文档库 最新最全的文档下载
当前位置:文档库 › 利用刚体转动惯量实验仪验证转动定律

利用刚体转动惯量实验仪验证转动定律

利用刚体转动惯量实验仪验证转动定律
利用刚体转动惯量实验仪验证转动定律

实验 《利用刚体转动惯量实验仪验证转动定律》实验提要

实验课题及任务

物理实验室有多套刚体转动惯量实验仪,该实验设计有缺陷,实验误差较大,闲置多年不用。在大学物理实验里,没有关于刚体定轴转动定律方面的实验。为了使闲置仪器再次利用,同时填补刚体定轴转动定律方面的实验空白,要求学生设计一个“利用刚体转动惯量实验仪验证转动定律”的设计性实验。本实验要求学生了解“刚体转动惯量实验仪实验”[参考附录],利用实验室现有的气垫导轨实验用的A JSJ 3-型数字毫秒计及光电门,对刚体转动惯量实验仪进行改装,验证刚体定轴转动定律。[提示:计算出合外力矩

μM mgr M -='与β,当合外力矩μM mgr M -='与β成正比时,刚体定轴转动定律

βI M =成立。]

学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《利用刚体转动惯量实验仪验证转动定律》的整体方案,内容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按要求写出完整的实验报告。 设计要求

本实验要求学生自主完成四部分内容:一是完成刚体转动惯量实验仪的改装,二是自主设计实验原理及内容,三是估测阻力矩,四是验证刚体定轴转动定律。 实验仪器

刚体转动惯量实验仪,A JSJ 3-型数字毫秒计,光电门 学时分配

实验验收:3学时,在实验室内完成;教师指导(开放实验室)和开题报告:2学时。 提交整体设计方案时间

学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求手写设计方案,字迹清晰,作图准确。

思考题

如何才能提高实验的精确度?

设计方案思路

实验原理(很详细)

一、如何验证刚体定轴转动定律

1、刚体定轴转动定律:βI M =,有阻力矩μM 时:βμI M mgr =-

2、如何验证刚体定轴转动定律成立:

合外力矩为μM mgr M -=',若

21

2

1ββ≈''M M ,则刚体定轴转动定律成立。 二、刚体转动惯量实验仪的分析(参考附录) 1、刚体转动惯量实验仪的仪器结构

2、原刚体转动惯量实验仪的时间测量误差较大,阻力矩μM 的影响较大。 三、刚体转动惯量实验仪的改装

在原刚体转动惯量实验仪的均匀细柱B 的外端,垂直向下安装一遮光片,遮光片边沿与转轴平行,旁边放置一个光电门,使遮光片刚好无阻碍地通过光电门。 四、刚体转动惯量I 及角加速度β的测量

第一、二次遮光时遮光片的速度为11t S v ??=和2

2t S

v ??=,因为刚体做匀加速转动,有:

r a g m M )(-= ,212

1t t βωθ+= , t βωω+=12

推导出I 及β的计算公式。 五、估测阻力矩μM

取下塔轮上的细线及砝码,用手轻推塔轮,使塔轮以实验时塔轮约以最大转速的一半自由转动,测出遮光片的遮光时间1t ?、 2t ?、3t ?、4t ?,计算出角加速度β。

六、验证刚体定轴转动定律

1、保持r 不变,改变砝码的质量m ,测出遮光片的遮光时间1t ?、2t ?、3t ?、4t ?。

2、测量并计算不同砝码质量时的角加速度β及合外力矩μM mgr M -='(下标

为砝码质量):3520M M '',3525M M '',35

30M M '',合外力矩μM mgr M -='之比为(下标为砝

码质量):

3520ββ,3525ββ,35

30ββ 若其比值基本相等,因此βI M =成立。 实验步骤(详细)

一、刚体转动惯量实验仪的改装 (1)(2)……(N) 二、估测阻力矩μM (1)(2)……(N) 三、验证刚体定轴转动定律 (1)(2)……(N)

附录:

5-1 刚体转动实验仪

1.实验目的

(1). 学会应用功能原理测量物体的转动惯量。

(2). 通过实验加深认识影响转动惯量的因素,学会用作图法处理资料; (3). 学习一种消除系统误差的方法。 2.实验仪器

刚体转动实验仪,秒表,砝码,米尺。

3.仪器介绍

刚体转动实验仪如图5-1-1所示。A 是一个具有不同半径r 的塔轮,其中心轴支 承在支臂I 和底座J 之间,两根具有等分刻度的均匀细杆B 和B ′对称地装在塔轮的中心套两侧,圆柱形重物m 0可沿B 和B ′移动,它们一起组成了一个可以绕定轴00′转动的刚体系。若在塔轮上绕一层细线,其另一端通过支承在实验台上的滑轮C 与砝码M 相连,当砝码下落时,细线对刚体系施加外力矩,使刚体转动,滑轮C 的支架可通过滑轮台架E 上的固定螺钉D 而升降,以保证细线绕不同半径的塔轮时可保持与转轴垂直。H 是滑轮台架固定板手,F 是作为砝码下落是起始位置的标记。

图5-1-1 刚体转动实验仪

4.实验原理

根据转动定律,刚体绕固定轴转动时,刚体的角加速度β与所受的合外力矩M 成正比,与转动惯量J 成反比,即

M=βJ

如图5-1-1所示,刚体系(塔轮A 、横柱B 、B ′和两个质量为m 0的重物)所受外力矩是绳的张力及轴上的摩擦力矩。根据转动定律,有

Tr -M r =βJ

式中T 为绳中张力;r 为轮的半径;M r 为轴上的摩擦力矩。 以砝码m 为研究对象,根据牛顿第二定律,有

mg -T ′=ma

推导整理可得:

r M rt

hJ

a g m +=

-22)(

在实验过程中,如果满足g>>a ,上式中a 可忽略,则有

rg

M gt r Jh m r +=

222 (5-1-10) 又如r M <

2

22gt

r Jh

m =

下面分两种情况进行讨论:

⒈若保持r 、h 及0m 的位置不变,改变砝码的质量m ,则相应的下落时间t 也变化。令

g r Jh

k 2

2=

rg

M b r =

得:

b t

k

m +=21

上式表明,在保持r 、h 及0m 的位置不变时,m 与2t 成反比。在直角坐标纸上作2

1t m -图,如果得到一条直线,则由实验结果验证刚体的转动定律是成立的。

从图中求出斜率k 和截距b ,可分别求出刚体系的转动惯量J 和摩擦力矩r M 。 2.若保持h 、m 及0m 的位置不变,改变r,则相应的下落时间t 也变化。可得:

t

k t mg Jh r 1

121==

式中mg

Jh

k 21=

上式表明,在保持h 、m 及m0的位置不变时,r 与t 成反比。在直角坐标纸上 作t

r 1

-图,如果得到一直线,说明刚体的转动定律成立。 从图中求出斜1k ,则亦可求出刚体系的转动惯时J 。

5.实验步骤

⒈调节实验装置。松开支臂I 上方的固定螺钉G ,取下塔轮,换上铅垂准钉,调节仪器底脚螺旋1S 2S 3S ,使铅直准钉尖对准下轴承中心,这时,OO’轴线已处于垂直方向。装上塔轮调节器节支臂I 上方螺钉G ,使塔轮沿其轴向有一定量的空隙,以减小摩擦,让塔轮转动灵活,调好后用固紧螺母K 固紧,并在实验过程中维持摩擦力矩不变。 ⒉选取绕线轮的半径r =3.00cm,将重物0m 放置位置(5,5'),将砝码m 从一固定高度h 由静止开始下落。改变m ,每次增加5.00g ,直到m =35.00g 为止。用秒表测出时间t, 测量三次填表5-1-1中。

⒊将0m 放置位置(5,5'),维持m =20.00g ,改变r(取1.00、1.50、2.00、2.50、3.00cm),

测出时间t 三次,填入表5-1-2中。

6.数据处理要求

(1) 在直角坐标纸上作出2

1t

m -

图,t r 1-图,得出必要的结论, 并求出刚体的转动惯量J 。

(2) 对计算结果进行误差分析。 (3)数据记录表格如下:

表5-1-1 测量刚体转动惯量 r =3.00cm h = cm

J = Kg ·m 2

表5

-1-2 测量刚体转动惯量 m =20.00g h = cm

J=Kg·m2 7.注意事项

⒈实验中不可旋动螺丝G,以保证摩擦力矩不变。

⒉机械秒表使用完毕,应让其继续走动,使发条放松。

测量刚体的转动惯量实验报告及数据处理

测量刚体的转动惯量实验报告及数据处理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

实验讲义补充: 1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不 变的物体。 2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分 布、形状大小和转轴位置 3.转动定律:合外力矩=转动惯量×角加速度 4.转动惯量叠加: 空盘:(1)阻力矩(2)阻力矩+砝码外力→J1 空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2 被测物体:J3=J2-J1 5.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12) 6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮 半径,3组砝码质量 7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值; 8.泡沫垫板 9.重力加速度:s^2 10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体; 11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求 平均值) 12.实验目的:测量值与理论值对比 实验计算补充说明: 1.有效数字:质量,故有效数字为3位 2.游标卡尺:,读数最后一位肯定为偶数; 3.误差&不确定度: (1)理论公式计算的误差: 圆盘:J=0.5mR2(注意:直接测量的是直径) 质量m=±;(保留4位有效数字) um=*100%=% 半径R=± 若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值 , 取n=6时的 ,我们处理为0 C=,仪器允差,δB= 总误差:,ux= m

转动惯量实验报告

转动惯量实验报告 一.实验目的 (1) 学会用落体法转动实验仪测定刚体的转动惯量; (2) 研究刚体的转动惯量与形状、大小及转轴位置的关系。 三.实验仪器描述 本实验所用NNZ-2型刚体转动实验仪由主机和测量仪表与拉线牵引台辅机及待测刚体球、环、盘、棒等组成。主机包括基础转盘和测量传感器;辅机由转数表和计时表、拉线、悬臂及砝码。 四.实验内容 1.测量基础转盘的转动惯量 2.测量圆环(或圆盘)的转动惯量 3.测双球的转动惯量并用球体验证平行移轴定理。 五.测量及实验步骤

1.测量基础转盘的转动惯量: 将主机上的霍尔传感器输出端插头和电磁铁及电插头,插入辅机的对应插口。将砝码托盘上的挂线穿过悬臂上的滑轮并使其一端固定在转轴上。(1)调节好主机和辅机的高度,使拉线与悬臂轴线平行,为此,悬臂上设有两个定位钉,使拉线通过两个定位钉即可。 (2)打开辅机上的电源开关,这时电磁铁会自动将基础转盘锁住。我们已将转数设为16个脉冲,即测量转2周的转动时间。 (3)绕线与测试准备--测试键-完成测试:主机因电磁铁失电而解锁,砝码从静止开始下落,刚体转动2周后,电磁铁自动吸合,重新锁紧转动的刚体,并显示刚体转动2周的下落时间。绕线键-主机解锁,重新绕线,绕线合适位置后完毕按下准备键,仪表全部数据归零,做好测量准备,主机(转动刚体)通过电磁铁被锁紧;按下测试键,再次测试转动2周的时间。 这里要特别强调,绕线到合适位置的含义。因为我们要测出刚体完整转动2周的时间,霍尔传感器给出开始和结束讯号的位置就必须是同一位置,这是减少误差的重要环节。 (4)测试在砝码托盘上放200g砝码,然后点按一下测试键,电磁铁失电,砝码带动刚体作匀加速转动,计时仪表开始计时,当刚体转动2周结束

刚体的转动惯量专题

刚体的转动惯量专题 1.刚体的转动惯量的三要素 刚体对某轴的转动惯量,是描述刚体在绕该轴的转动过程中转动惯性的物理量. 有转动惯量的定义式2i i I m r =∑可看出,刚 体的转动惯量是与下列三个因素有关的. (1)与刚体的质量有关. 例如半径相同的两个圆柱体,而它们的质量不同,显然,对于相应的转轴,质量大的转动惯量也较大.

(2)在质量一定的情况下,与质量的分布有关. 例如,质量相同、半径也相同的圆盘与圆环,二者的质量分布不同,圆环的质量集中分布在边缘,而圆盘的质量分布在整个圆面上,所以,圆环的转动惯量较大. (3)还与给定转轴的位置有关,即同一刚体对于不同的转轴,其转动惯量的大小也是不等的. 例如,同一细长杆,对通过其质心且垂直于杆的转轴和通过其一端且垂直于杆的转轴,二者的转动惯量不相同,且后者较大. 这是由于转轴的位置不同,从而也就影响了转动惯量的大小.

刚体的转动惯量的三要素:刚体的总质量、刚体的质量分布情况、转轴的位置. 2.转动惯量的普遍公式 (1)转动惯量的定义式 2 i i I m r =∑ ·········○1 可知,对于形状规则、质量均匀分布的连续刚体,其对特殊轴的转动惯量的计算可借助于定积分. 这是,可设想将刚体分成

许多小线元、面元、体元. d d d d d d m x m S m V λσρ=== 于是 222222d d d d d d l S V I r m r x I r m r S I r m r V λσρ======?????? 一般说来,这是个三重的体积分,但对于有一定对称性的物体,积分的重数可以减少,甚至不需要积分. (2)刚体对某轴的转动惯量 刚体对z 轴的转动惯量

转动惯量实验报告(2)

南昌大学物理实验报告 课程名称:扭摆法测定物体转动惯量 实验名称:扭摆法测定物体转动惯量 学院:信息工程学院专业班级:测控技术与仪器152班 学生姓名:夏正彬学号:5801215044 实验地点:基础实验大楼座位号:13 实验时间:第四周星期二(下午)一点开始

一、实验目的: 1.测定弹簧的扭转常数 k, 2.测定形状不同物体的转动惯量并与理论值比较, 3.验证转动惯量平行轴定理。 二、实验原理: 将物体在水平面内转过一角度?后,在弹簧的恢复力矩作用下物体就开始绕垂 直轴做往返扭转运动。根据胡可定律,弹簧受扭转而产生的恢复力矩 M 与所转过的 角度?成正比,即 M=-k? 式中 k 为弹簧的扭转常量,根据转动惯量 M=Iβ即β= 式中 I 为物体绕转轴的转动惯量,β为角角速度,由上式得 β==-=-ω2θ 上式ω2=,忽略轴承的摩擦阻力钜。 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正 比,且方向相反,此方程的解为 θ=Acos(ωt+φ) 式中,A 为谐振动的角振幅,φ为初相位,ω为角速度,此谐振动的周期为 T==2π(4-4)

由式(4-4)可知,只要试验测得物体扭摆的摆动周期,并在 I 和 k 中任

何一个量已知时即可算出另一个量。 转动惯量组合定理:若一个物体由几部分组成,每一部分相对转轴的转动惯量分别为 I ?,I ?,I ?…, 那么整个物体对转动轴的转动惯量为 I ? +I ?+I ?+…本实验用一个几何 形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论共式直接计算 得到,再算出本仪器弹簧的 k 值。 如先测载物盘转动的周期 T?,有 T=2π(4-5)再测载物盘加塑料圆柱转动的周期 T?,有 T?=2π(4-6)I?′为塑料圆柱转动惯量理论计算值 I ?′= (4-7) 由式(4-5)和式(4-6)可得 k=4π2 (4-8) 若要测定其他形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(4-4)即可算出该物体绕转动轴的转动惯量: I=-I?(4-9)

扭摆法测定物体的转动惯量实验报告

扭摆法测定物体的转动惯量 一、实验目的 1.测定扭摆的仪器常数(弹簧的扭转常数)K 。 2.测定熟料圆柱体、金属圆筒、木球与金属细长杆的转动惯量。 3.验证转动惯量的平行轴定理。 二、实验器材 扭摆、转动惯量测试仪、金属圆筒、实心塑料圆柱体、木球、验证转动惯量平行轴定理用的金属细杆(杆上有两块可以自由移动的金属滑块)、游标卡尺、米尺 托盘天平。 三、实验原理 1.测量物体转动惯量的构思与原理 将物体在水平面内转过以角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。更具胡克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 M K θ=- 式中K 为弹簧的扭转常数。 若使I 为物体绕转轴的转动惯量,β为角加速度,由转动定律M I β=可得 M K I I βθ= =- 令2K I ω= ,忽略轴承的磨察阻力距,得 222d dt θ βωθ==- 上式表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。方程的解为 cos()A t θω?=+ 式中A 为简谐振动的角振幅,?为初相位角,ω为角速度。谐振动的周期为 22T πω = =由上式可知,只要通过实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另外一个量。 本实验使用一个几何形状规则的小塑料圆柱,它的转动惯量可以根据质量

和几何尺寸用理论公式直接计算得到,将其放在扭摆的金属载物盘上,通过测定其在扭摆仪上摆动时的周期,可算出仪器弹簧的K 值。若要测定其他形状物体的转动惯量,只需将待测物体安放在同一扭摆仪顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。 假设扭摆上只放置金属载物圆盘时的转动惯量为0I ,周期为0T ,则 2 20 04T I K π= 若在载物圆盘上放置已知转动惯量为'1I 的小塑料圆柱后,周期为1T ,由转动惯量的可加性,总的转动惯量为'01I I +,则 222 '2 '1 010144()T I I T I K K ππ=+=+ 解得 ' 2 12 2 104I K T T π=- 以及 '2 1002 2 10 I T I T T =- 若要测量任何一种物体的转动惯量,可将其放在金属载物盘上,测出摆动周期T ,就可算出其转动惯量I ,即 202 4KT I I π =- 本实验测量木球和金属细杆的转动惯量时,没有用金属载物盘,分别用了支架和夹具,则计算转动惯量时需要扣除支架和夹具的转动惯量。 2.验证物体转动惯量的平行轴定理 本实验利用金属细杆和两个对称放置在细杆两边凹槽内的滑块来验证平行轴定理。测量整个系统的转动周期,可得整个系统的转动惯量的实验值为 22 4KT I π= 当滑块在金属细杆上移动的距离为x 时,根据平行轴定理,整个系统对中心轴转动惯量的理论计算公式应为 '2+2+2m I I I I x =+细杆夹具滑块滑块 式中I 滑块为滑块通过滑块质心轴的转动惯量理论值。 如果测量值I 与理论计算值'I 相吻合,则说明平行轴定理得证。

测量刚体的转动惯量实验报告及数据处理

实验讲义补充: 1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不 变的物体。 2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、 形状大小和转轴位置 3.转动定律:合外力矩=转动惯量×角加速度 4.转动惯量叠加: 空盘:(1)阻力矩(2)阻力矩+砝码外力→J1 空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2 被测物体:J3=J2-J1 5.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12) 6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮 半径,3组砝码质量 7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值; 8.泡沫垫板 9.重力加速度:s^2 10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体; 11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求 平均值) 12.实验目的:测量值与理论值对比 实验计算补充说明: 1.有效数字:质量,故有效数字为3位 2.游标卡尺:,读数最后一位肯定为偶数; 3.误差&不确定度: (1)理论公式计算的误差: 圆盘:J=0.5mR2(注意:直接测量的是直径) 质量m=±;(保留4位有效数字) um=*100%=% 半径R=± 若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值 , 取n=6时的 ,我们处理为0 C=,仪器允差,δB= 总误差:,ux= m

,u rx==% R=± urx=% 计算转动惯量的结果表示: J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上. (2)实验测量计算的误差: J=mR(g?Rβ2)β2?β1 根据,,对R(塔轮半径),m(砝码质量),β2和β1求导, ?J ?m=R(g?Rβ2)β2?β1 ?J ?R=mg?2Rβ2β2?β1 ?J ?β2=?mR2(β2?β1)?mR(g?Rβ2) (β2?β1)^2 ?J ?β1= mR(g?Rβ2) (β2?β1)^2

转动惯量的测定实验报告

理论力学转动惯量 实验报告

【实验目的】 1. 了解多功能计数计时毫秒仪实时测量(时间)的基本方法 2. 用刚体转动法测定物体的转动惯量 3. 验证刚体转动的平行轴定理 4. 验证刚体的转动惯量与外力矩无关 【实验原理】 1.转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程 T×r+Mμ=Jβ2(1)由牛顿第二定律可知,砝码下落时的运动方程为:mg-T=ma 即绳子的张力T=m(g-rβ2) 砝码与系统脱离后的运动方程 Mμ=Jβ1(2)由方程(1)(2)可得 J=mr(g-rβ2)/(β2-β1) (3) 2.角加速度的测量 θ=ω0t+?βt2(4)若在t1、t2时刻测得角位移θ1、θ2 则θ1=ω0 t1+?βt2(5) θ2=ω0 t2+?βt2(6) 所以,由方程(5)、(6)可得 β=2(θ2 t1-θ1 t2)/ t1 t2(t2- t1)【实验仪器】

1、IM-2刚体转动惯量实验仪(含霍尔开关传感器、计数计时多功能毫秒仪、一根细绳、一个质量为100g的砝码等,塔轮直径从下至上分别为30mm、40mm、50mm、60mm,载物台上的孔中心与圆盘中心的距离分别为40mm、80mm、120mm) 2、一个钢质圆环(内径为175mm,外径为215mm,质量为995g) 3、两个钢质圆柱(直径为38mm,质量为400g) 【实验步骤】 1. 实验准备 在桌面上放置IM-2转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取的绕线塔轮槽等高,且其方位相互垂直。 通用电脑计时器上光电门的开关应接通,另一路断开作备用。当用于本实验时,设置1个光电脉冲记数1次,1次测量记录大约20组数。 2. 测量并计算实验台的转动惯量 1) 放置仪器,滑轮置于实验台外3-4cm处,调节仪器水平。设置毫秒仪计数次数为20。 2) 连接传感器与计数计时毫秒仪,调节霍尔开关与磁钢间距为,转离磁钢,复位毫秒仪,转动到磁钢与霍尔开关相对时,毫秒仪低电平指示灯亮,开始计时和计数。 3) 将质量为m=100g的砝码的一端打结,沿塔轮上开的细缝塞入,并整齐地绕于半径为r的塔轮。 4) 调节滑轮的方向和高度,使挂线与绕线塔轮相切,挂线与绕线轮的中间呈水平。 5) 释放砝码,砝码在重力作用下带动转动体系做加速度转动。 6) 计数计时毫秒仪自动记录系统从0π开始作1π,2π……角位移相对应的时刻。 3. 测量并计算实验台放上试样后的转动惯量 将待测试样放上载物台并使试样几何中心轴与转动轴中心重合,按与测量空实验台转动惯量同样的方法可分别测量砝码作用下的角加速度β2与砝码脱离后的角加速度β1,由(3)式可计算实验台放上试样后的转动惯量J,再减去实验步骤2中算得的空实验台转动惯量即可得到所测试样的转动惯量。将该测量值与理论值比较,计算测量值的相对误差。 4. 验证平行轴定理 将两圆柱体对称插入载物台上与中心距离为d的圆孔中,测量并计算两圆柱体在此位置的转动惯量,将测量值与理论计算值比较,计算测量值的相对误差。 5. 验证刚体定轴转动惯量与外力矩无关 通过改变塔轮直径对转盘施加不同的外力矩,测定在不同外力矩下转盘的转动惯量,与理论值进行比较,在一定允许的误差范围内验证结论。 【实验数据与处理】 1.测量空盘的转动惯量 塔轮半径r=40mm 砝码100g

实验名称刚体转动惯量的测量

实验名称:刚体转动惯量的测量 姓 名 学 号 班 级 桌 号 同组人 本实验指导教师 实验地点:基教1208教室 实验日期 20 年 月 日 时 段 一、实验目的: 1. 用实验方法检验刚体的转动定律; 2. 掌握利用刚体转动定律测定刚体转动惯量的实验方法; 3. 学习曲线改直的方法; 4. 学习用ORIGIN 软件处理实验数据。 二、实验仪器与器件 刚体转动惯量仪一套,毫秒计时器一台,铝圆环一个,请自带计算器。 三、实验原理: 当砝码以加速度a 加速下落带动转动体系运动时,在a <

(b )若ω00=,则有 βθ= 22t , m g r M I t -=μθ 22 m I gr t M gr k t C =?+=?+21122θμ 改变m ,测得不同的 1 2t ,由线性回归法求出k ,可得转动惯量 I = 。 测量铝环绕轴的转动惯量,可先测量承载时的转动惯量I ,再测量空载时的转动惯量I 0,则其转动惯量 =x I 。 四、实验内容: 1. 用计算法测量铝环对中心轴的转动惯量 (1) 测承载时的转动惯量I 把铝环放在承物台上,取m 为9个砝码质量,r =2.50cm (第3个塔轮半径),取θθ12,分别为2π和8π,所对应的时间t 1和t 2,即由毫秒计分别读出所对应的时间t 1和t 2。重复五次。取m 为3个砝码质量,其余条件不变,由毫秒计分别读出所对应的时间' 1t 和' 2t 。重复五次。 (2) 测空载时的转动惯量I 0 把铝环从承物台上取下,重复上述步骤,得t 1,t 2,' 1t ,' 2t ,重复五次。 2. 用最小二乘法处理数据,测铝环对中心轴的转动惯量 需要满足ω00=(怎样操作?),为此,挡光柱初始位置应在光电门处,使体系一开始转动就开始计时。 (1)测量I

刚体转动惯量计算方法

刚体绕轴转动惯性的度量。其数值为J=∑ mi*ri^2, 式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 ;求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv^2 (v^2为v的2次方) 把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。 为什么变换一下公式就可以从能量角度分析转动问题呢? 1、E=(1/2)Kw^2本身代表研究对象的运动能量 2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。 3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质 心运动情况。 4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积 分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样) 所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。 若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV 其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。 补充转动惯量的计算公式 转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。 对于杆: 当回转轴过杆的中点并垂直于轴时;J=mL^2/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于轴时:J=mL^2/3 其中m是杆的质量,L是杆的长度。 对与圆柱体: 当回转轴是圆柱体轴线时;J=mr^2/2 其中m是圆柱体的质量,r是圆柱体的半径。 转动惯量定理:M=Jβ

实验2 刚体转动惯量的测定

实验2 刚体转动惯量的测量 [预习思考题] 1.实验中的刚体转动惯量实验仪是由哪几部分组成的? 2.实验中可以通过什么方法改变转动力矩? 3.实验中刚体转动过程的角加速度如何测得? 转动惯量是描述刚体转动中惯性大小的物理量,对于绕定轴转动的刚体,它为一恒量,以J表示,即 ∑= i i i r m J2 式中,m i为刚体上各个质点的质量,r i为各个质点至转轴的距离。由此可见,物体的转动惯量J与刚体的总质量、质量分布及转轴的位置有关。对于几何形状规则、对称和质量分布均匀的刚体,可以通过积分直接计算出它绕某定轴的转动惯量。对于形状复杂或非匀质的任意物体,则一般要通过实验来测定,例如,机械零件、电机的转子、炮弹等。 测定物体的转动惯量有多种实验方法,主要分为扭摆法和恒力矩转动法两类。本实验介绍用塔轮式转动惯量仪测定的方法,是使塔轮以一定形式旋转,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。该方法属于恒力矩转动法。 转动惯量是研究、设计、控制转动物体运动规律的重要参数,实验测定刚体的转动惯量具有十分重要的意义,是高校理工科物理实验教学大纲中的一个重要基本实验。 一、实验目的 1.学习用转动惯量仪测定刚体的转动惯量。 2.研究作用于刚体上的外力矩与角加速度的关系。 3.验证转动定律及平行轴定理。 二、实验仪器 IM-2刚体转动惯量实验仪及其附件(霍尔开关传感器、砝码等)和MS-1型多功能数字毫秒仪。 三、仪器介绍

1.滑轮 2.滑轮高度和方向调节组件 3.挂线 4.塔轮组 5.铝质圆盘承物台 6.样品固定螺母 7.砝码 8.磁钢 9.霍尔开关传感器 10.传感器固定架 11.实验样品水平调节旋钮(共3个) 12.毫秒仪次数预置拨码开关,可预设1-64次 13.次数显示屏 14.时间显示屏 l5.次数+1查阅键 16.毫秒仪复位键 17.+5V 电源接线柱 18.电源GND (地)接线柱 19.INPUT 输入接线柱 20.输入低电平指示 21.次数-1查阅键 图4-3-1 IM-2刚体转动惯量实验仪和MS -1型多功能数字毫秒仪结构示意图 IM-2刚体转动惯量实验仪主要由绕竖直轴转动的铝质圆盘承物台、绕线塔轮、霍尔开关传感器、磁钢、滑轮组件、砝码等组成。 样品放置在铝质圆盘承物台上,承物台上有许多圆孔,可用于改变样品的转轴位置。绕线塔轮是倒置的塔式轮,分为四层,自上往下半径分别为3cm 、2.5cm 、2cm 、1.5cm 。磁钢随转动系统转动,每半圈经过霍尔开关传感器一次,传感器输出低电平,通过连线送到多功能数字毫秒仪。传感器红线接毫秒仪+5V 电源接线柱,黑线接电源GND (地)接线柱,黄线接INPUT 输入接线柱。 MS -1型多功能数字毫秒仪通过预置拨码开关预置实验所需感应次数。每轮实验开始前通过复位键清0,直到输入低电平信号触发计时开始,次数显示屏从0次开始计时,直至达到预置次数停止。计时停止后,方能查阅各次感应时间。 四、实验原理 1. 任意样品的转动惯量测定 设转动惯量仪空载(不加任何样品)时的转动惯量为J 1,称为系统的本底转动惯量,转动惯量仪负载(加上样品)时的转动惯量为J 2,根据转动惯量的可加性,则样品的转动惯量J x 为 21x J J J =- 2. 系统的转动惯量测定 1)刚体的转动定律 刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比,这个关系称为刚体的转动定律。 M J β= 利用转动定律,测得刚体转动时的合外力矩及该力矩作用下的角加速度,则可计算

大学物理仿真刚体的转动惯量实验报告

大学物理仿真实验——刚体转动惯量的测量 班级: 姓名: 学号:

实验名称:刚体转动惯量的测量 一、实验目的 在研究摆的重心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量。转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。 本实验将学习测量刚体转动惯量的基本方法,目的如下: 1.用实验方法验证刚体转动定律,并求其转动惯量; 2.观察刚体的转动惯量与质量分布的关系 3.学习作图的曲线改直法,并由作图法处理实验数据。 二、实验原理 1.刚体的转动定律 具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律: M = Iβ (1) 利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。 2.应用转动定律求转动惯量 如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。 设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a 下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at2/2。刚体受到

张力的力矩为T r 和轴摩擦力力矩M f 。由转动定律可得到刚体的转动运动方程:T r - M f = Iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到: m(g - a)r - M f = 2hI/rt2 (2) M f 与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<

转动惯量实验报告

刚体绕轴转动惯性的度量。其数值为J=∑mi*ri^2,式中mi 表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L^2M,在SI单位制中,它的单位是

kg·m^2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv^2(v^2为v的2次方) 把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就可以用能量的角度分析了,而不必

刚体转动惯量的测定_实验报告

实验三刚体转动惯量的测定 转动惯量是刚体转动中惯性大小的量度。它与刚体的质量、形状大小和转轴的位置有关。形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。 实验目的: 1、理解并掌握根据转动定律测转动惯量的方法; 2、熟悉电子毫秒计的使用。 实验仪器: 刚体转动惯量实验仪、通用电脑式毫秒计。 仪器描述: 刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。塔轮上有五个不同半径(r)的绕线轮。砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。 实验原理: 空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J表示,则试样的转动惯量J1: J1 = J –J o (1) 由刚体的转动定律可知:

T r – M r = J α (2) 其中M r 为摩擦力矩。 而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力 1. 测量承物台的转动惯量J o 未加试件,未加外力(m=0 , T=0) 令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2 m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得 J o = 21 2212mr mgr ααααα--- (6) 测出α1 , α2,由(6)式即可得J o 。 2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8) ∴ J = 23 4434mr mgr ααααα--- (9) 注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。 3. 测量的原理 设转动体系的初角速度为ωo ,t = 0 时θ= 0 ∵ θ=ωo t + 2 2 1t α (10) 测得与θ1 , θ2相应的时间t 1 , t 2 由 θ1=ωo t 1 + 2121t α (11) θ2=ωo t 2 + 2 22 1t α (12) 得 22112 22112) (2t t t t t t --= θθα (13) ∵ t = 0时,计时次数k=1(θ=л时,k = 2) ∴ []2 2 11222112)1()1(2t t t t t k t k ----= πα (14) k 的取值不局限于固定的k 1 , k 2两个,一般取k =1 , 2 , 3 , …,30,…

大学物理刚体的转动惯量的研究实验报告

大学物理仿真实验报告 电子3班 实验名称:刚体得转动惯量得研究 实验简介 在研究摆得重心升降问题时,惠更斯发现了物体系得重心与后来欧勒称之为转动惯量得量。转动惯量就是表征刚体转动惯性大小得物理量,它与刚体得质量、质量相对于转轴得分布有关。 本实验将学习测量刚体转动惯量得基本方法,目得如下: 1.用实验方法验证刚体转动定律,并求其转动惯量; 2。观察刚体得转动惯量与质量分布得关系 3.学习作图得曲线改直法,并由作图法处理实验数据。 实验原理 1。刚体得转动定律 具有确定转轴得刚体,在外力矩得作用下,将获得角加速度β,其值与外力矩成正比,与刚体得转动惯量成反比,即有刚体得转动定律: M= Iβ(1) 利用转动定律,通过实验得方法,可求得难以用计算方法得到得转动惯量。 2.应用转动定律求转动惯量 如图所示,待测刚体由塔轮,伸杆及杆上得配重物组成。刚体将在砝码得拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力与细线得张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落得高度为h=at2/2。刚体受到张力得力矩为T r与轴摩擦力力矩Mf。由转动定律可得到刚体得转动运动方程:T r—Mf= Iβ。绳与塔轮间无相对滑动时有a= rβ,上述四个方程得到: m(g - a)r - Mf = 2hI/rt2(2) M f与张力矩相比可以忽略,砝码质量m比刚体得质量小得多时有a<<g, 所以可得到近似表达式: mgr = 2hI/ rt2(3) 式中r、h、t可直接测量到,m就是试验中任意选定得。因此可根据(3)用实验得方法求得转动惯量I。 3.验证转动定律,求转动惯量 从(3)出发,考虑用以下两种方法: A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r与砝码下落高度h,(3)式变为: M = K1/ t2(4) 式中K1= 2hI/ gr2为常量。上式表明:所用砝码得质量与下落时间t得平方成反比。实验中选用一系列得砝码质量,可测得一组m与1/t2得数据,将其在直角坐标系上作图,应就是直线.即若所作得图就是直线,便验证了转动定律。 从m–1/t2图中测得斜率K1,并用已知得h、r、g值,由K1= 2hI/ gr2求得刚体得I. B.作r – 1/t图法:配重物得位置不变,即选定一个刚体,取砝码m与下落高度h为固定值。将式(3)写为:

实验报告-用扭摆法测定物体的转动惯量

扭摆法测定物体的转动惯量 实验原理: 1.扭摆运动——角简谐振动 (1) 此角谐振动的周期为 (2) 式中,为弹簧的扭转常数式中,为物体绕转轴的转动惯量。 2.弹簧的扭转系数的测定: 实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到, 再由实验数据算出本仪器弹簧的值。方法如下: (1)测载物盘摆动周期,由(2)式其转动惯量为 (2)塑料圆柱体放在载物盘上,测出摆动周期,由(2)式其总转动惯量为 (3)塑料圆柱体的转动惯量理论值为 则由,得

(周期我们采用多次测量求平均值来计算) 3.测任意物体的转动惯量: 若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即 可算出该物体绕转动轴的转动惯量。 根据2内容,载物盘的转动惯量为 待测物体的转动惯量为 4.转动惯量的平行轴定理 实验内容与要求: 必做内容: 1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。调整扭摆基座底脚螺丝,使水平仪的气 泡位于中心。(认真阅读仪器使用方法和实验注意事项) 2.测定扭摆的弹簧的扭转常数,写出。 3.测定塑料圆柱(金属圆筒)的转动惯量。并与理论值比较,求相对误差。 4.测定金属细杆+夹具的过质心轴的转动惯量。

5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。 数据记录: 一、测定弹簧的扭转系数 及各种物体的转动惯量: 表格一: ; ;0.01s ; 二、验证平行轴定理: 表格二: ; ; ; 。

) ) () ( 滑块的总转动惯量为: 数据处理:(要求同学们写出详细的计算过程) 1.计算弹簧的扭转系数 ; ; ;; ;; ;; ; 2.计算物体的转动惯量(公式见表格) 3.验证平行轴定理(公式见表格)

刚体转动惯量的测定实验报告

刚体转动惯量的测定 物本1001班 张胜东(201009110024) 李春雷(201009110059) 郑云婌(201009110019)

刚体转动惯量的测定实验报告 【实验目的】 1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。 2.用扭摆测定弹簧的扭转常数K和几种不同形状的物体的转动惯量,并与理论值进行比较。 3.验证转动定理和平行轴定理。 【实验仪器】 (1)扭摆(转动惯量测定仪)。 (2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。 (3)天平。 (4)游标卡尺。 (5)HLD-TH-II转动惯量测试仪(计时精度0.001ms)。 【实验原理】 1.扭摆 扭摆的构造如图所示,在垂直轴1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。在轴的上方可以装上各种待测物体。垂直轴与支座间装有轴承,以降低磨擦力矩。3 为水平仪,用来调整系统平衡。 将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。根据虎克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即

b M =-K θ (1) 式中,K 为弹簧的扭转常数,根据转动定律 M =I β 式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 I M = β (2) 令 L K = 2 ω ,忽略轴承的磨擦阻力矩,由(1)、(2)得 θωθθβ2 2 2-=-==I K dt d (3) 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。此方程的解为: θ=Acos(ωt +φ) (4) 式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为 K I T π ω π 22== (5) 由(5)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。 本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K 值。若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(3)即可算出该物体绕转动轴的转动惯量。 2.弹簧的扭转系数 实验中用一个几何形状规则的物体(塑料圆柱体),它的转动惯量可以根据它的质量和集合尺寸用理论公式直接计算得到,再由实验数据算出本一起弹簧的K 值。方法如下: (1)测载物盘摆动周期T 0,由(5)式得其转动惯量为: (2)塑料圆柱放在载物盘上,测出摆动周期T 1,由(5)式其总惯量为:

转动惯量实验报告

大学物理实验报告测量刚体的转动惯量 测量刚体的转动惯量 实验目的: 1.用实验方法验证刚体转动定律,并求其转动惯量; 2.观察刚体的转动惯量与质量分布的关系 3.学习作图的曲线改直法,并由作图法处理实验数据。 二. 实验原理: 1.刚体的转动定律 具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律: m = iβ (1) 利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动

惯量。 2.应用转动定律求转动惯量 图片已关闭显示,点此查看 如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。 设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a 下落,其运动方程为mg –t=ma,在t 时间内下落的高度为h=at/2。刚体受到张力的力矩为tr 和轴摩擦力力矩mf 。由转动定律可得到刚体的转动运动方程:tr - mf = iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到: 22m(g - a)r - mf = 2hi/rt (2) mf与张力矩相比可以忽略,砝码质量m 比刚体的质量小的多时有a<

式中r 、h 、t 可直接测量到,m 是试验中任意选定的。因此可根据(3)用实验的方法求得转动惯量i 。 3.验证转动定律,求转动惯量 从(3)出发,考虑用以下两种方法: 2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r 和砝码下 落高度h ,(3)式变为: 2m = k1/ t (4) 2式中k1 = 2hi/ gr为常量。上式表明:所用砝码的质量与下落时间t 的平方成反比。实验 中选用一系列的砝码质量,可测得一组m 与1/t的数据,将其在直角坐标系上作图,应是直线。即若所作的图是直线,便验证了转动定律。 222从m – 1/t图中测得斜率k1,并用已知的h 、r 、g 值,由k1 =

相关文档
相关文档 最新文档