文档库 最新最全的文档下载
当前位置:文档库 › 用软件实现仪表步进电机的驱动

用软件实现仪表步进电机的驱动

用软件实现仪表步进电机的驱动
用软件实现仪表步进电机的驱动

单片机基于80C51单片机的步进电机控制系统

中国地质大学长城学院 本科课程设计题目:基于80C51单片机的步进电机控制系统 系别信息工程系 学生姓名 专业电气工程及其自动化 学号 指导教师 职称讲师 2014 年6 月11 日

摘要 本文研究基于51系列单片机的步进电机控制系统设计,该系统包括以下几个部分:数据采集、数据处理、终端接收,该系统以汇编语言为单片机的驱动程序语言,单片机控制步进电机,主要任务是把二进制数变成脉冲序列,按相序输入脉冲以实现电机转动方向控制,利用单片机实现对步进电机的远距离实时监控,从而达到高效、节能的控制步进电机工作的目的,该系统具有成本低、控制方便的特点。使用单片机驱动四相步进电机,控制步进电机以四相八拍的方式运行,来实现步进电机正向/反向旋转,P1.0~P1.3分别控制步进电机;P1.5~P1.7分别控制步进电机的停止、正转、反转。 关键词:51单片机;步进电机;数据采集;汇编语言;

目录 摘要 0 1 设计目的 (1) 2设计内容与要求 (1) 3 总体设计方案 (1) 3.1整体方案 (1) 3.2具体方案实现 (1) 4系统硬件设计 (2) 4.1复位电路 (2) 4.2晶振电路 (2) 4.3按键电路 (3) 4.4指示灯电路 (3) 4.5驱动电路 (4) 4.6步进电机 (4) 5程序软件设计 (5) 5.1程序流程图 (5) 5.2源程序 (6) 6系统调试与仿真 (7) 7总结 (8)

1设计目的 1.掌握单片机控制步进电机的硬件接口电路。 2.掌握步进电机驱动程序的设计和调试方法。 3.熟悉步进电动机的工作特性。 2设计内容与要求 1.查阅资料,了解步进电机的工作原理。 2.通过单片机给定参数控制电机转动。 3.通过按钮控制正转、反转和停止。 3总体设计方案 3.1整体方案 本系统主要是由AT89C51,步进电机控制器ULN2004,步进电机,通过单片机编程,实现步进电机控制的脉冲分配,使电机实现正转,反转以及停止等功能 3.2具体实现方案 根据系统要求画出单片机控制步进电机的控制框图,见下图。系统包括单片机、按键、驱动电路和步进电机。 键盘80c51单片机 步进电机 驱动电路

步进电机可编程驱动控制器设计资料及例程

步进电机可编程驱动控制器 【简要说明】 一、尺寸:长88mmX宽68mmX高35mm 二、主要芯片:AT89S52单片机、L298NL、298N(支持AT89S52编程) 三、工作电压:输入电压(5V~30V)输入电压的大小由被控制电机的额定电压决定。 四、可驱动直流(5~30V之间电压的直流电机或者步进电机) 五、最大输出电流2A (瞬间峰值电流3A) 六、最大输出功率25W 七、特点: 1、具有信号指示 2、转速可调 3、抗干扰能力强 4、具有续流保护 5、转速、转向、工作方式可根据程序灵活控制 6、可单独控制一台步进电机 7、根据需要自己编程可以灵活控制步进电机,实现多种功能; 8、可实现正反转 9、采用光电隔离 10、单片机P3口已用排针引出,可以方便使用者连接控制更多外围设备。 11、四位LED灯指示 12、四位按键输入(可以对AT89S52单片机编程实现任何控制) 13、核心控制芯片采用市场上最常用的AT89S52单片机,支持STC89C52单片机,控制方式简单,只需控制IO口电平即可!

14、采用独立编码芯片L297,不用在单片机程序里编程复杂的逻辑代码和占用单片机资源。 15、设计有程序下载口,可以实时编程实时调试。 16、芯片都安装在对应的管座上,可以随时更换芯片。 17、外部连线采用旋转压接端子,使接线更牢固。 18、四周有固定安装孔。 产品最大特点:可以对AT89S52单片机编程实现任意控制被控的直流电机或者步进电机。 适用场合:单片机学习、电子竞赛、产品开发、毕业设计。。。 注意啦:本产品提供例程(附带原理图以及说明!) 【标注图片】 【步进电机控制接线图】 步进电机的控制实例 步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。 一、步进电机最大特点是:

步进电机驱动器的设计

1 绪论 1.1 引言 步进电动机一般以开环运行方式工作在伺服运动系统中,它以脉冲信号进行控制,将脉冲电信号变换为相应的角位移或线位移。步进电动机可以实现信号的变换,是自动控制系统和数字控制系统中广泛应用的执行元件。由于其控制系统结构简单,控制容易并且无累积误差,因而在20世纪70 年代盛行一时。80 年代之后,随着高性能永磁材料的发展、计算机技术以及电力电子技术的发展,矢量控制技术等一些先进的控制方法得以实现,使得永磁同步电机性能有了质的飞跃,在高性能的伺服系统中逐渐处于统治地位。相应的,步进电机的缺点越来越明显,比如,其定位精度有限、低频运行时振荡、存在失步等,因而只能运用在对速度和精度要求不高,且对成本敏感的领域。 技术进步给步进电动机带来挑战的同时,也带来了新的发展遇。由于电力电子技术及计算机技术的进步,步进电动机的细分驱动得以实现。细分驱动技术是70 年代中期发展起来的一种可以显著改善步进电机综合性能的驱动控制技术。实践证明,步进电机脉冲细分驱动技术可以减小步进电动机的步距角,提高电机运行的平稳性,增加控制的灵活性等。由于电机制造技术的发展,德国百格拉公司于1973 年发明了五相混合式步进电动机,又于1993 年开发了三相混合式步进电动机。根据混合式步进电动机的结构特点,可以将交流伺服控制方法引入到混合式步进电机控制系统中,使其可以以任意步距角运行,并且可以显著削弱步进电机的一些缺点。若引入位置反馈,则混合式步进电机控题正是借鉴了永磁交流伺服系统的控制方法,研制了基于DSP的三相混合式步进电机驱动器。 1.2 步进电机及其驱动器的发展概况 按励磁方式分类,可以将步进电动机分为永磁式(PM)、反应式(VR)和混合式(HB)三类,混合式步进电动机在结构和原理上综合了反应式和永磁式步进电动机的优点,因此混合式步进电动机具有诸多优良的性能,本课题的研究对象正是混合式步进电机。20 世纪60 年代后期,各种实用性步进电动机应运而生,而半导体技术的发展则推进了步进电动机在众多领域的应用。在近30 年间,步进电动机迅速的发展并成熟起来。从发展趋势来讲,步进电动机已经能与直流电动机、异步电动机以及同步电动机并列,从而成为电动机的一种基本类型。特别是混合式步进电动机以其优越的性能(功率密度高于同体积的反应式步进电动机50%)得到了较快的发展。其中,60 年代德国百格拉公司申请了四相(两相)混合式步进电动机专利,70 年代中期,百格拉公司又申请了五相混合式步进电动机

单片机驱动步进电机程序代码

单片机驱动步进电机程 序代码 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

/******************************************************** 实现功能:正转程序 使用芯片:AT89S52 晶振: 编译环境:Keil 作者: 【声明】此程序仅用于学习与参考,引用请注明版权和作者信息!********************************************************/ #include<> //库文件 #define uchar unsigned char //字符型宏定义 #define uint unsigned int //整型宏定义 uchar tcnt; //定时器计数初值定义 uint sec; //速度值定义 uchar buf[11]; uchar bai,shi,ge; /********************控制位定义*************************/ sbit shi_neng=P1^0; // 使能控制位 sbit fang_shi=P1^1; // 工作方式控制位 sbit fang_xiang=P1^2;// 旋转方向控制位 sbit mai_chong=P1^3; // 脉冲控制位 /********************延时函数***************************/ void delay1ms(uchar z) { uchar x,y; for(x=0;x

(整理)二相步进电机驱动.

电机驱动器使用说明书 L298N是ST公司生产的一种高电压、大电流电机驱动芯片。该芯片采用15脚封装。主要特点是:工作电压高,最高工作电压可达46V;输出电流大,瞬间峰值电流可达3A,持续工作电流为2A;额定功率25W。内含两个H桥的高电压大电流全桥式驱动器,可以用来驱动直流电动机和步进电动机、继电器线圈等感性负载;采用标准逻辑电平信号控制;具有两个使能控制端,在不受输入信号影响的情况下允许或禁止器件工作有一个逻辑电源输入端,使内部逻辑电路部分在低电压下工作;可以外接检测电阻,将变化量反馈给控制电路。使用L298N芯片驱动电机,该芯片可以驱动一台两相步进电机或四相步进电机,也可以驱动两台直流电机。 简要说明: 一、尺寸:80mmX45mm 二、主要芯片:L298N、光电耦合器 三、工作电压:控制信号直流5V;电机电压直流3V~46V(建议使用36伏以下) 四、最大工作电流:2.5A 五、额定功率:25W 特点:1、具有信号指示。 2、转速可调 3、抗干扰能力强 4、具有过电压和过电流保护 5、可单独控制两台直流电机 6、可单独控制一台步进电机 7、PWM脉宽平滑调速 8、可实现正反转

9、采用光电隔离 六、有详细使用说明书 七、提供相关软件 八、提供例程及其学习资料 实例一:步进电机的控制实例 步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。 一、步进电机最大特点是: 1、它是通过输入脉冲信号来进行控制的。 2、电机的总转动角度由输入脉冲数决定。 3、电机的转速由脉冲信号频率决定。 二、步进电机的驱动电路 根据控制信号工作,控制信号由单片机产生。(或者其他信号源) 如图:按CTRL并点击(L298N驱动器与直流电机接线图) 三、基本原理作用如下: 两相四拍工作模式时序图:

步进电机驱动电路设计

如对您有帮助,请购买打赏,谢谢您! 引言 步进电机是一种将电脉冲转化为角位移的执行机构。驱动器接收到一个脉冲信号后,驱动步进电机按设定的方向转动一个固定的角度。首先,通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;其次,通过控制脉冲顿率来控制电机转动的速度和加速度,从而达到涮速的目的。目前,步进电机具有惯量低、定位精度高、无累积误差、控制简单等特点,在机电一体化产品中应用广泛,常用作定位控制和定速控制。步进电机驱动电路常用的芯片有l297和l298组合应用、3977、8435等,这些芯片一般单相驱动电流在2 a左右,无法驱动更大功率电机,限制了其应用范围。本文基于东芝公司2008年推出的步进电机驱动芯片tb6560提出了一种步进电机驱动电路的设计方案 1步进电机驱动电路设计 1.1 tb6560简介 tb6560是东芝公司推出的低功耗、高集成两相混合式步进电机驱动芯片。其主要特点有:内部集成双全桥mosfet驱动;最高耐压40 v,单相输出最大电流3.5 a(峰值);具有整步、1/2、1/8、1/16细分方式;内置温度保护芯片,温度大于150℃时自动断开所有输出;具有过流保护;采用hzip25封装。tb6560步进电机驱动电路主要包括3部分电路:控制信号隔离电路、主电路和自动半流电路。 1.2步进电机控制信号隔离电路 步进电机控制信号隔离电路如图1所示,步进电机控制信号有3个(clk、cw、enable),分别控制电机的转角和速度、电机正反方向以及使能,均须用光耦隔离后与芯片连接。光耦的作用有两个:首先,防止电机干扰和损坏接口板电路;其次,对控制信号进行整形。对clk、cw信号,要选择中速或高速光耦,保证信号耦合后不会发生滞后和畸变而影响电机驱动,且驱动板能满足更高脉冲频率驱动要求。本设计中选择2片6n137高速光耦隔离clk、cw,其信号传输速率可达到10 mhz,1片tlp521普通光耦隔离enable信号。应用时注意:光耦的同向和反向输出接法;光耦的前向和后向电源应该是单独隔离电源,否则不能起到隔离干扰的作用。 1.3步进电机主电路 如图2所示,步进电机主电路主要包括驱动电路和逻辑控制电路两大部分。 驱动电路电源采用28 v,电压范嗣为4.5~40 v,提高驱动电压可增大电机在高频范围转矩的输出,电压选择要根据使用情况而定。vmb、vma为步进电机驱动电源引脚,应接入瓷片去耦电容和电解电容稳压。out_ap、out_am、out_bp、out_bm 引脚分别为电机2相输出接口,由于内部集成了续流二极管,这4个输出口不用

步进电机驱动及控制专业技术解答

步进电机驱动及控制技术解答 1.步进电机为什么要配步进电机驱动器才能工作? 步进电机作为一种控制精密位移及大范围调速专用的电机, 它的旋转是以自身固有的步距角角(转子与定子的机械结构所决定)一步一步运行的, 其特点是每旋转一步,步距角始终不变,能够保持精密准确的位置。所以无论旋转多少次,始终没有积累误差。由于控制方法简单,成本低廉,广泛应用于各种开环控制。步进电机的运行需要有脉冲分配的功率型电子装置进行驱动, 这就是步进电机驱动器。它接收控制系统发出的脉冲信号,按照步进电机的结构特点,顺序分配脉冲,实现控制角位移、旋转速度、旋转方向、制动加载状态、自由状态。控制系统每发一个脉冲信号, 通过驱动器就能够驱动步进电机旋转一个步距角。步进电机的转速与脉冲信号的频率成正比。角位移量与脉冲个数相关。步进电机停止旋转时,能够产生两种状态:制动加载能够产生最大或部分保持转矩(通常称为刹车保持,无需电磁制动或机械制动)及转子处于自由状态(能够被外部推力带动轻松旋转)。步进电机驱动器必须与步进电机的型号相匹配。否则将会损坏步进电机及驱动器。 2.什么是驱动器的细分?运行拍数与步距角是什么关系? “细分”是针对“步距角”而言的。没有细分状态,控制系统每发一个步进脉冲信号,步进电机就按照整步旋转一个特定的角度。步进电机的参数,都会给出一个步距角的值。如110BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°、整步工作时为1.8°),这是步进电机固有步距角。通过步进电机驱动器设置的细分状态,步进电机将会按照细分的步距角旋转位移角度,从而实现更为精密的定位。以110BYG250A电机为例,列表说明: 可以看出,细分数就是指电机运行时的真正步距角是固有步距角(整步)的几分指一。例如,驱动器工作在10细分状态时,其步距角只有步进电机固有步距角的十分之一。当驱动器工作在不细分的整步状态时,控制系统每发一个步进脉冲,步进电机旋转1.8°;而用细分驱动器工作在10细分状态时,电机只转动了0.18°。其实,细分就是步进电机按照微小的步距角旋转,也就是常说的微步距控制。当然,不同的场合,有不同的控制要求。并不是说,驱动步进电机必须要求细分。有些步进电机的步距角设计为3.6°、7.5°、15°、36°、180°,就是为了加大步距角,以适应特殊的工况条件。细分功能,只由驱动器采用精确控制步进电机的相电流方法,与步进电机的步距角无关,而与步进电机实际工作状态相关。 运行拍数与驱动器细分的关系是:运行拍数指步进电机运行时每转一个齿距所需的脉冲数。例如:110BYG250A电机有50个齿,如果运行拍数设置为160,那么步进电机旋转

步进电机驱动控制系统设计(有程序)

目录 一前言 (1) 二总体方案设计 (1) 1工作原理 (1) 2方案选择 (1) 2.1时钟脉冲 (1) 2.2脉冲分配器 (1) 2.3驱动器 (1) 3 总的框架 (2) 三单元模块设计 (2) 1单片机模块 (2) 1.1复位控制 (3) 1.2单片机频率 (3) 2接口 (3) 3驱动器ULN2003 (4) 4按键模块 (5) 5步进电机 (5) 5.1工作原理 (5) 5.2 28BYJ48型四相八拍 (7) 四整机调试与技术指标测量 (8) 五设计总结 (8) 参考文献 (9) 附录1电路原理图 (10) 附录2 源程序 (11)

一、前言 步进电动机是一种将电脉冲信号转换成机械位移的机电执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。 二、总体方案设计 1、工作原理 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 2、方案选择 (1)时钟脉冲 通常有两种方法实现: 方案一直接有硬件组成如:多谐振荡器 LC 等。 方案二用软件的方式形成优点便于随时更改,调整。 为了方便我们选用软件方式有单片机实现。 (2)脉冲分配器 方案一硬件环形分配器:由计数器等数字电路组成的。有较好的响应速度,且具有直观、维护方便等优点。 方案二软件环分:由计算机接口电路和相应的软件组成的。受到微型计算机运算速度的限制,有时难以满足高速实时控制的要求。由软件完成脉冲分配工作,不仅使线路简化,成本下降,而且可根据应用系统的需要,灵活地改变步进电机的控制方案。 考虑到硬件设备的有限和对步进电机的控制我们选择软件环分可以有单片机实现。 (3)驱动器 方案一使用功率场效应管的单电压功放电路。

基于单片机的步进电动机控制器的设计

第一部分培训软件简介 Proteus软件是英国Lab Center Electronics公司出版的EDA工具软件(该软件中国总代理为广州风标电子技术有限公司)。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前比较好的仿真单片机及外围器件的工具。虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。 Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年又增加了Cortex和DSP系列处理器,并持续增加其他系列处理器模型。在编译方面,它也支持IAR、Keil和MATLAB等多种编译器。 Keil C51是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(μVision)将这些部分组合在一起。运行Keil软件需要WIN98、NT、WIN2000、WINXP等操作系统。如果你使用C语言编程,那么Keil几乎就是你的不二之选,即使不使用C语言而仅用汇编语言编程,其方便易用的集成环境、强大的软件仿真调试工具也会令你事半功倍。 第二部分培训项目实例 培训项目一:基于单片机的步进电动机控制器的设计 项目要求: 采用单片机对步进电机进行控制,包括正转、反转、加速、减速和停止,同时采用液晶显示屏显示步进电动机的运行情况。 培训目的: 1.掌握步进电机的工作原理;

【matlab编程代做】步进电机控制器设计

步进电机控制器设计报告 1.绪言 在本次EDA课程设计中,我们组选择了做一个步进电机驱动程序的课题。对于步进电机我们以前并未接触过,它的工作原理是什么,它是如何工作的,我们应该如何控制它的转停,这都是我们迫切需要了解的。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 步进电机及驱动电源是互相联系的整体。步进电机驱动电源框图如图1所示。变频信号源产生频率可调的脉冲信号,调节步进电机的速度。脉冲分配器则根据要求把脉冲信号按一定的逻辑关系加到脉冲放大器上,使步进电机按确定的运行方式工作。 感应子式步进电机以相数可分为:二相电机、三相电机、四相电机、五相电机等。以机座号(电机外径)可分为:42BYG(BYG 为感应子式步进电机代号)、57BYG、86BYG 、110BYG 、(国际标准),而像70BYG 、90BYG 、130BYG 等均为国内标准。 1.1 驱动控制系统组成 使用、控制步进电机必须由环形脉冲,功率放大等组成的控制系统。 1.1.1 脉冲信号的产生 脉冲信号一般由单片机或CPU 产生,一般脉冲信号的占空比为0.3-0.4 左右,电机转速越高,占空比则越大。 1.1.2 信号分配 感应子式步进电机以二、四相电机为主,二相电机工作方式有二相四拍和二相八拍二种,具体分配如下:二相四拍为,步距角为1.8 度;二相八拍为,步距角为0.9 度。四相电机工作方式也有二种,四相四拍为AB-BC-CD-DA-AB,步距角为1.8 度;四相八拍为 AB-B-BC-C-CD-D-AB,(步距角为0.9 度)。

步进电机驱动器控制信号接口说明

. .. 步进电机驱动器控制信号接口说明 驱动器是把计算机控制系统提供的弱电信号放大为步进电机能够接受的强电流信号,控制系统提供给驱动器的信号主要有以下三路: 1.步进脉冲信号CP:这是最重要的一路信号,因为步进电机驱动器的原理就是要把控制系统发出的脉冲信号转化为步进电机的角位移, 或者说:驱动器每接受一个脉冲信号CP,就驱动步进电机旋转一步距角, CP的频率和步进电机的转速成正比, CP的脉冲个数决定了步进电机旋转的角度。这样,控制系统通过脉冲信号CP就可以达到电机调速和定位的目的。 2.方向电平信号 DIR:此信号决定电机的旋转方向。比如说,此信号为高电平时电机为顺时针旋转,此信号为低电平时电机则为反方 向逆时针旋转。此种换向方式,我们称之为单脉冲方式。另外,还有一种双脉冲换向方式:驱动器接受两路脉冲信号(标注为CW和CCW),当其中一路(如CW)有脉冲信号时,电机正向运行,当另一路(如CCW)有脉冲信号时,电机反向运行。用户使用何种方式,由拨位开关设定。 3.使能信号EN:此信号在不连接时默认为有效状态,这时驱动器正常工作。当此信号回路导通时,驱动器停止工作,这时电机处于无力矩状态(等同于本公司SH系列驱动器的FREE信号),此信号为选用信号。 为了使控制系统和驱动器能够正常的通信,避免相互干扰,我们在驱动器内部采用光耦器件对输入信号进行隔离,三路信号的内部接口电路相同,常用的连接方式为①共阳方式:把CP+、DIR+和EN+接在一起作为共阳端接外部系统的+5V,脉冲信号接入CP-端,方向信号接入DIR-端,使能信号接入EN-端;②共阴方式:把CP-、DIR-和EN-接在一起作为共阴端接外部系统的GND,脉冲信号接入CP+端,方向信号接入DIR+端,使能信号接入EN+端;③差动方式:直接连接。 驱动器输入信号内部接口示意图 如果驱动器输入信号为电压信号,要求:3.6V≤高电平≤5.5V; -5.5V≤低电平≤0.3V,最常用的为TTL电平。 如果驱动器输入信号为电流信号,要求:7mA≤高电流≤18mA; -18mA≤低电流≤0.2mA。 不管是电压信号还是电流信号,最终转化为光耦器件的输入电流以达到信号传输的目的(参考上图),如果电压信号的幅值超出以上要求的范围须在外部另加限流电阻R,保证给驱动器内部光耦提供7-18mA的驱动电流,参见下图和下表。 步进电机的运行是由脉冲信号控制的,步进电机在脉冲信号的有效沿到来的时刻移动一个步距角,本系列驱动器的有效沿是指:脉冲信号电流“由小到大”的时刻,或者说脉冲电平“由低到高”的时刻,或者说是驱动器内部光耦“由截止到打开”的时刻。 脉冲信号的频率要求不大于200KHz; 脉冲信号的宽度要求不小于2μS。 脉冲信号的驱动电流要求为7-18mA 电机换向时,一定要在电机降速停止后再换向。换向信号要求在前一个方向的最后一个脉冲有效沿结束至少5μS以上才能改变换向信号,且不滞后下一个脉冲信号的有效沿。 如果使用双脉冲CW/CCW方式,则要求下一个方向的第一个脉冲(如CCW)在前一个方向的最后一个脉冲(CW)有效沿后至少5μs才能有效。

步进电机程序编写及说明

步进电机 学习交流群——126500542(验证信息:千寻琥珀心) 在这里介绍一下如何用51单片机驱动步进电机。 本例所使用的步进电机为四项驱动,驱动电压为12V,锯齿角(为什么叫锯齿叫而不叫步进角,我也不知道这样解释是否正确,但是根据步进角计算公式所得的结果将7.5理解为锯齿叫会更好些,也在网上搜了不少资料,说是步进角的较多,但都是直接给出的,而未作出计算,不过也有是将其作为锯齿角的,并且结合书上的内容,在此就将此作为锯齿角理解,那何谓步进角,下面公式将给出)为7.5度。(也就是说锯齿之间的单位角度),不进一圈总共需要360度,故有48个锯齿。 在此对电路图部分不再给出,具体引脚连接接下来给出。本例所使用的电机驱动芯片为达林顿驱动器(ULN2003),通过P1.0~P1.3分别接通步进电机的驱动线圈来控制步进电机的运转。注意如果直接使用单片机通过驱动芯片驱动电机,力矩可能不够大,效果不是很好,因为ULN2003的驱动电压为12V,而单片机系统电压为5V,故请读者注意此点,在设计电路时,另施电压。 步进电机要想正常工作,必须有驱动信号,转动的速度与驱动信号的频率是成正比的。(实例中将会给出并予以说明)接下来我们看看对于电机驱动中的信号的产生。 本例中采用的步进电机为四项,三项驱动和四项驱动原理上

是一样的。假设步进电机的四个项为:A、B、C、D。它的拍数可由读者任意设定(即步进节奏)。再继续下面的内容时,我们现在此给出一个计算步进电机的公式:Qs=360/NZr,其中N=McC 为运行的拍数,McC为控制绕组项数,C为状态系数,当采用单双本项拍数时,C=1,当采用单双本项一倍拍数时,C=2。(此处说的本项拍数,如三项为单三拍,双三拍。本项一倍拍数为单六拍,简言之,三拍为1.六拍为2对于四项则四拍为1,8拍为2(说的有些玄乎,手中板砖还望留情)),Zr为转子齿数,先来看看单四拍,即A→B→C→D→A.因为上述已经给出了锯齿数,此例C=1,所以Qs=360/(4*1*48)=1.875°。故此电机的步进角为1.875°(既步与步之间的角度),因为行进是和脉冲有关的,一个脉冲行进一步,那么行进一圈,所需脉冲数为:360/1.875=192个脉冲。同时我们如果控制这些脉冲的频率就可以直接控制步进电机的运转速度了。继续我们的单四拍,运行方向A→B→C→D →A。(假设为正转)则在程序中对应的操作执行码为:(硬件连接时P1口的高四位不用全置1,此处只需用到低四位) P1.3 P1.2 P1.1 P1.0 D C B A (对应4个线圈) 1 1 1 0 0xfe (根据外部链接电路定,也可以是0001,此处采用低电平导通,导通A项线圈) 1 1 0 1 0xfd (导通B项线圈) 1 0 1 1 0xfb (导通C项线圈)

步进电机工作原理、驱动控制系统与选型

步进电机工作原理、驱动控制系统与选型 一、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て。 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A 相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,

电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力 F与(dФ/dθ)成正比 其磁通量Ф=Br*S ;Br为磁密;S为导磁面积; F与L*D*Br成正比;L为铁芯有效长度;D为转子直径;Br=N·I/RN·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态) 因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 (二)感应子式步进电机

PLC控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。

·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作! ·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,

两相步进电机驱动器设计

两相步进电机驱动器设计 目录 第1章绪论 (3) 1.1 引言 (3) 1.2 步进电机常见的控制方法与驱动技术简介 (3) 第2章设计方案 (5) 2.1 步进电机的介绍 (5) 2.2 步进电机的特点 (6) 2.3 步进电机的分类 (6)

2.4步进电机运动特性及性能参数 (7) 2.5 设计方案的确定 (8) 2.6 设计思想与设计原理 (9) 第3章单元电路的设计 (9) 3.1方波产生电路设计 (9) 3.2 信号的分配 (13) 3.3功率放大电路设计 (15) 3.4 总体设计 (16) 第4章设计方案的论证 (18) 第5章心得体会 (18) 第6章参考文献 (19) 第1章 1.1 引言 步进电动机一般以开环运行方式工作在伺服运动系统中,它以脉冲信号进行控制,将脉冲电信号变换为相应的角位移或线位移。步进电动机可以实现信号的变换,是自动控制系统和数字控制系统中广泛应用的执行元件。由于其控制系统结构简单,控制容易并且无累积误差,因而在20世纪70 年代盛行一时。80 年代之后,随着高性能永磁材料的发展、计算机技术以及电力电子技术的发展,矢量控制技术等一些先进的控制方法得以实现,使得永磁同步电机性能有了质的飞跃,在高性能的伺服系统中逐渐处

于统治地位。相应的,步进电机的缺点越来越明显,比如,其定位精度有 限、低频运行时振荡、存在失步等,因而只能运用在对速度和精度要求不 高,且对成本敏感的领域。技术进步给步进电动机带来挑战的同时,也带 来了新的发展遇。由于电力电子技术及计算机技术的进步,步进电动机的 细分驱动得以实现。细分驱动技术是70 年代中期发展起来的一种可以显 著改善步进电机综合性能的驱动控制技术。实践证明,步进电机脉冲细分 驱动技术可以减小步进电动机的步距角,提高电机运行的平稳性,增加控 制的灵活性等。由于电机制造技术的发展,德国百格拉公司于1973 年发 明了五相混合式步进电动机,又于1993 年开发了三相混合式步进电动机。 根据混合式步进电动机的结构特点,可以将交流伺服控制方法引入到混合 式步进电机控制系统中,使其可以以任意步距角运行,并且可以显著削弱 步进电机的一些缺点。若引入位置反馈,则混合式步进电机控题正是借鉴 了永磁交流伺服系统的控制方法,研制了基于DSP的三相混合式步进电机驱 动器. 1.2 步进电机常见的控制方法与驱动技术简介 1.2.1常见的步进电机控制方案 1、基于电子电路的控制 步进电机受电脉冲信号控制,电脉冲信号的产生、分配、放大全靠电子元器件的动作来实现。由于脉冲控制信号的驱动能力一般都很弱,因此必须有功率放大驱动电路。步进电机与控制电路、功率放大驱动电路组成一体,构成步进电机驱动系统。此种控制电路设计简单,功能强大,可实现一般步进电机的细分任务。这个系统由三部分组成:脉冲信号产生电路、脉冲信号分配电路、功率放大驱动电路。系统组成如图1.1所示。 脉冲控制器 功 率 放 大 驱 动 电 路 环 形 分 配 器 步 进 电 机

步进电机控制驱动电路设计.

实习名称:电子设计制作与工艺实习 学生姓名:周文生 学号:201216020134 专业班级:T-1201 指导教师:李文圣 完成时间: 2014年6月13日 报告成绩:

步进电机控制驱动电路设计 摘要: 本设计在根据已有模电、物电知识的基础上,用具有置位,清零功能的JK 触发器74LS76作为主要器件来设计环行分配器,来对555定时器产生的脉冲进行分配,通过功率放大电路来对步进电机进行驱动,并且产生的脉冲的频率可以控制,从而来控制步进电机的速度,环形分配器中具有复位的功能,在对于异常情况可以按复位键来重新工作。 关键字:555定时器脉冲源环行分配器功率放大电路 一、方案论证与比较: (一)脉冲源的方案论证及选择: 方案一:采用555定时器产生脉冲,它工作频率易于改变从而可以控制步进电机的速度并且工作可靠,简单易行。 C2 10uF 图一 555定时器产生的方法 方案二:采用晶振电路来实现,晶振的频率较大,不利于电机的工作,易失步,我们可以利用分频的方法使晶振的频率变小,可以使电机工作稳定,但分频电路较复杂,并且晶振起振需要一定的条件,不好实现。

X1 1kohm 1kohm 图二晶振产生脉冲源电路 综上所述,我们采用方案一来设计脉冲源。 (二)环形分配器的设计: 方案一:采用74ls194通过送入不同的初值来进行移位依此产生正确的值使步进电机进行转动。但此方案的操作较复杂,需要每次工作时都要进行置位,正反转的操作较复杂,这里很早的将此方案放弃。 方案二:使用单独的JK 触发器来分别实现单独的功能。 图三双三拍正转 图四单三拍正转

图五三相六拍正转 利用单独的做,电路图较简单,单具体操作时不方便,并且不利于工程设计。块分的较零散,无法统一。 方案三:利用JK触发器的自己运动时序特性设计,利用卡诺图来进行画简。 图六单,双三拍的电路图 单,双三拍的正,反转主要由键s1,s2的四种状态来决定四种情况的选择。

四相步进电机驱动电路及驱动程序设计

四相步进电机驱动电路及驱动程序设计 我们用一个单片机控制多个步进电机指挥跳舞机器人的双肩、双肘和双脚伴着音乐做出各种协调舒缓充满感情的动作,荣获一等奖。电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机(Atc52)作脉冲序列信号发生器。程序设计基于中断服务和总线分时利用方式,实时更新各个电机的速度、方向。整个舞蹈由运动数据所决定的一截截动作无缝连接而成。本文主要介绍一下这个机器人的四相五线制步进电机驱动电路及程序设计. 1、步进电机简介 步进电机根据内部线圈个数不同分为二相制、三相制、四相制等。本文以四相制为例介绍其内部结构。图1为四相五线制步进电机内部结构示意图。

2、四相五线制步进电机的驱动电路 电路主要由单片机工作外围电路、信号锁存和放大电路组成。我们利用了单片机的I/O端口,通过74373锁存,由74LS244驱动,ULN2003对信号进行放大。8个电机共用4bit I/O端口作为数据总线,向电机传送步进脉冲。每个电机分配1bit的I/O端口用作74373锁存信号,锁存步进电机四相脉冲,经ULN2003放大到12V驱动电机运转。 电路原理图(部分)如图2所示。 (1)Intel 8051系列单片机是一种8位的嵌入式控制器,可寻址64K字节,共有32个可编程双向I/O口,分别称为P0~P3。该系列单片机上集成8K的ROM,128字节RAM可供使用。 (2)74LS244为三态控制芯片,目的是使单片机足以驱动ULN2003。

ULN2003是常用的达林顿管阵列,工作电压是12V,可以提供足够的电流以驱动步进电机。关于这些芯片的详细介绍可参见它们各自的数据手册。 (3)74373是电平控制锁存器,它可使多个步进电机共用一组数据总线。我们用P1.0~P1.7作为8个电机的锁存信号输出端,见表1。 这是一种基于总线分时复用的方式,以动态扫描的方式来发送控制信号,这和高级操作系统里的多任务进程调度的思想一致。这种方法明显的好处是节省I/O口,使系统可以控制更多的步进电机。本电路设计为控制8个。 3 、程序设计 传统的步进电机驱动程序利用简单的条件循环来发送脉冲序列,但当电机数目发生变化时,编程繁杂,冗余代码较多,难以做到信号占空比一致,进而产生“抖动” 现象。下面提出一种基于中断服务方式,面向舞蹈动作,可实时改变各个电机速度和方向(每200ms可改变一次)的程序设计方法。 3.1 速度归一化和线性关系 我们将速度量化成一个-128~127内可变的数,正号代表正转,负号代表返转,称之归一化速度(-128~127为一个字节)。给每个电机分

步进电机 驱动器 控制器三者的关系

电机行业专业求职平台 1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况 下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机、交流电机在常规下使用。步进电机必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。它涉及到机械、电机、电子及计算机等许多专业知识。 提及此知识,希望能给予正在对电机选型的客户有所帮助。 2.力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度,则产生力 F与(dФ/dθ)成正比 S 其磁通量Ф=Br*S Br为磁密,S为导磁面积 F与L*D*Br成正比 L为铁芯有效长度,D为转子直径 Br=N·I/R N·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径 力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态) 因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 一、混合式步进电机

电机行业专业求职平台1、特点: 混合式(又称感应子式步进电机)与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。 混合式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运 行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C= A ,D=B . 一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相, 而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,更可以作二相电机绕组串联或并联使用。 2、分类 混合式步进电机可分二相、三相、四相、五相等,我公司混合式步进电机以相数可分为:二相电机、三相电机: TEB20H,TEB28H,TEB35H,TEB39H,TEB42H,TEB57H,TEB86H,TEB110 H,TEC57H,TEC86H,TEC110H,TEC130H. 3、步进电机的静态指标术语 相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半 步)。 定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

相关文档
相关文档 最新文档