文档库 最新最全的文档下载
当前位置:文档库 › 常微分方程试题及参考答案

常微分方程试题及参考答案

常微分方程试题及参考答案
常微分方程试题及参考答案

常微分方程试题

一、填空题(每小题3分,共39分)

1.常微分方程中的自变量个数是________.

2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________.

3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变

量分离方程.

4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式

为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________.

5.方程=(x+1)3的通解为________.

6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满

足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解.

7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________.

8.方程+a1(t) +…+a n-1(t) +a n(t)x=0

中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________.

9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________.

10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组

x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式.

11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之

等价的一阶方程组________.

12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基

解矩阵exp A t=________.

13.方程组

的奇点类型是________.

二、计算题(共45分)

1.(6分)解方程

= .

2.(6分)解方程

x″(t)+ =0.

3.(6分)解方程

(y-1-xy)dx+xdy=0.

4.(6分)解方程

5.(7分)求方程:

S″(t)-S(t)=t+1

满足S(0)=1, (0)=2的解.

6.(7分)求方程组

的基解矩阵Φ(t).

7.(7分)验证方程:

有奇点x1=1, x2=0,并讨论相应驻定方程的解的稳定性.

三、证明题(每小题8分,共16分)

1.设f(x,y)及连续,试证方程

dy-f(x,y)dx=0

为线性方程的充要条件是它有仅依赖于x的积分因子.

2.函数f(x)定义于-∞

方程

x=f(x)

存在唯一的一个解.

常微分方程试题参考答案

一、填空题(每小题3分,共39分)

1.1

2. 2+c1t+c2

3.u=

4. c为任意常数

5.y= (x+1)4+c(x+1)2

6.y=y0+

7. (x)=

8.对任意t

9.x(t)=c1e t+c2te t+c3e-t+c4te-t

10.x(t)=c1x1(t)+c2x2(t) +c n x n(t)

11. x1(1)=1,x2(1)=2, x3(1)=3

12.expAt=e-2t[E+t(A+2E)+ ]

13.焦点

二、计算题(共45分)

1.解:将方程分离变量为

改写为

等式两边积分得

y-ln|1+y|=ln|x|-

即y=ln 或e y=

2.解:令则得

=0

当0时

-

arc cosy=t+c1

y=cos(t+c1) 即

则x=sin(t+c1)+c2

当=0时

y= 即

x

3.解:这里M=y-1-xy, N=x

令u=xye-x

u关于x求偏导数得

与Me-x=ye-x-e-x-xye-x 相比有

因此

u=xye-x+e-x

方程的解为xye-x+e-x=c

4.解:方程改写为

这是伯努利方程,令

z=y1-2=y-1 代入方程

解方程z=

=

于是有

5.特征方程为

特征根为

对应齐线性方程的通解为s(t)=c1e t+c2e-t

f(t)=t+1, 不是特征方程的根

从而方程有特解=(At+B),代入方程得

-(At+B)=t+1

两边比较同次幂系数得

A=B=-1

故通解为S(t)=c1e t+c2e-t-(t+1)

据初始条件得

c1=

因此所求解为:S(t)=

6.解:系数矩阵A=

则,而det

特征方程det( )=0, 有特征根

因此基解矩阵

7.解:因故x1=1,x2=0是方程组奇点

令X1=x1-1, X2=x2, 即x1=X1+1,x2=X2代入原方程,得化简得*

这里R(X)= , 显然(当时)

方程组*中,线性部分矩阵

det(A- )=

由det(A- )=0 得

可见相应驻定解渐近稳定

三、证明题(每小题8分,共16分)

1.证明:若dy-f(x,y)dx=0为线性方程

则f(x,y)=

因此仅有依赖于x的积分因子

反之,若仅有依赖于x的积分因子。这里M=-f(x,y),N=1

由-

方程为这是线性方程.

2.证明:由条件|f(x

1)-f(x

2

)| N|x

1

-x

2

|,易知,f(x)为连续函数,

任取x

作逐步点列

x

n+1=f(x

n

) n=0,1,

考虑级数x

+ 因

由归纳法知对任意k,|x

k -x

k-1

|

故级数x

+ 收敛

即序列{x

n

}收敛,设

对x

n+1=f(x

n

),两边求极限,注意f(x)连续,故x*=f(x*)

即x*是方程x=f(x)的解

又设是方程x=f(x)的任一解,则因N<1,必有x*=

因此解是唯一的

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程第5章答案

1.给定方程组 x = x x= (*) a)试验证u(t)= ,v(t)= 分别是方程组(*)的满足初始条件u(0)= , v(0)= 的解. b)试验证w(t)=c u(t)+c v(t)是方程组(*)的满足初始条件w(0)= 的解,其中是任意常数.解:a) u(0)= = u (t)= = u(t) 又v(0)= = v (t)= = = v(t) 因此u(t),v(t)分别是给定初值问题的解. b) w(0)= u(0)+ u(0)= + = w (t)= u (t)+ v (t) = + = = = w(t) 因此w(t)是给定方程初值问题的解. 2. 将下面的初值问题化为与之等价的一阶方程组的初值问题: a) x +2x +7tx=e ,x(1)=7, x (1)=-2 b) x +x=te ,x(0)=1, x (0)=-1,x (0)=2,x (0)=0 c) x(0)=1, x (0)=0,y(0)=0,y (0)=1 解:a)令x =x, x = x , 得 即 又x =x(1)=7 x (1)= x (1)=-2 于是把原初值问题化成了与之等价的一阶方程的初值问题: x =x(1)= 其中x=. b) 令=x ===则得: 且(0)=x(0)=1, = (0)=-1, (0)= (0)=2, (0)= (0)=0 于是把原初值问题化成了与之等价的一阶方程的初值问题: = x(0)= , 其中x= . c) 令w =x,w =,w =y,w =y ,则原初值问题可化为: 且 即w w(0)= 其中w= 3. 试用逐步逼近法求方程组 =x x= 满足初始条件 x(0)= 的第三次近似解.

2.5常微分方程课后答案(第三版)王高雄

习题2.5 2.ydy x xdy ydx 2=- 。 解: 2x ,得: ydy x xdy ydx =-2 c y x y d +-=221 即c y x y =+2 2 1 4. xy x y dx dy -= 解:两边同除以x ,得 x y x y dx dy - =1 令u x y = 则dx du x u dx dy += 即 dx du x u dx dy +=u u -=1 得到 ()2ln 2 1 1y c u -=, 即2 ln 21?? ? ??-=y c y x 另外0=y 也是方程的解。 6.()01=-+xdy ydx xy 解:0=+-xydx xdy ydx x d x y x d y y d x -=-2 得到c x y x d +-=??? ? ??2 21

即 c x y x =+2 2 1 另外0=y 也是方程的解。 8. 32 x y x y dx dy += 解:令 u x y = 则: 21u x u dx du x u dx dy +=+= 即2 1u x dx du x = 得到22x dx u du = 故c x u +-=-11 即 21 1x x c y += 另外0=y 也是方程的解。 10. 2 1?? ? ??+=dx dy dx dy x 解:令 p dx dy = 即p p x 2 1+= 而 p dx dy =故两边积分得到 c p p y +-=ln 2 12 因此原方程的解为p p x 21+=,c p p y +-=ln 212 。 12.x y xe dx dy e =?? ? ??+-1 解: y x xe dx dy +=+1

常微分方程期末试题B答案

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

第五章 高等数学(理专) 微分方程试题库1

第五章 微分方程 试题库一 1.填空题 (1) 微分方程0),,,()4(='y y y x F 是 阶微分方程. (2)通过点)1,1(处,且在任意一点),(y x P 处的切线斜率为x 的曲线方程为 . (3) 微分方程054=-'-''y y y 的特征方程为 . (4) 微分方程03='-''y y 的通解为 . (5) 微分方程09=-''y y 的通解为 . (6) 微分方程y x x y -=e d d 的通解为 . (7) 微分方程054=-'+''y y y 的通解为 . (8) 微分方程20yy x '+=的通解为 . (9)微分方程560y y y '''-+=的特征方程为 . (10) 微分方程440y y y '''-+=的通解为 . 2.选择题 (1) 微分方程0))(,,,(24='''y y y x F 的通解中含有的相互独立的任意常数的个数是( ). A.1; B.2; C.3; D.4. (2) 下列微分方程中是可分离变量的微分方程的是( ). A.y xy x y +=d d ; B. y x y xy sin e d d =; C. 2d d y xy x y +=; D. 22d d y x x y +=. (3) 下列微分方程中是一阶线性非齐次微分方程的是( ). A. 2d d y xy x y +=; B.x xy y =+''; C.x xy y =+'; D. 02=+'xy y . (4) 微分方程x y e =''的通解为( ). A. x y e =; B. C y x +=e ; C. Cx y x +=e ; D. 21e C x C y x ++=.

常微分方程教案(王高雄)第二章

第二章目录 内容提要及其它 (1) 第二章一阶微分方程的初等解法(初等积分) (2) 第一节变量分离方程与变量变换 (2) 一、变量分离方程 (2) 二、可化为变量分离方程的类型 (6) 1、齐次方程 (6) 2、可化为变量分离方程 (7) 三、应用例题选讲 (10) 第二节线性方程与常数变易法 (11) 第三节恰当方程与积分因子 (15) 一、恰当方程 (15) 二、积分因子 (20) 第四节一阶隐含方程与参数表示 (23) 一、可以解出y(或x)的方程 (24) 二、不显含y(或x)的方程 (25) 本章小结及其它 (27)

内容提要及其它 授课题目 (章、节) 第二章:一阶微分方程的初等解法 教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p30-74 主要参考书: [1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005, p1-70 [2]常微分方程教程,丁同仁等编,高等教育出版社,1991,p1-20 [3]偏微分方程数值解法(第2版),陆金甫关治,清华大学出版社,2004, p1-12 [4]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p28-169 [5]微分方程模型与混沌,王树禾编著,中国科学技术大学出版社,1999, p15-158 [6]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p38-124 目的与要求: 掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法.理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.掌握四类典型的一阶隐方程的解法. 能熟练求解变量分离方程、齐次方程、线性方程、伯努利方程、恰当方程和四类典型的一阶隐方程.领会变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程. 教学内容与时间安排、教学方法、教学手段: 教学内容: 第1节变量分离方程与变量变换; 第2节线性方程与常数变易法; 第3节恰当方程与积分因子; 第4节一阶隐方程与参数表示:可以解出(或 y x)的方程、不显含(或 y x)的方程.时间安排:8学时 教学方法:讲解方法 教学手段:传统教学方法与多媒体教学相结合。 教学重点分析: 熟悉各种类型方程的初等解法,并且能正确而又敏捷地判断方程的类型,从而用初等方法求解。 教学难点分析: 本章的教学难点是判断微分方程的类型,以及方程的转化(即把能转化为用初等方法求解的方程)。

(整理)常微分方程试题及参考答案

常微分方程试题 一、填空题(每小题3分,共39分) 1.常微分方程中的自变量个数是________. 2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________. 3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变 量分离方程. 4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式 为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________. 5.方程=(x+1)3的通解为________. 6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满 足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解. 7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________. 8.方程+a1(t) +…+a n-1(t) +a n(t)x=0 中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________. 9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________. 10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组 x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式. 11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之 等价的一阶方程组________. 12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基 解矩阵exp A t=________. 13.方程组 的奇点类型是________. 二、计算题(共45分) 1.(6分)解方程 = . 2.(6分)解方程 x″(t)+ =0. 3.(6分)解方程 (y-1-xy)dx+xdy=0. 4.(6分)解方程

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到

常微分方程第五章微分方程组总结

一.线性微分方程组的一般理论 1. 线性微分方程组一般形式为: 1111122112211222221122()()()(),()()()(), 1 , ()()()(),n n n n n n n nn n n x a t x a t x a t x f t x a t x a t x a t x f t x a t x a t x a t x f t '=++++??'=++++??????'=++++? () 记: 1112121 22212111222()()()()()()()()()()()()(), , ()n n n n nn n n n a t a t a t a t a t a t A t a t a t a t f t x x f t x x f t x x f t x x ??????=?????? '????????????'??????'===????????????'?????? 非齐次线性方程组表示为: ()() x A t x f t '=+ 齐次线性方程组表示为: ()x A t x '= 2.齐次线性方程组的一般理论 (1)定理 (叠加原理) 如果12(),(),,()n x t x t x t ? 是齐次方程组()x A t x '= 的k 个 解,则它们的线性组合1212()()()n n c x t c x t c x t ++?+ 也是齐次方程组的解,这里 12,,,n c c c ?是任意常数 (2)向量函数线性相关性 定义在区间],[b a 上的函数12(),(),,()n x t x t x t ? ,如果存在不全为零的常数

常微分方程习题及答案.[1]

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2 ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 2 2 1xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。

7.x y 1 =所满足的微分方程是 。 8.x y y 2='的通解为 。 9. 0=+ x dy y dx 的通解为 。 10. ()25 11 2+=+- x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程32 3y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .22x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?=

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

第五章常微分方程习题

第五章 常微分方程 §1 常微分方程的基本概念与分离变量法 1. xy dx dy 2=,并求满足初始条件:0,1x y ==的特解. 2.2(1)0y dx x dy ++=,并求满足初始条件:0,1x y ==的特解. 3.(1)(1)0x ydx y xdy ++-= 4.(ln ln )0x x y dy ydx --= 5. x y dy e dx -= 答案 1.通解2 x y ce =;特解2 x y e = 2.通解1ln 1y c x = ++;另有解0y =;特解11ln 1y x = ++ 3.ln ;0x y xy c y -+== 4.1ln y cy x += 5.y x e e c =+ §2 一阶线性微分方程 1.(1)( )是微分方程。 (A ) (B ) (C ) (D ) (2)( )不是微分方程。 (A ) (B ) (C ) (D )

2.求微分方程的通解 ;(2)。 (1) 3.求微分方程的特解 (1);(2) 4.解下列微分方程 ;(2); (1) 答案1.(1)B;(2)C 2.(1)y=cx;(2)y4-x4=C。 3.(1)2/x3;(2)。 4.(1); (2)y=Csinx; §3 二阶常系数线性微分方程 1.求下列微分方程的通解 ;(2); (1) (3) (5) 2.求微分方程的特解 3.求下列微分方程的通解

(1) ; (2) ; (3) ; (4) 。 4.求方程2100y y y '''++=满足初始条件0 2x y ==和01x y ='=的特解 5.求方程221y y y x '''+-=+的一个特解 6.求方程22x y y y xe '''+-=的一个特解 7.求方程32(41)x y y y x e '''-+=-的一个特解 答案 1.(1) ; (2) ; (3) ; (4) ; (5) ; (6) 。 2. 3.(1) ; (2) ; (3) ; (4) 。

2018常微分方程考研复试真题及答案

常微分方程计算题 2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由; (1) t 2 2 2dt u d +t dt du +( t 2 -1)u=0 (2) dx dy =x 2+y 2 ; (3)dx dy + 2 x y =0 3.求曲线族y=C 1e x +C 2x e x 所满足的微分方程 4.验证函数y= C 1e x 2+ C 2e x 2-是微分方程y `` -4y=0的解,进一步验证它是通解。 5.试用一阶微分方程形式不变性求解方程dx dy =2x 6.什么叫积分一个微分方程 7.什么是求解常微分方程的初等积分法 8.分离变量一阶方程的特征是什么 9.求下列方程的通解 (1) y ` =sinx (2) x 2 y 2 y ` +1=y (3) tgx dx dy =1+y (4) dx dy =exp(2x-y) (5) dx dy =21y 2- (6) x 2 ydx=(1- y 2 +x-2 x 2 y 2 )dx (7)( x 2 +1)( y 2 -1)dx+xydy=0 10.叙述齐次函数的定义 11.试给出一阶方程y ` =f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二

个方程的关系。 12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何 13.求解下列方程 dx dy =2 22y x xy - 14.求解下列方程 (1)(x+2y )dx —xdy=0 (2) dx dy =x y +y x 2 15. dx dy =22y x xy + 16(x 2 +y 2 )dx —2xydy=0 17. dx dy =5 242+---y x x y 18―――――19 20―――――――27

常微分方程应用题和答案

应 用 题(每题10分) 1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有 ()()()f x y f x f y +=,求()f x 。 2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件 ()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+= (1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。 3、已知连续函数()f x 满足条件320 ()3x x t f x f dt e ??=+ ??? ?,求()f x 。 4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞ >=,且满足 1 1 0()lim ()h x h f x hx e f x →? ?+ ?= ? ?? ? ,求()f x 。 5、设函数()f x 在(0,)+∞内连续,5 (1)2 f =,且对所有,(0,)x t ∈+∞,满足条件 1 1 1 ()()()xt x t f u du t f u du x f u du =+? ??,求()f x 。 6、求连续函数()f x ,使它满足10 ()()sin f tx dt f x x x =+?? 。 7、已知可微函数()f t 满足 31() ()1()x f t dt f x t f t t =-+?,试求()f x 。 8、设有微分方程 '2()y y x ?-=, 其中21 ()01x x x ?? 。试求在(,)-∞∞内的连续函 数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。 9、设位于第一象限的曲线()y f x = 过点122?? ? ? ?? ,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。 (1)求曲线()y f x =的方程; (2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。 10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线 1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。 11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为

常微分方程课后答案(第三版)王高雄

习题2.2 求下列方程的解。 1.dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 2 1e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。 2.dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ?-dt 3 (?e t 2 e -? -dt 3c dt +) =e t 3- (5 1e t 5+c) =c e t 3-+5 1e t 2 是原方程的解。 3.dt ds =-s t cos +21t 2sin 解:s=e ?-tdt cos (t 2sin 2 1?e dt dt ?3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy +1212--y x x =0 解:原方程可化为:dx dy =-1212+-y x x ?=-dx x x e y 1 2(c dx e dx x x +?-221) )21(ln 2+=x e )(1 ln 2?+--c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 234xy x x += 解:dx dy 234xy x x += =23y x +x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2u x 21u dx du = dx du u =2 c x u +=33 1 c x x u +=-33 (*) 将x y u =带入 (*)中 得:3433cx x y =-是原方程的解.

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程 21d d y x y -=过点)1,2 (π 共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 x x y x y +-=d d 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 y x y =d d 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 13、二阶线性齐次微分方程的两个解12(),()y x y x ??==成为其基本解组的充要条件是 线性无关 。

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

第五章 微分方程

第五章 微分方程 第一节 微分方程的基本概念 一、基本概念 微分方程的定义: ①凡是含有未知函数的导数(或微分)的方程,称为微分方程. ②未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.本书只讨论常微分方程,简称微分方程. 微分方程的阶、解与通解: 微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.如果把函数 )(x f y =代入微分方程后,能使方程成为恒等式,则称该函数为该微分方程的解.若微分方 程的解中含有任意常数,且独立的任意常数的个数与方程的阶数相同,则称这样的解为微分方程的通解. 初始条件与特解: 用未知函数及其各阶导数在某个特定点的值作为确定通解中任意常数的条件,称为初始条件.满足初始条件的微分方程的解称为该微分方程的特解。 例1 课本294页 例1 二、独立的任意常数 线性相关与线性无关: 设)(),(21x y x y 是定义在区间),(b a 内的函数,若存在两个不全为零的数21,k k ,使得对于区间),(b a 内的任一x ,恒有 0)()(2211=+x y k x y k 成立,则称函数)(),(21x y x y 在区间),(b a 内线性相关,否则称为线性无关. 显然,函数)(),(21x y x y 线性相关的充分必要条件是 ) () (21x y x y 在区间),(b a 内恒为常数. 如果 ) () (21x y x y 不恒为常数,则)(),(21x y x y 在区间),(b a 内线性无关.

独立的任意常数: 在表达式)()(2211x y C x y C y += (1C ,2C 为任意常数) 中, 1C ,2C 为独立的任意常数的充分必要条件为)(1x y ,)(2x y 线性无关. 例2 课本297页 例4 第二节 可分离变量的微分方程 一、定义 形如 )()(d d y g x f x y = 的微分方程,称为可分离变量的方程.该微分方程的特点是等式右边可以分解成两个函数之积,其中一个仅是x 的函数,另一个仅是y 的函数,即)(),(y g x f 分别是变量y x ,的已知连续函数. 二、求解方法 可分离变量的微分方程 )()(d d y g x f x y =的求解方法,一般有如下两步: 第一步:分离变量 x x f y y g d )(d )(=, 第二步:两边积分 ??= x x f y y g d )(d )(. 【例1】求微分方程ydy dx y xydy dx +=+2 的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1 1 12 -=- 两端积分 ? ? -=-dx x dy y y 111 2得 ||ln |1|ln |1|ln 2 1 12C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 注:在用分离变量法解可分离变量的微分方程的过程中, 我们在假定0)(≠y g 的前提下, 用它除方程两边, 这样得到的通解, 不包含使0)(=y g 的特解. 但是, 有时如果我们扩大任意常数C 的取值范围, 则其失去的解仍包含在通解中. 如在例2中,我们得到的通解中应该0≠C ,但这样方程就失去特解1±=y ,而如果允许0=C ,则1±=y 仍包含在通解

常微分方程王高雄第三版答案

习题2.2 求下列方程的解 1. dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 21 e x -(x x cos sin +)+c] =c e x -2 1 (x x cos sin +)是原方程的解。 2. dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ? -dt 3 (?e t 2 e -?-dt 3c dt +) =e t 3- (5 1 e t 5+c) =c e t 3-+5 1 e t 2 是原方程的解。 3. dt ds =-s t cos + 21t 2sin 解:s=e ? -tdt cos (t 2sin 2 1 ?e dt dt ? 3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为: dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解.

5. dx dy + 1212 --y x x =0 解:原方程可化为: dx dy =-1212 +-y x x ? =-dx x x e y 2 1 2(c dx e dx x x +? -2 21) ) 2 1(ln 2 + =x e )(1ln 2 ?+- -c dx e x x =)1(1 2 x ce x + 是原方程的解. 6. dx dy 2 3 4xy x x += 解: dx dy 2 3 4 xy x x += =2 3y x + x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u += 2 u x 2 1u dx du = dx du u =2 c x u +=3 31 c x x u +=-33 (*) 将 x y u =带入 (*)中 得:3 4 3 3cx x y =-是原方程的解.

相关文档
相关文档 最新文档