,improve the stability in low frequency ,but has good self-adaptation and self-protection ability,and its stability and relibility are higher. Keywords stepping motor; divided driving;PWM; FPGA

步进电机控制驱动电路设计.

实习名称:电子设计制作与工艺实习 学生姓名:周文生 学号:201216020134 专业班级:T-1201 指导教师:李文圣 完成时间: 2014年6月13日 报告成绩:

步进电机控制驱动电路设计 摘要: 本设计在根据已有模电、物电知识的基础上,用具有置位,清零功能的JK 触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。 关键字:555定时器脉冲源环行分配器功率放大电路 一、方案论证与比较: (一)脉冲源的方案论证及选择: 方案一:采用555定时器产生脉冲,它工作频率易于改变从而可以控制步进电机的速度并且工作可靠,简单易行。 C2 10uF 图一 555定时器产生的方法 方案二:采用晶振电路来实现,晶振的频率较大,不利于电机的工作,易失步,我们可以利用分频的方法使晶振的频率变小,可以使电机工作稳定,但分频电路较复杂,并且晶振起振需要一定的条件,不好实现。

X1 1kohm 1kohm 图二晶振产生脉冲源电路 综上所述,我们采用方案一来设计脉冲源。 (二)环形分配器的设计: 方案一:采用74ls194通过送入不同的初值来进行移位依此产生正确的值使步进电机进行转动。但此方案的操作较复杂,需要每次工作时都要进行置位,正反转的操作较复杂,这里很早的将此方案放弃。 方案二:使用单独的JK 触发器来分别实现单独的功能。 图三双三拍正转 图四单三拍正转

图五三相六拍正转 利用单独的做,电路图较简单,单具体操作时不方便,并且不利于工程设计。块分的较零散,无法统一。 方案三:利用JK触发器的自己运动时序特性设计,利用卡诺图来进行画简。 图六单,双三拍的电路图 单,双三拍的正,反转主要由键s1,s2的四种状态来决定四种情况的选择。

舞蹈机器人步进电机驱动电路和程序设计

舞蹈机器人步进电机驱动电路和程序设计 摘要:介绍了舞蹈机器人步进电机驱动电路和程序设计。电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机AT89C52作工作脉冲序列信号发生器。程序设计基于中断服务和总线分时复用方式,实时更新各个电机的速度和方向。 关键词:单片机,中断服务,速度累加计数器,归一化速度 在机器人舞蹈时,我们用一个单片机控制多个步进电机指挥跳舞机器人的双肩、双肘和双脚伴着音乐做出各种协调舒缓充满感情的动作。电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机(Atc52)作脉冲序列信号发生器。程序设计基于中断服务和总线分时利用方式,实时更新各个电机的速度、方向。整个舞蹈由运动数据所决定的一截截动作无缝连接而成。 1 步进电机简介 步进电机根据内部线圈个数不同分为二相制、三相制、四相制等。本文以四相制为例介绍其内部结构。图1为四相五线制步进电机内部结构示意图。 2 四相五线制步进电机的驱动电路 电路主要由单片机工作外围电路、信号锁存和放大电路组成。我们利用了单片机的I/O端口,通过74373锁存,由74LS244驱动,ULN2003对信号进行放大。8个电机共用4bit I/O端口作为数据总线,向电机传送步进脉冲。每个电机分配1bit的I/O端口用作74373锁存信号,锁存步进电机四相脉冲,经ULN2003放大到12V驱动电机运转。

电路原理图(部分)如图2所示。 (1)Intel 8051系列单片机是一种8位的嵌入式控制器,可寻址64K字节,共有32个可编程双向I/O口,分别称为P0~P3。该系列单片机上集成8K的ROM,128字节RAM可供使用。 (2)74LS244为三态控制芯片,目的是使单片机足以驱动ULN2003。ULN2003是常用的达林顿管阵列,工作电压是12V,可以提供足够的电流以驱动步进电机。关于这些芯片的详细介绍可参见它们各自的数据手册。 (3)74373是电平控制锁存器,它可使多个步进电机共用一组数据总线。我们用P1.0~P1.7作为8个电机的锁存信号输出端,见表1。

步进电机控制驱动电路设计

课程实习报告 实习名称:电子设计制作与工艺实习 学生姓名:周文生 学号: 2 专业班级:T-1201 指导教师:李文圣 完成时间: 2014年6月13日 报告成绩: 评阅意见: 评阅教师日期

步进电机控制驱动电路设计 摘要: 本设计在根据已有模电、物电知识的基础上,用具有置位,清零功能的JK 触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。 关键字:555定时器脉冲源环行分配器功率放大电路 一、方案论证与比较: (一)脉冲源的方案论证及选择: 方案一:采用555定时器产生脉冲,它工作频率易于改变从而可以控制步进电机的速度并且工作可靠,简单易行。 C2 10uF 图一 555定时器产生的方法 方案二:采用晶振电路来实现,晶振的频率较大,不利于电机的工作,易失步,我们可以利用分频的方法使晶振的频率变小,可以使电机工作稳定,但分频电路较复杂,并且晶振起振需要一定的条件,不好实现。

X1 1k ohm 1k ohm 图二晶振产生脉冲源电路 综上所述,我们采用方案一来设计脉冲源。 (二)环形分配器的设计: 方案一:采用74ls194通过送入不同的初值来进行移位依此产生正确的值使步进电机进行转动。但此方案的操作较复杂,需要每次工作时都要进行置位,正反转的操作较复杂,这里很早的将此方案放弃。 方案二:使用单独的JK 触发器来分别实现单独的功能。 图三双三拍正转 图四单三拍正转

步进电机细分驱动电路设计

前言 随着社会的进步和人民生活水平的不断提高及全球经济一体化势不可挡的浪潮,我国微特电机工业在最近10年得到了快速的发展。快速发展的显着标志是使用领域不断拓宽,用量大增,特别是在日用消费市场和工业自动化装置及系统的表现最为明显。与此同时,随着电力电子技术、微电子技术和计算机技术、新材料以及控制理论和电机本体技术的不断发展进步,用户对电机控制的速度、精度和实时性提出了更高的要求,因此作为微特电机重要分枝的控制电机也得到了空前的发展。步进电动机又称为脉冲电动机,是数字控制系统中的一种执行组件。其功用是将脉冲电信号变换为相应的角位移或直线位移,即给一个脉冲电信号,电动机就转动一个角度或前进一步。步进电机和普通电动机不同之处是步进电机接受脉冲信号的控制。现在比较常用的步进电机包括反应式步进电机、永磁式步进电机、混合式步进电机和单相式步进电机等。其中反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。现阶段,反应式步进电机获得最多的应用。步进电机和普通电机的区别主要在于其脉冲驱动的形式,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。使用恰当的时候,甚至可以和直流伺服电动机性能相媲美。步进电机被广泛应用于数字控制各个领域:机器人方面,机器人的的关节驱动及行进的精确控制,需要步进电机;数控机床方面,如数控电火花切割机床要求刀具精确走步,减小加工件表面的粗糙度的同时提高效率,需要步进电机;办公自动化方面,如电脑磁盘驱动器中的磁盘进行读盘操作的精确位置控制,需要步进电机,在打印机、传真机中也需要步进电机对设备进行位置控制。步进电动机是经济型数控系统经常采用的电机驱动系统。这类电机驱动系统的特点是控制简单,适合计算机系统控制要求。步进电动机的细分驱动系统较以往的电机系统,消除了低频震荡问题,控制分辨率更高,使其应用领域更加广泛。

步进电机闭环细分驱动控制系统设计_宋鸿飞

步进电机闭环细分驱动控制系统设计 摘要:介绍了螺纹非接触光电测试系统中步进电机闭环细分控制系统的设计,并结合系统要求对抗干扰性和稳定性进行深入研究。文中对步进电机的特性与系统的性能相互关系进行了论述,在此基础上提出了可行的系统设计方案,给出了基于TA8435专用芯片的细分驱动设计电路,对系统抗干扰性和稳定性设计提出了具体解决办法,硬件设计中采用了传感器反馈的全伺服控制方法,软件上采用升频离散化处理,很好的解决了步进电机在高速启停过程中的堵转和丢步现象,提高了系统的稳定性和精度。 关键词:闭环控制;细分驱动;升频离散化 中图分类号:TP216文献标识码:A文章编号:1672-9870(2008)02-00093-03 收稿日期:200716 基金项目:国家863计划资助项目 作者简介:宋鸿飞(1980

角,并依靠电磁力锁定转轴在一定的位置上。因此在定位精度不高的场合下,一般的步进系统都采用开环控制。但由于步进电机固有的低频共振,高频扭矩小引起的失步和机械结构等因素的影响,都会造成实际位移值偏离指令设定值。因此在高定位精度的场合下,没有闭环反馈就无法知道电机是否丢步或过步,系统无法对其进行有效校正和补偿,导致不能准确定位。在步进系统中引入检测环节并对其进行闭环控制,可从根本上解决步进系统的定位精度问题,将使其性能大大提高。步进电机的闭环控制可采用各种不同的方法,其中包括步校验、无传感器反电动势检测和有传感器反馈的全伺服控制。 1系统构成 本电机系统设计应用精密在螺纹非接触光电测试系统中,两相步进电机通过精密滚珠螺杆把电机的轴角运动转化成直线位移运动,带动负载平台及上边安装的测试系统在螺管内部进行直线运动,实现对螺纹的实时检测。由于螺纹检测属于精密检测,对精密位移台的定位精度、速度范围和速度稳定性提出了很高的要求,因此步进电机采用开环控制方式是达不到系统的指标要求的,针对系统的要求步进电机要采用闭环细分控制方式。 电机控制系统设计采用有传感器反馈的全伺服控制方法。其系统组成包括四部分:(1)使用89S52单片机实现电机控制器设计;(2)电机细分驱动器采用东芝公司生产的TA8435电机驱动专业芯片实现电机细分驱动器的设计;(3)位置反馈传感器采用分辨率 1 图1步进电机闭环细分控制系统功能图 Fig.1Diagram for close-loop subdivision control system func- tion of stepper motor 2细分驱动器设计 结合螺纹检测系统对位移平台定位精度和速度范围的要求,步进电机步距角不能满足使用条件,在设计中采用细分驱动的方法,细分驱动电路是通过对步进电机的励磁绕组中电流的控制,来调整步进惦记步距角的大小,把原来的一个整步步距角细分成若干步来完成,从而实现步进电机的高精度定位,提高了步进电机的分辨率。实现细分驱动的方法有很多种,设计中使用了东芝公司生产的单片正弦细分二相步进电机驱动专用芯片TA8435,芯片采用的是脉宽调制式斩波驱动,该芯片有电路连接简单,工作稳定,特点如下: (1)工作电压范围宽(10 、B+、B 图2细分驱动电路原理图 Fig.2Circuit schematic diagram of subdivision driving 在系统中使用的位移平台螺杆导程L为4mm (即电机轴转动一周负载平台的直线位移量),细分数为为0.9° ,分数为 而转台的移动速度和脉冲频率、细分选择、电机本身的固有频率有关。在设计中由89S52的内部 定时器

步进电机及其驱动电路

第三节步进电动机及其驱动 一、步进电机的特点与种类 1.步进电机的特点 步进电机又称脉冲电机。它是将电脉冲信号转换成机械角位移的执行元件。每当输入一个电脉冲时,转子就转过一个相应的步距角。转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步。只要控制输入电脉冲的数量、频率以及电机绕组通电相序即可获得所需的转角、转速及转向。 步进电动机具有以下特点: ?工作状态不易受各种干扰因素(如电压波动、电流大小与波形变化、温度等)的影响; ?步进电动机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零” ; ?由于可以直接用数字信号控制,与微机接口比较容易; ?控制性能好,在起动、停止、反转时不易“丢步”; ?不需要传感器进行反馈,可以进行开环控制; ?缺点是能量效率较低。 就常用的旋转式步进电动机的转子结构来说,可将其分为以下三种: (1)可变磁阻(VR-Variable Reluctance),也叫反应式步进电动机 (2)永磁(PM-Permanent Magnet)型 (3)混合(HB-Hybrid)型 (1)可变磁阻(VR-Variable Reluctance) 结构原理:该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称作反应式步进电动机。其结构原理如图3.5定子1 上嵌有线圈,转子2朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁阻型。

图3.6 可变式阻步进电机 可变磁阻步进电机的特点: 反应式电动机的定子与转子均不含永久磁铁,故无励磁时没有保持力; 需要将气隙作得尽可能小,例如几个微米; 结构简单,运行频率高,可产生中等转矩,步距角小(0.09~9°) 制造材料费用低; 有些数控机床及工业机器人上使用。 (3)混合(HB-Hybrid)型 结构原理 这类电机是PM式和VR式的复合形式。其定子与VR类似,表面制有小齿,转子由永磁铁和铁心构成,同样切有小齿,为了减小步距角可以在结构上增加转子和定子的齿数。其结构如图3.7所示。 混合式步进电机特点: HB兼有PM和VR式步进电机的特点: 步距角可以做得较小(0.9~3.6°); 无励磁时具有保持力; 可以产生较大转矩,应用较广。

步进电机细分驱动

技术文档-步进电机多级细分驱动方法研究 步进电机作为电磁机械装置,其进给的分辨率取决于细分驱动技术。采用软件细分驱动方式,由于编程的灵活性、通用性,使得步进细分驱动的成本低、效率高,要修改方案也易办到。同时,还可解决步进电机在低速时易出现的低频振动和运行中的噪声等。但单一的软件细分驱动在精度与速度兼顾上会有矛盾,细分的步数越多,精度越高,但步进电机的转动速度却降低;要提高转动速度,细分的步数就得减少。为此,设计了多级细分驱动系统,通过不同的细分档位设定,实现不同步数的细分,同时保证了不同的转动速度。 1 细分驱动原理 步进电机控制中已蕴含了细分的机理。如三相步进电机按A→B→C……的顺序轮流通电,步进电机为整步工作。而按A→AC→C→CB→B→BA→A……的顺序通电,则步进电机为半步工作。以A→B为例,若将各相电流看作是向量,则从整步到半步的变换,就是在IA与IB之间插入过渡向量IAB,因为电流向量的合成方向决定了步进电机合成磁势的方向,而合成磁势的转动角度本身就是步进电机的步进角度。显然,I AB的插入改变了合成磁势的转动大小,使得步进电机的步进角度由θb变为0.5 θb,从而也就实现了2步细分。由此可见,步进电机的细分原理就是通过等角度有规律的插入电流合成向量,从而减小合成磁势转动角度,达到步进电机细分控制的目的。 如图1所示,在三相步进电机的A相与B相之间插入合成向量AB,则实现了2步细分。要再实现4步细分,只需在A与AB之间插入3个向量I1、I2、I3,使得合成磁势的转动角度θ1=θ2=θ3=θ4,就实现了4步细分。但4步细分与2步细分是不同的,由于I1、I2、I3 3个向量的插入是对电流向量IB的分解,故控制脉冲已变成了阶梯波。细分程度越高,阶梯波越复杂。 图1 步进细分原理 在三相步进电机整步工作时,实现2步细分合成磁势转动过程为IA→IAB→IB;实现4步细分转动过程为IA→I2→IAB……;而实现8步细分则转动过程为 IA→I1→I2→I3→IAB……。可见,选择不同的细分步数,就要插入不同的电流合成向量。 2 多级细分驱动系统的实现 2.1 系统组成 如图2所示,系统由主机、键盘输入系统、步进显示系统、步进控制系统组成。主机采用AT89C51单片机,其为低功耗的8位单片机,片内有一个4K字节的Flash

相关文档
相关文档 最新文档