文档库 最新最全的文档下载
当前位置:文档库 › 西部之光 - 中国科学院国家授时中心

西部之光 - 中国科学院国家授时中心

西部之光 - 中国科学院国家授时中心
西部之光 - 中国科学院国家授时中心

中国科学院“西部之光”入选者

终期考核评估表

单位

姓名

从事专业

入选年度

入选项目

中国科学院人事局制

如内容较多,可附页接续(以下各栏目均可如此)

无卡授时模块模块说明书

无卡CDMA时间同步 模块说明书 型号:VISEN-M1 西安伟洲电子科技有限公司 Xi’an vzhou Electronics and Technology Co.,Ltd.

前言 概述 本文档通过介绍无卡CDMA授时模块的介绍、脚位说明、软件设计、应用方案和定制服务等,用以指导用户对模块进行产品生产、测试、应用,更方便快捷的进行各种终端产品的设计。 应用于: 1、生产厂家 2、模块设计开发工程师

1 特性说明 ◆CDMA无卡授时,精度为1MS; ◆3.3V TTL UART, 波特率为9600bps,可根据客户要求进行特 制; ◆输出数据有:年、月、日、星期、时、分、秒,农历月日、 毫秒; ◆工作电压为DC5V ,电流1A; ◆工作温度为:-30℃~+75℃; 2 模块对外接口说明 VZTIME-V2 模块采用双排针的方式与外部相连,模块接口定义(从上向下) 3 接口协议 ①、在秒脉冲上升沿后输出有效UTC时间 $CDRMC,072325.000,A,0000.000000,0,00000.000000,0,0.000,000.000,220513,,0,*HH $CDGGA,072325.000,0000.000000,0,00000.000000,0,0,00,0.000,00.000,0,0,0,,*HH 如果客户有特殊要求,可进行客制! 4、公司简介 西安伟洲电子科技有限公司是一家专注于时间同步产品研发的高新技术企业,于2008年在西安市长安区科技产业园注册成立。公司以西安邮电大学为依托,以学校在职教授及技术骨干为核心研发技术团队。研发人员中85%拥有本科以上学历,研发技术团队曾参与多项国家级项目设计和研发工作,取得了丰硕的成果和经验。公司业务主要以通信技术为核心,涉及领域包括军队、教育、电力、水力、银行、税务、医院、交通等。

中国科学院国家天文台(总部)天文学领域 全日制博士研究生培养方案

中国科学院国家天文台(总部)天文学领域 全日制博士研究生培养方案 (2010年6月修订) 为了适应创新型国家建设及社会发展对高层次人才的新要求,保证研究生培养质量,根据《中国科学院研究生院关于修订研究生培养方案的指导意见》,结合我台情况特制定本方案。 一、培养目标 博士生教育应以培养教学、科研方面的高层次创造性人才为主。博士生不仅要掌握坚实宽广的基础理论和系统深入的专门知识,且能够独立地、创造性地从事科学研究工作,或解决和探索我国经济、社会发展问题的能力。国家天文台博士研究生的培养目标: 1.拥护中国共产党的基本路线和方针政策,热爱祖国,遵纪守法,具有良好的职业道德和敬业精神,具有科学严谨、诚实守信和求真务实的学习态度与工作作风。 2.具有天文领域的基础理论知识,熟练掌握先进的科学研究与技术方法及手段, 具有创新和创业精神,具有独立承担专业技术和从事创新科研工作的能力。 3.至少熟练掌握一门外国语,能熟练地阅读本专业的外文资料,具有一定的写作能力和进行国际学术交流的能力。 4.具有健康的体质和良好的心理素质。 二、学科专业与研究方向 国家天文台博士研究生培养专业分为天体物理专业和天文技术与方法专业,天体物理专业的主要研究方向为:宇宙大尺度结构、星系形成和演化、天体高能和激发过程、恒星形成和演化、太阳磁场活动和日地空间环境、天文地球动力学、太阳系天体和人造天体动力学等,天文技术与方法专业的主要研究方向为:天文数据处理、图像处理、卫星导航、射电天文方法、空间天文观测手段和空间探测、天文新技术和新方法等。 三、培养方式及学习年限 国家天文台博士研究生采用全日制全脱产的学习方式,分公开招考和

BPC电波授时信号伪造

时间都去哪了?! ——BPC电波授时信号的“零成本”伪造 阿里巴巴移动安全 工作日,上班路上,看一眼情人节女友刚送的六局电波表。咦,出门明明还早,怎么眼看要迟到!别慌,可能只是你被“黑”了。 什么,你戴iWatch?那可以看看这篇:GPS信号伪造。 电波钟/表顾名思义就是通过接收电波授时信号实现自动对时的钟表。以“电波表”为关键字在淘宝搜索,可以看到相关产品很多。其中主要是几个日系的手表大厂,如卡西欧、西铁城、精工、东方双狮等,此外国产品牌也有几个,就不一一列举了。我们后面实验中用到的是一台挂钟,由国产品牌康巴丝生产。 授时电波一般由国家负责标准时间的专门机构进行播发。所广播的时间是国家标准时,由多台高精度原子钟组成的守时钟组产生。授时电波采用频率低于100千赫的长波波段,不易被遮挡,因此一个发射站就可以基本覆盖一国国土。中英美日德等国有各自标准的长波授时服务,不仅名称不一,所用的频率和编码也不同,也就是开头提到的所谓六局(日本面积虽小,但有两局). 我国的长波授时服务BPC,由中科院国家授时中心与某企业合作建立,面向民用。BPC广播站设立在河南商丘,频率为68.5千赫。采用脉宽调制,码率1赫兹。每个编码脉冲宽度为0.1s,0.2s,0.3s或0.4s,分别代表四进制的 0,1,2,3。而这一串四进制的数字是由播发时刻的秒、时、分、星期、日、月、年插入几个校验位组成的,长度为20s,并无任何加密手段。也就是说20秒的信号才可以完整传达当前日期和时间。这一编码方式相比其他各国60秒一帧的方法,对时过程更快。另外需要提醒一下,BPC电波授时编码属于

某企业的专利技术,不能私自用于商业盈利。既然是专利,就不妨再公开引用一次,编码示意图如下。 说了这么多,同学们应该对电波授时和电波钟表也有了大概的了解。下面讲讲如何“黑”的问题。思路很简单:伪造授时电波信号,盖过真正的BPC电波,电波钟也就乖乖听咱的了。 如何产生信号呢,我们采用了一台安捷伦最新款PSG系列信号发生器——开玩笑的,我司怎会有这,只有笔记本电脑。好吧,就用笔记本。是的,就用笔记本! 笔记本电脑就位后,照着专利说明书写一个程序,将日期时间翻译成BPC编码,然后将编码通过电脑自带的音频输出播放出来。为了避免笔记本自身杂散电磁辐射造成干扰,我们利用耳机作为播放设备。为了增强信号强度,我们把耳机粘在钟表背后靠近接收天线的位置,把音量调到最大。编造一个错误的时间,运行程序开始发播信号,人耳可以听见脉冲通断的声音。按下电波钟背后的对时按钮三秒钟,表针暂停,进入对时模式。静待几分钟,电波钟从信号中获取错误的时间,表针快速旋转至指定时间,对时成功! (对时过程有视频为证,点击查看视频) 讲到这里,肯定有同学要说,声卡最高只能输出22千赫的声音,怎么能发出68.5千赫,还是电波信号,你不要骗我!且慢,其实是笔者刚有意漏掉一个关键点现在来讲。电

无线控制授时技术(RCT)及其应用

无线控制授时技术(RCT) CT发射机及接收机技术原理、RCT编码技术以及RCT技术目前在各国的应用情况。给 关键词:无线控制授时 BPC WWCB MSF DFC JJY RCT 1C 情况正确的时间在人们日常生活中是不可或缺的。随着微处理器在家用电器、工业产品中的日益普及,许多产品中嵌入了时间处理、显示模块。目前多数产品中的时钟源由晶体振荡产生比较精确的时间。但是在许多场合,由于晶体振荡需要电源供给,在掉电或更换电池时,原有时间会丢失,系统时间被复位,此时必须依照广播、电视或电话公司提供的标准时间手工重新校对;另外在跨时区旅行时,也需要重新校对时间。这给人们带来许多不便。目前随着RCT技术的应用,使得需要标准时间的系统通过内嵌微型RCT接收装置自动设置标准时间,时间精度一般为秒级且与国家标准时间同步、无需手工调整。从而实现了计时装置计量时间和显示时间的精确性(与授时中心的标准时间同步)、统一性(所有接收该时间信号的计时装置都显示同一时间)。在RCT技术广泛应用之前,也有使用GPS(全球定位系统)接收标准时间的装置,但由于其电路复杂、成本高昂而没有得到普及。在北美及欧洲,由于RCT技术的普及,使得市场对具有自动接收时间功能的钟表及其它计时装置产生了很高的需求。不同的国家使用了不同的时间编码格式和发射频率。表1给出了目前已发射长波授时信号的几个主要国家的时间编码标准及其使用频率。表1 各国RCT技术使用的时间编码及发射频率国家名时间编码标准发射基站地点使用的频率发射功率接收半径中国BPC陕西西安68.6kHz100kW2000km美国WWVBFort Collins60kHz50kW2000km英国MSFRugby60kHz251200km 德国DFCFrankfurt77.5kHz50kW1500km日本JJY40JJY60本州福岛九州富网40kHz60kHz50kW50kW1000km1000km①中国的长波授时编码标准为BPC。目前该长波授时的时间编码还未正式公开,其专利由西安高华实业有限公司持有。同时该公司也是中国第一台长波授时电波钟的开发者。②美国的长波授时编码标准为WWVB,发射基站位于Colorado州的FortCollins。由于美国只建有一个长波授时的发射站,因而在距离发射站较远的地区信号较弱,对接收芯片的灵敏度要求比较高。③英国的长波授时编码标准为MSF,发射基站位于Teddington的Rugby。由于英国本土面积较小,一个长波授时发射站就可以覆盖英伦三岛,时间编码信号较强,对接收芯片的灵敏度要求不高。④德国的长波授时编码标准为DCF,与MSF类似。20世纪50年代末,德国就在Frankfurt建立了长波授时中心。德国国土面积较小,且DFC的长波授时信号发射站功率很强,是RCT技术中对接收芯片的灵敏度要求最低的,因而比较容易开发。⑤日本的长波授时编码标准为JJY。由于日本地形狭长,在本洲福岛的40kHz(JJY40)发射机不能覆盖日本全国。日本通信综合研究所于2001年10月在九州富冈新建了60kHz的授时发射站(JJY60)。[!--empirenews.page--]图2 MSF授时信号编码格式2RCT的技术原理无线控制授时系统由时间编码信号的长波授时发射台及其接收装置共同组成。最初的无线授时系统(包括短波授时和长波授时)只应用于军事目的,现已转为民用。2.1无线控制授时系统的授时信号发送原理RCT系统授时信号发送装置的系统构成如图1所示。首先,通过在标准授时中心内的铯(或铷)原子钟产生标准时间。例如,铯原 进行分频产生实时的标准时间信息,如年、月、日、时、分、秒、毫秒、微秒等。然后将标准时间信号传送给时间编码发生器编码,编码后的时间信号通过调制器调制到长波载波信号(40kHz~80kHz)上,经过功率放大器将信号沿传输线传送到天线塔发射出去。由于授时信号属于长波信号,以地波形式沿地球表面传播。2.2RCT技术系统授时信号的接收原理RCT接收机通过内置微型无线接收系统接收长波时间编码信号,由专用芯片

浅议基站IP网络授时系统

浅议基站IP网络授时系统 摘要:随着IP(Internet Protocol)网络的发展,大部分通信网络都实现了IP传输,但由于IP网络是异步网络,IP 网络中的设备无法通过物理链路获取时钟,因此需要为网络设备提供一种新的获取时钟的同步方式。 关键字:授时系统 前言:IP 网络同步主要应用于无线基站的同步,包括WCDMA(Wideband Code Division Multiple Access)中NodeB/AP(Access Preamble)基站设备的频率同步;GSM(Global System for Mobile communications)中BTS(Base Transceiver Station)基站设备的频率同步,CDMA2000、TD-SCDMA(Time Division-Synchronous Code Division Multiple Access)和WiMAX中us级别的高精度时间同步。为满足业务设备的高精度时间和时钟同步需求,本文以SYNLOCK T6020设备为例,分析授时系统在不同组网环境(不同的传送网、不同的网络规模)下,高精度时间和时钟同步系统的应用。 1.系统结构 SYNLOCK T6020 主要由频率同步模块、分频鉴相模块、时间恢复模块、锁相模块、1588 处理模块、接口转换模块、CPU 模块、GPS(Global Positioning System)/PPS 时间同步接口、FE/GE 接口、维护接口等组成。 接口转换模块将GE数据转换成FE数据,提供给CPU处理;同时将非1588信息和1588的general信息提供给CPU处理,并发送CPU的网络协议。 维护接口模块通过维护串口和维护网口,主用板将设备链接到集中维护终端。 2.同步定时接口 1)卫星接口 SYNLOCK T6020 提供GPS卫星接口。设备的GPS 接口是1.5G的射频接口,而卫星卡和设备单板的接口是TTL(Transistor-Transistor Logic)的PPS与TTL串口,单板通过这些串口信息可计算出时间和位置信息。 在观测到三颗卫星的情况下,可以得到三个方程组,求解出接收站的三维位置信息。如果观测到四颗以上的卫星,则可以计算出本地时间。 2)1588 接口 IEEE 1588(PTP)的基本功能是使分布式网络内设备的时间与服务器精确

中国科学院国家天文台高性能计算集群使用及付费协议

中国科学院国家天文台高性能计算集群使用及付费协议 甲方(项目/课题名称): 乙方:国家天文台信息与计算中心 经友好协商,乙方向甲方提供高性能计算机计算服务,签订本协议。一. 项目说明及所需计算资源情况 项目/课题简介:(项目来源、名称、研究内容、手段,及计算方法) 项目/课题类别 科学研究( ) 数据处理( ) 应用软件 自行开发( ) 名称: 商业软件( ) 名称: 计算资源需求 使用时间 20 年 月 日 至 20 年 月 日 集群名称 深腾6800 使用帐号 CPU数(颗) 计算核心数(个) 内存总量(G) 单节点内存量(G) 计算节点个数 8G内存节点( ) 个 16G内存节点 ( ) 个 计算节点名 机时总量 (CPU小时) 技术支持 需求情况 操作系统( ) 远程环境( ) 并行开发( ) 应用软件使用( )

详细说明: 甲方使用乙方提供的计算机资源,需要支付相应的机时费用,付款方式及协议金额如下: 付费方式预付费()后付费()计费方式0.5元/CPU小时 支付方式 内部转账( )汇款( ) 付费金额 (元/CPU小时) 付费约定 可供选择的付费方式有:①预付费;②后付费; 针对预付费:一次性购入或定期续费。 针对后付费:机时用完后5个工作日内付清款额。 注:国台内部课题组,收取费用?%以发展基金的形式返还课题。 二.权利和义务 1.甲方权利和义务 (1)甲方不得利用乙方提供的计算资源从事与其申请计算内容无关的计算活动,不得从事危害国家安全和其它违反中华人民共和国有关法律法规 的活动。 (2)甲方不得恶意耗费乙方计算资源与网络流量;否则乙方有权单独解除协议,不退回相关费用,由此造成的经济损失及法律责任一律由甲方承担。(3)甲方不得盗用计算主机超级用户、其他用户帐号、资料,否则应承担由此造成的一切经济损失及法律责任。 (4)甲方保证不进行影响主机正常运行的操作,如果发生上述操作,乙方有权终止甲方操作。 (5)甲方不得使用依据本协议租赁所获得的计算资源进行转租等不在本协议约定范围内的业务。否则,乙方有权随时收回为甲方提供的计算资源, 由此造成的经济损失和法律责任均由甲方承担。

大事记-中国天文学会-中国科学院

大事记 (1982-1992) 1982年5月 29 日 中国天文学会四届常务理事会二次会议同意中国天文学会下设“天文图书情报小组”,后改为“天文图书情报出版工作委员会”。 1982年6 月 我国第一座太阳塔在南京大学天文系建成并通过国家鉴定。后于1985年获国家科技进步二等奖。 1982年7月 中国科学院批准在青海德令哈建立亳米波天文观测站(属紫金山天文台),决定与美国ESSCO公司合作研制口径13.7米的毫米波射电望远镜。 1982年8月17日-26 日 中国天文学会派出5人代表团参加在希腊举行的国际天文学联合会第18届大会。会上正式宣布恢复中国天文学会在国际天文学联合会上的地位。 1982年8月28日 苏州青少年天文观测站建立。 1982年11月17日 陕西天文学会成立大会暨第一次会员代表大会在临潼召开。出席会议代表89人,交流学术论文19篇。 1983年4月1日 北京古观象台经修复,重新对外开放。 1983年6月 中国科学院日全食观测队赴巴布亚新几内亚观测 6月 11 日的日全食。 1983年6月27日 中国天文学会“天文学名词审定委员会”成立,张钰哲任主任。 1983年下半年 中国天文学会同意,并经中国科学院和国家科委批准由上海天文台主办的《天文学进展》于1983年下半年开始公开发行。 1983年9月-l984年10月 我国有13架经典仪器,2架多普勒接收机和1架人卫激光测距仪参加了全球性合作项目——国际地球自转联测(MERIT)。 1983年10月27日 国际天文学联合会秘书长R.WEST应中国天文学会邀请访华。 1983年11月21日-26日 国际太阳物理会议在昆明召开,国内代表60余人,外国专家40余人参加了会议。1984年5月21日-26日 中日天文会议“恒星活动和观测技术报告会”在北京召开。 1984年l0月1日-5日 中国天文学会派代表团参加在日本召开的国际天文学联合会第三次亚太地区天文会议。1984 年10月18日-20日 北京天文台密云米波综合孔径射电望远镜通过院级鉴定。后于1985年获得国家科学技术进步二等奖。

NTP网络授时系统设计与实现——NTP网络授时系统服务器硬件设计

第3章NTP网络授时系统服务器硬件设计 3.1 服务器端硬件系统结构图 NTP服务器的硬件设计,按照最小设计的原则,以保证整个硬件的尺寸符合要求,只提供系统所必须的功能,如串口、以太网口等。系统结构如图3-1所示: 图3-1 NTP服务器硬件实现框图 3.2 系统硬件选型 3.2.1 芯片选型 根据前面的需求分析和硬件总体设计,结合实际应用和实现的需要,选择以下硬件芯片,如表3-1所示。 表3-1 NTP服务器芯片选型

3.2.2 S3C4510B简介 本系统选择了ARM架构的Samsung的S3C4510B处理器作为整个服务器硬件的核心。 ARM(Advanced RISC Machines)架构是面向低预算市场设计的第一款RISC 微处理器,除了RISC的一些特点外,ARM体系结构还采用了一些特别的技术,在保证提高性能的前提下尽量缩小芯片的面积,并降低功耗。 ARM微处理器具有体积小、低功耗、低成本、高性能的特点,支持Thumb(16位)/ARM(32位)双指令集,大量使用存储器而使指令执行速度更快,寻址方式灵活简单,执行效率高,指令长度固定等优点,主要应用在工业控制、无线通讯、网络应用、消费电子、成像产品、安全产品、存储产品、汽车行业等领域[10]。 S3C4510B是Samsung公司生产的基于以太网应用的高性价比16/32位RISC 微控制器,内含一个由ARM公司设计的16/32位ARM7TDMI RISC处理器核[11]。另外,S3C4510B的片内外围功能模块主要包括: ——2个带缓冲描述符(Buffer Descriptor)的HDLC通道 ——2个UART通道 ——2个GDMA通道 ——2个32位定时器 ——18个可编程的I/O口 S3C4510B的片内逻辑电路包括: ——中断控制器 ——DRAM/SDRAM控制器 ——系统管理器 ——ROM/SRAM和FLASH控制器

国内研究所排名

国内研究所排名.txt两个人吵架,先说对不起的人,并不是认输了,并不是原谅了。他只是比对方更珍惜这份感情。0201 理论经济学 37 87802 黑龙江省社会科学院 64 0202 应用经济学 69 87802 黑龙江省社会科学院 62 0302 政治学 35 87902 上海国际问题研究所 67 87802 黑龙江省社会科学院 64 0303 社会学 31 87802 黑龙江省社会科学院 64 0403 体育学 27 84601 国家体育总局体育科学研究所 71 0504 艺术学 39 84201 中国艺术研究院 77 84202 中国电影艺术研究中心 65 0601 历史学 39 87802 黑龙江省社会科学院 64 0701 数学 62 80002 中国科学院数学与系统科学研究院 94 0702 物理学 57 80008 中国科学院物理研究所 95 82801 中国原子能科学研究院 70 0703 化学 51 80032 中国科学院化学研究所 96 0704 天文学 11 80025 中国科学院国家天文台 80 80022 中国科学院上海天文台 78 0705 地理学 26 80076 中国科学院寒区旱区环境与工程研究所 86 0706 大气科学 8 80058 中国科学院大气物理研究所 84 85101 中国气象科学研究院 71 0707 海洋科学 12 85301 国家海洋局第一海洋研究所 74 85303 国家海洋局第三海洋研究所 68 0710 生物学 64 80100 中国科学院上海生命科学研究院 81 80103 中国科学院动物研究所 77 0712 科学技术史 10 80029 中国科学院自然科学史研究所 77 0801 力学 42 80007 中国科学院力学研究所 88 0802 机械工程 73 80139 中国科学院长春光学精密机械与物理研究所 70 83303 煤炭科学研究总院(上海分院) 64 83801 铁道部科学研究院 63 0803 光学工程 28 80139 中国科学院长春光学精密机械与物理研究所 85 80142 中国科学院西安光学精密机械研究所 85 0804 仪器科学与技术 27 82932 中国航空研究院(304 研究所) 68 0805 材料科学与工程 72 80144 中国科学院金属研究所 92 82913 中国航空研究院(621 研究所) 75 83801 铁道部科学研究院 64 0808 电气工程 26 80148 中国科学院电工研究所 78 83801 铁道部科学研究院 64 0810 信息与通信工程 42 83000 中国电子科技集团公司电子科学研究院 78 0812 计算机科学与技术 71 83801 铁道部科学研究院 63 0815 水利工程 20 82306 南京水利科学研究院 72 0816 测绘科学与技术 11 86001 中国测绘科学研究院 72 0817 化学工程与技术 41 83310 煤炭科学研究总院(北京煤化所) 64 0818 地质资源与地质工程 20 83306 煤炭科学研究总院(西安分院) 67 0819 矿业工程 15 83311 煤炭科学研究总院(北京开采所) 71 83304 煤炭科学研究总院(抚顺分院) 67

GPS授时系统

GPS授时系统设计 摘要:使用GPS25一LVS OEM板(接收机)接收卫星信号,通过串口异步通信把数据传送给89C51单片机,单片机通过并口控制LED显示,从而实现GPS准确授时.同时,介绍了GPSOEM板输出的数据形式,并采用NMEA_0183格式中最常用的“$GPGGA”格式输出,由“$G —PGGA”数据输出格式可编写出相关的接收程序. 关键词:GPS授时;0EM板;秒脉冲 0 引言 时间信号的准确与否,直接关系到人们的日常生活、工业生产和社会发展.人们对时间精度的要求也越来越高.天文测时所依赖的是地球自转,而地球自转的不均匀性使得天文方法所得到的时间(世界时)精度只能达到9 10-.因此“原子钟”广 10-,“原子钟”精度可达12 泛运用到精密测量和日常生活、生产领域.GPS接收机授时系统是利用接收机接收卫星上的“原子钟”时间信号,然后把数据传输给单片机进行处理并显示出时间,由此可制作出GPS精密时钟.目前已有专门用于授时的授时型接收机,可以提供ns级的精确时间,但由于其价格昂贵,多数用户难以接受,因此无法普及.本文采用具有定时功能的GPS 0EM板的串口输出的协调世界时进行授时,可提供经济、实用、准确的公众时间,避免了因时钟不准确给生活、生产带来的不便.. 0.1 GPS系统简介

1973年12 月,美国国防部组织陆海空三军联合研制新一代的卫星导航系统:“Navigation Satellite Timing and Ranging/Global Positioning System”,意为“卫星测时测距导航全球定位系统”,简称 GPS。原系美国国防部军事系统中的一个组成部分,现已广泛应用于航海、航天、测量、通信、导航、智能交通等诸多领域。它是新一代精密卫星定位系统,是现代科学技术迅速发展的结晶。 GPS 是一种全球性、全天候的卫星无线电导航系统,可连续、实时地为无限多用户提供。由于 GPS 定位技术具有精度高、速度快、成本低的显著优点,因而己成为目前世界上应用范围最广、实用性最强的全球精密授时、测距和导航定位系统。这个系统向全球范围内的用户提供高精度的三维位置和精密时间信息。 0.2 GPS系统的组成 GPS 系统主要由 3 大部分组成,即空间星座部分、地面控制部分和用户设备部分(图 0-1)。 图 0-1 GPS 系统的组成 (1)、空间星座部分

国家电网公司_时钟同步标准

ICS XX. XX Q/GDW 国家电网公司企业标准 Q/GDW XXX.1-200X 电网时间同步系统技术规范Technical Specification for Time Synchronism System of Grid (征求意见稿) 2008年01月 200X-XX-XX发布200X-XX-XX实施 国家电网公司发布

前言 目前,我国电网各厂站和调度控制中心主站大多配备了以GPS为主的分散式时间同步系统,各网、省公司也出台了相应的技术规范。但由于缺少统一技术要求和配置标准,也缺乏时钟同步和时间精度检测的有效手段,现有时间同步系统配置不尽相同,运行情况也不够稳定,部分时钟设备时间精度不能满足要求。由调度自动化系统、变电站自动化系统、故障录波装置和安全自动装置等电力二次系统或设备提供的事件记录数据,存在时间顺序错位,难以准确描述事件顺序,不能给电网事故分析提供有效的技术支持。 为了规范、指导我国电网时间同步系统的设计、建设和生产运行,满足电网事故分析的要求,特制订《电网时间同步系统技术规范》。 《电网时间同步系统技术规范》根据国内外涉及时间统一技术的有关标准、规范和要求,本着“资源整合,信息共享”的原则,结合我国电网的工程实践和时间同步系统的现状制订而成,其要点如下: 规范时间同步系统结构、功能和技术要求; 规范调度主站、变电站的时间同步系统配置标准; 规范时间同步系统电气接口和信号类型; 统一IRIG-B 时码实现电力二次设备与时间同步系统的对时; 结合技术的发展,构建基于地面时钟源的电网时间同步系统。 本标准由国家电网公司生产技术部提出。 本标准由国家电网公司科技部归口。 本标准由江苏省电力公司江苏电力调度通信中心负责起草,国家电网公司国家电力调度通信中心、江苏省电力设计院、江苏省电力试验研究院、中国电力科学研究院、上海电力调度通信中心等单位参加编制。 本标准的主要起草人:

中国科学院国家天文台-兴隆观测站

中国科学院国家天文台 兴隆基地2.16米望远镜OMR卡焦光谱仪-----使用手册------ 中国科学院国家天文台 北京市朝阳区大屯路甲20号 北京100012

=========目录======== 1.OMR光谱仪概述 历史回顾 OMR光谱仪的基本性能 2.光路图 3. OMR光谱仪各部套的结构与性能 接口法兰盘 狭缝 滤光片 快门 准直镜 光栅及光栅驱动机构 照相机 定标系统 导星系统 CCD 计算机及计算机卡 主控台 电源及电机 电路,编码器和读出 光学系统 4. 附录 流量定标标准星 波长定标比较光谱

1.OMR光谱仪概述 1 历史回顾 在国家85攀登计划项目“天体剧烈活动的多波段观测和研究”于1993年2月召开的专家委员会上,与会的专家建议为我国最大的2.16米望远镜购置一台中低色散卡焦光谱仪,这一建议得到了国家科委和科学院基础局的批准和支持,经过广泛调研,最后确定向美国的Optomechanics Research, Inc(简称OMR)订货,于1993年底正式签署了合同。 1994年底,光谱仪制造完毕,为了保证质量,在Kitt Peak天文台的支持下,利用其2.10米望远镜对光谱仪进行了2个观测夜的实测,实测中发现了一些问题,如相机成像面积不能满足1Kx1K CCD的需要,CCD电缆线不符合要求等等,经与光谱仪和CCD的制造厂家协商,问题都逐一得到了解决。 1995年4月,OMR光谱仪运抵北京天文台兴隆站,厂方代表与兴隆站的工作人员一起进行了最后的测试,测试结果基本符合订货要求。之后又经过一年多的试运行和不断的摸索和改进,使仪器达到了良好的工作状态,并于1996年9月通过了由国家科委高科技和基础司及中科院基础局组织的验收。 2OMR光谱仪的基本性能 工作波段:3700—10000A 狭缝:缝宽0.05—1.0mm,可以由主控台遥控调节,在主控台上显示缝宽对应的电压值,SPEC软件可显示缝宽在望远镜焦面上的投影值(狭缝机构与焦面的夹角为20度)和在探测器上的投影值;有效缝高28.8mm,反光面面积32.8mmx38.0mm。 滤光片:6个滤光片位置,分别为Clear,Corning 4-71,Schott BG-37, BG-39, GG-475, RG-695。 定标系统:有三个波长定标灯,分别为He-Ar,Fe-Ar,Fe-Ne及一个平场灯,可以遥控开关。 准直镜:D=110mm, f=674mm,离轴抛物面反射镜,可遥控调焦。 光栅:目前共有6块,分别装于光栅壳中,人工更换,SPEC软件可自动识别,并可通过计算机控制运动到指定的观测波段。

北斗卫星导航和授时系统的地位和作用

北斗卫星导航和授时系统的地位和作用各国对自主建设卫星导航和授时系统的必要性,均有充分认识。 一、空间战略发展的需要 卫星导航系统是空间战略系统的重要组成部分,也是大国综合实力的体现。同时,卫星上天需要轨道位置,系统运行也需要频率资源。目前这些资源的大部分,已被美国的GPS和俄罗斯的格罗纳斯所占据,在剩余的资源中,按照“先用先赢”的国际法原则,北斗系统先建成,就先占用,而欧盟的伽利略系统由于只发射了4颗卫星,已注定在这场空间资源争夺赛中败下阵来。我们在空间战略上,已抢占了主动把握了先机。 二、国家安全的战略需要 2003年3月20日,伊拉克战争爆发,美军大批轰炸机、巡航导弹猛扑巴格达,炸弹和导弹一一精准命中目标,迅速摧毁了伊军作战力量。其中,指引方向和提供定位的,正是美军卫星导航系统—GPS。我们使用他国的卫星导航和授时系统,将在诸多方面受困:一是使用权上受制于人。伊拉克战争期间,我国的一艘远洋货轮就因拒绝了美军拦截检查,船用GPS导航仪遭信号关闭,被迫停驶。二是使用精度上受制于人。目前,世界上应用最广泛是美国的GPS系统,但其高精度的军用信号就连英国、法国等国也享用不到。所以,欧盟联合研制了自己的卫星导航系统—伽利略系统。三是易受电子欺骗。在战时,敌人可通过GPS系统注

入定位和时间误差,实施欺骗,这将导致导弹失准,指控失调、作战失败的灾难性后果。美、俄等国明确规定,国家安全系统不允许使用国外导航定位和授时服务。 三、社会经济发展的需要 卫星导航系统作为重要的空间基础设施,具有巨大的社会经济效益,有力地促进了国家经济建设,推动了社会发展。目前,已在测绘、电信、水利、气象、煤炭、交通、渔业、勘探、农业、森林防火和应急救援等各个领域发挥着重要作用。同时导航系统本身就是一个巨大的市场,而目前全球95%的市场份额被GPS所占据。

关于中国科学院的基本情况和今后工作任务的报告

标题: 关于中国科学院的基本情况和今后工作任务的报告 责任者 作者: 郭沫若 播发日期: 1954-01-28 出处 选自《新华月报》1954年第4号 文献资料 文献文件 选自《新华月报》1954年第4号 中华人民共和国成立以来,中国的科学研究工作,在中央人民政府的领导下,经过全体科学工作者的努力,已经为科学研究有计划地服务于国家建设,为我国科学事业的进一步发展创造了一定的条件。对于中国科学院来说,今天也已经有可能从现有基础上出发,根据国家地过渡时期的总路线和总任务的要求,提出今后工作的方针和任务。 中国科学院的大部分研究所是在原来中央研究院和北平研究院等科学机构的基础上建立起来的。1952年以前,科学院主要进行了团结科学家和调整机构的工作,使过去机构重叠、人力分散和思想混乱的情况,得到了改善。1952年接受了东北人民政府工业部所移交的东北科学研究所及其大连分所,并会同从上海、北京迁往东北的其他研究机构,组成东北分院,加强了科学院技术科学方面的力量。随着革命事业在各个方面的胜利,特别是在各种社会改革运动和抗美援朝的胜利,随着工农业生产的恢复和发展,我国的科学事业同样也起了根本的变化。过去被反动的国民党政权当作装饰品的科学研究机构,已经转变为人民事业的一部分了。绝大科学家都已经参加了“镇反”、“三反”、抗美援朝和思想改造学习运动,并热烈响应学习苏联先进科学的号召,部分科学家曾经参加“土改”、“五反”等社会改革运动,同时还参加了对自然资源调查、随军入藏和反对细菌战等工作,因而大大地提高了他们的政治觉悟。在科学研究工作本身,也完成了一些有价值的科学研究题目。 1953年9月底的统计,科学院共有36个科学研究机构(25个研究所,4个独立的研究室,4个研究所的筹备处和天文台、仪器馆、菌种保藏委员会),其中15个在北京,13个在华东,8个在东北。全院共有1725个专业的科学研究人员,其中副研究员以上的高级研究人员347人。4年中,在科学研究方面主要有下面一些成绩:(1)在国家自然条件调查与资源勘察方面:配合地质部进行了大规模的地质调查与勘探工作,扩大了某些矿区,提高了矿藏的估计储量,如内蒙、大冶的铁矿,东北、西北的煤矿,甘肃的有色金属矿等都有新的发现;与气象局合作改进了短期天气预报、提高了准确度,并开始中期天气预报,对国防、农田水利起了相当大的作用,又会同农、林等部门进行了植物、土壤与鱼类的调查。(二)在配合工农业生产方面:球墨铸铁的试制成功,在机械工业上提供了成本低、性能好的新的金属材料,人造橡胶的合成已有结果,现在继续研究改进其品质;甲苯的提炼与试制的成功,有利于解决国防工业重要原料生产的问题;纸浆及各种特效药物的试制等,对有关的工业生产都有一定的作用;除草防蚜的办法,已在华北主要植棉区推广;大豆根瘤菌的分离与选择,鱼病的防治,对提高农业与水产产量方面都有所贡献。(三)在自然科学基本理论研究方面:物理学的研究上,在原子核物理方面及其他方面进行了一些工作;数学的研究上,修订出版了堆垒数论;化学的研究上,解决了橘霉素结构的立体化学问题;生物学的研究上,关于家蚕混精杂交实验的结果给米丘林遗传学说提供了新的论证。(四)社会科学

北斗三号授时系统设计分析

北斗三号授时系统设计分析 摘要 近日,中国科学院国家授时中心时间频率基准实验室研究人员利用北斗三号卫星,采用双频共视法,实现了我国时间基准UTC(NTSC)与捷克国家时间基准UTC(TP) 的亚欧长基线国际时间比对。在当前北斗三号共视可视卫星比北斗二号数少一半的情况下,达到共视比对精度1.2ns,提升幅度约19%。目前,北斗三号已经成功发射了19颗全球组网卫星,包括18颗正常服务的MEO卫星和一颗在轨测试的GEO卫星,其基本系统现已建成并开始提供全球服务。北斗三号卫星上搭载了更高性能的铷原子钟和氢原子钟,铷原子钟天稳定度为E-14量级,氢原子钟天稳为E-15量级,比北斗二号星载钟的稳定度提高了一个数量级。 关键词:北斗三号;原子钟;授时精度

第1章绪论 1.1 研制背景 从建立一个现代化国家的大系统工程总体考虑,导航定位和授时系统应该说是基础中的基础,它对整体社会的支撑几乎是全方位的,星基导航和授时是未来发展的必然趋势。美国投入巨资建成了全球定位系统(GPS),俄罗斯也使自己的全球导航卫星系统(GLONASS)投入了运行。欧盟一些国家也正在联合开展伽利略(Galileo)卫星导航系统的研制。 孙家栋院士这样评价北斗:“卫星导航,只有想不到,没有做不到。未来,北斗将为我国提供统一的时空基准服务,在我国国家安全和国民经济社会各领域得到广泛应用,保障国家国家经济社会安全,转变国民经济发展方式,成为战略性新兴产业,促进信息化建设的跨越式发展。”一方面,我们“不能把登山的保险绳交到别人手里”,发展北斗是保障我国国家安全的重要举措,另一方面,我们“不愿自己家的钥匙掌握在别人手里”,发展北斗有利于促进社会经济的发展,人民生活水平的提高。 第2章北斗卫星的授时系统 2.1 授时原理 授时是指接收机通过某种方式获得本地时间与北斗标准时间的钟差,然后调整本地时钟使时差控制在一定的精度范围内。卫星导航系统通常由三部分组成:导航授时卫星、地面检测校正维护系统和用户接收机。对于北斗一号局域卫星系统,地面检测中心要帮助用户一起完成定位授时同步。 2.1.1单向授时 北斗时间为中心控制站精确保持的标准北斗时间,用户钟时间为用户钟的钟面时间,若两者不同步存在钟差,则北斗时间和用户钟时间虽然读数相同其出现时刻却是不同的。地面中心站在出站广播信号的每一超帧单向授时就是用户机通过接收北斗通播电文信息,由用户机自主计算出钟差并修正本地时间,使本地时间和北斗时间同步。周期内的第一帧数据段发送标准北斗时间(天、时、分信号与时间修正数据)和卫星的位置信息,同时把时标信息通过一种特殊的方式调制在出站信号中,经过中心站到卫星的传输延迟、卫星到用户机的延迟以及其它各种延迟(如对流层、电离层等)之后传送到用户机,也就是说用户机在本地钟面时间为观测到卫星的时间,由用户机测量接收信号和本地信号的时标之间的时延获得,后则根据导航电文中的卫星位置信息、延迟修正信息以及接收机事先获取的自身位置信息计算。 一般来说,对已知精密坐标的固定用户,观测1颗卫星,就可以实现精密的时间测量或者同步。若观测2颗卫星或者更多卫星,则提供了更多的观测量,提高了定时的稳健性。 2.1.2双向授时 双向授时的所有信息处理都在中心控制站进行,用户机只需把接收的时标信号返回即可。为了说明方便,给出简化模型:中心站系统在T0时刻发送时标信号ST0,该时标信号经过延迟后到达卫星,经卫星转发器转发后经到达授时用户机,用户机对接收到的信号进行的处理也可看做信号转发,经过空间的传播时延到达卫星,卫星把接收的信号转发,经过空间的传播时延传送回中心站系统。也即表示时间T0的时标信号ST0,最终在T0 + + + + 时刻重新回到中心站系统。中心站系统把接收时标信号的时间与发射时刻相差,得到双向传播时延+ + + ,除以2得到从中心站到用户机的单向传播时延。中心站把这个单向传播时延发送给用户机,定时用户机接收到的时标信号及单向传播时延计算出本地钟与中心控制系统时间的差值修正本地钟,使之与中心控制系统的时间同步。 2.1.3 双向授时和单向授时的对比 从双向授时和单向授时的原理介绍中可以看出,双向授时和单向授时的主要差别在于从中心站系统到用户机传播时延的获取方式:单向授时用系统广播的卫星位置信息按照一定的计算模型由用户机自主计算单向传播时延,卫星位置误差、建模误差(对流层模型、电离层模型等)都会影响该时延的估计精度,从而影响最终的定时精度;双向授时无需知道用户机位置和卫星位置,通过来回双向传播

gps授时系统的应用

gps授时系统的应用 将局域网上各种需要同步时钟的设备的时间信息基于GPS时间 偏差限定在足够小的范围内,这种时钟系统便就叫做GPS授时系统。有源同步和无源同步 任何时间应用系统都应该具有维持时间增长和缩减,该应用系统的用户获取时间的事实上已经成为世界上大多数时间应用系统的基 本唯一途径就是访问系统的时间保持体系该时间保时间标准,用户计算机内部的时间同步必须与有源实践同步,即必须引访问系统时间保持体系的过程就是用户将自己的时入GPS的时间信号才显得有绝对的意义,在这里,我钟与内部时间基准同步的过程。由于该系统的内部们将计算机网络中能够起到维持时间增长、保持时间时间基 准与外部时间没有关联,同步过程仅限于内稳定的体系称之为时间服务器部。所以,我们可称之为无源同步或相对同步。 世界协调时与国际原子时保持一致,国际时间管理局将分布在世界25个国家的10多个原子时标经过加权平均以后得到的时间,并且,世界所有官方的标准时间系统都遵从UTC的跳秒。 UTC时间被称为绝对标准时间,用于研究时,同时也被称为自然的物理时间。GPS信号中的高精密时间信号主要由每颗卫星上装载的两个艳原子钟和两个铆原子钟来维持,并且通过地面控制站与UTC保持同步。GPS的时间信号事实上已经成为世界上大多数时间应用系统的基本时间标准,所以研究计算机网络的时间同步必须研究有源同步,即必须引入GPS的时间信号才显得有绝对的意义,在这里,我们

将计算机网络中能够起到维持时间增长、保持时间稳定的体系称之为GPS授时系统。 时间传递方法 从GPS到时间服务器的传递 从GPS将PTS信号通过计算机网络时间服务器传递到网络时间客户单元必须经过两个步骤:即先从GPS到时间服务器的直接时间传递,和从时间服务器到时间客户单元的网络协议传递。 直接时间传递技术主要包括3种类型6种方式第1种类型是编码型,主要有串行口RS232C时间编码和IRIG一B时统编码两种方式。 其共同特征是将年月日时分秒毫秒等时间信息以二进制、BCD或者ASCll编码方式定义到被传递的电平位和字节中去通常以异步方式传递,连接使用标准接口,使用相对方便简洁。 第2种类型是脉冲型,主要有1pps,lppm,lpph种方式,它们都是周期脉冲定时信号,这些脉冲信号都有着固定的上升沿宽度和脉冲宽度要求,并且其上升沿都严格与UTC保持优于lus的同步准确度。 第3种类型是频率参考信号,往往是一种伴生调制信号。 gps授时系统产品 GPS授时系统在先有的时钟服务器的基础上,又大幅度提高授时系统的各项性能指标,使得减少故障率及提高工作效率。基本上完全可以和国外先进的GPS授时系统相媲美。 GPS授时系统接收GPS卫星和北斗卫星授时时间信号,将标准UTC 时间信息通过网络传输,为网络设备提供精确、标准、安全、可靠和

如何使电脑时间每分钟与中国国家授时中心的标准时间同步的方法(图解)

如何使电脑时间每分钟与中国国家授时中心的标准时间的 比对方法 中国国家授时中心的时间服务器IP地址!(210.72.145.44), 大家都知道计算机电脑的时间是由一块电池供电保持的,而且准确度比较差经常出现走时不准的时候。通过互联网络上发布的一些公用网络时间服务器NTP server,就可以实现自动、定期的同步本机标准时间。 以前由于国内没有可用的时间服务器地址,我们只能依靠windows系统默认的windows 或NIST等境外的时间服务器同步时间,但存在着访问堵塞、时间延迟大(同步精度低)等因素的影响。而现在中国的国家授时中心终于发布了一个时间服务器地址,大家终于可以用国人自己的标准时间啦!经我测试速度快、可靠性高,避免了我们总要把自己的时间也要与国外看齐的状况持续下去! 步骤一:采用Windows、linux等操作系统自带的时间同步功能 对于Windows 2000和XP操作系统,自身已经集成了自动对时功能,本网站其他文章介绍了不少操作方法,在此仅以XP操作系统为例介绍一下。 双击系统托盘下方的时间(详细操作参见本站Windows时间同步服务配置方法),在服务器地址栏输入国家授时中心服务器的IP地址(210.72.145.44),然后点击“确定”按钮保存下来就行了。 步骤二:修改注册表,提高时间同步精度 由于系统默认的时间同步间隔是7天,我们无法自由选择,使得这个功能在灵活性方面

大打折扣。其实,我们也可以通过修改注册表来手动修改它的自动同步间隔以提高同步精度,以下以XP系统为例。 1. 在“开始”菜单→“运行”项下输入“Regedit”进入注册表编辑器 2. 展开 [ HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesW32TimeTimeProvidersNtpCl ient ] 分支,并双击SpecialPollInterval 键值,将对话框中的“基数栏”选择到“十进制”上 3. 对话框中显示的数字正是自动对时的间隔(以秒为单位),比如默认的604800就是由7(天)×24(时)×60(分)×60(秒)计算来的。设定时间同步周期(建议设为900=15分钟或3600=1小时等周期值),填入对话框,点击确定保存关闭对话框。 4. 在Parameters列表中,将NtpServer键值修改为国家授时中心服务器的IP地址(210.72.14 5.44),然后点击“确定”按钮保存。

相关文档
相关文档 最新文档