文档库 最新最全的文档下载
当前位置:文档库 › 高海拔地区湖泊中鱼胆中PAH的污染水平

高海拔地区湖泊中鱼胆中PAH的污染水平

高海拔地区湖泊中鱼胆中PAH的污染水平
高海拔地区湖泊中鱼胆中PAH的污染水平

Biomonitoring of PAH Pollution in High-Altitude Mountain Lakes through the Analysis of Fish Bile

E S T E

F A N I A E S C A R T I?N A N D

C I N T A P O R T E*

Environmental Chemistry Department,CID-CSIC,Jordi Girona18,08034Barcelona,Spain

Polycyclic aromatic hydrocarbon(PAH)exposure of fish in high-altitude mountain lakes was assessed by measuring bile PAH metabolites.Trout were caught in several regions in Europe,and hydrolyzed bile samples were analyzed by(a)HPLC fluorescence at the excitation/ emission wavelength pairs of naphthol(290/335nm)and pyrenol(345/395nm)and(b)gas chromatography-mass spectrometry(GC-MS)for the determination of individual PAHs.The obtained results showed a good correlation between both detection techniques and showed the usefulness of the first one as a screening method.Quantitative differences among lakes were recorded;biliary levels of hydroxylated PAHs ranged from69ng/mL bile in trouts from Redo′Lake(Spanish Pyrenees)to990ng/mL bile in those sampled in Bed?ichov Lake(Czech Jizera Mountains). Qualitative differences were also evident,e.g.,1-pyrenol represented76%of PAH metabolites detected in trouts from Gossenko¨llesee Lake(Austrian Alps)whereas it was undetected in fish from Redo′Lake.The obtained results confirm the long-range transport of PAHs to mountain lakes and subsequent exposure of organisms inhabiting those lakes.

Introduction

Historically,the atmosphere has been a source of anthro-pogenic compounds to surface waters with a net flux from the atmosphere to large lakes and oceans(1).Hydrophobic organic chemicals,such as polycyclic aromatic hydrocarbons (PAHs)or polychlorobiphenyls(PCBs),are transported long distances in the atmosphere,and they enter surface waters via wet and dry deposition.These atmospheric fluxes often dominate pollutant inputs to remote lakes(2).

Remotely situated mountain lakes are therefore excellent indicators of air pollution and its effects because they are not influenced by other forms of disturbance(e.g.,land-use or wastewater pollution).Moreover,due to climatic and geographical factors,high mountain lakes may be more vulnerable to any input than lakes in lowland areas.Similarly, fish inhabiting those lakes will be more vulnerable to pollutants because low temperatures cause low growth rates, which may result in a higher concentration of contaminants (3).Although a certain amount of research has been carried out in some European mountain areas concerning the analysis of organic pollutants in different abiotic compart-ments(4-7),limited or no information is available concern-ing bioaccumulation of pollutants by organisms inhabiting those lakes(8).

PAHs exposure in aquatic organisms is often assessed by measuring the concentration of PAHs in their tissues. However,fish caught at highly polluted sites often showed only trace levels in the tissue,due to its ability of metabolizing PAHs(9).Thus,alternative techniques have been developed in order to assess PAHs exposure in fish,viz.,the determi-nation of PAHs excreted through the bile as conjugated https://www.wendangku.net/doc/8413838193.html,boratory studies have demonstrated that the presence of PAH metabolites in bile is well correlated with levels of exposure(10-14),and this trend has been cor-roborated in a number of field studies(15-17).

This paper will select trout from five high-altitude mountain lakes located all over Europe to better understand the degree of exposure to PAHs of fish inhabiting those lakes. To this end,two different methodologies have been applied and compared in order to assess levels of PAH metabolites in hydrolyzed fish bile.

Materials and Methods

Sample Collection and Preparation.Brown trout(Salmo trutta),brook trout(Salvelinus fontinalis),and arctic char (Salvelinus alpinus)were sampled during the summer period (1997)from five mountain lakes located all over Europe, namely,?vre Neadalsvatn(Norwegian Mountains),Gos-senko¨llesee(Austrian Alps),Bed?ichov(Czech Jizera Moun-tains,Black Triangle),Aube′(French Pyrenees),and Redo′(Spanish Pyrenees)(Figure1).Fish were killed by severing the spinal cord,and the gall bladder was dissected and stored in dark glass vials at-20°C.The main characteristics of the lakes and fish samples analyzed are given in Table1.

Hydrolysis of Bile and Extraction of Metabolites.Bile samples were analyzed individually,and conjugated PAHs metabolites were hydrolyzed by a modification of the method of Krahn et al.(18).Briefly,100μL of bile was treated with 1mL of0.4M acetic acid/sodium acetate buffer,at pH5.0, containing2000units of -glucuronidase and50units of sulfatase and incubated for2h at40°C.Hydrolyzed metabolites were extracted with1mL of ethyl acetate(×3); the extracts were recombined and reduced to100μL under nitrogen.An aliquot of this extract(10-20μL)was analyzed by HPLC,and the rest was analyzed by gas chromatography-mass spectrometry-electron impact mode(GC-MS-EI). Glutathione conjugates remaining in the water phase were recovered by acidic hydrolysis(14);the aqueous phase was treated with0.1N HCl until pH1.0and was extracted with ethyl acetate(×3).The combined extracts were concentrated under nitrogen to100μL and injected onto the HPLC system. Recovery of the extraction procedure was higher than90% for all the compounds examined(1-naphthol,2-phenylphe-nol,9-fluorenol,and9-phenanthrol)except for1-pyrenol, which was85%.

Fluorescent Aromatic Compounds(FACs)in Bile.Hy-drolyzed bile samples were analyzed by HPLC with fluo-rescence detection according to Krahn et al.(19).The analytical column was a15×0.46cm HCODS,C18,5μM (Perkin-Elmer),fitted with10×4mm guard cartridges of Hypersil PAH(Shandon HPLC).The column was coupled with a Kontron Instruments SFM25fluorescence detector. The linear gradient used was100%water/acetic acid(5μL/ L)to100%methanol in15min at flow rate of1mL/min. Hydrolyzed bile samples(10μL)were injected directly into the liquid chromatographic system,and the chromatograms were recorded at the excitation/emission wavelength pairs of1-naphthol(290/335nm)and1-pyrenol(345/395nm). Integrated peak areas eluting after7.5min(after peak tail of tryptophane)in the HPLC chromatograms were summed

*Corresponding author phone:34934006175;fax:34932045904;

e-mail:cpvqam@cid.csic.es.

Environ.Sci.Technol.1999,33,406-409

4069ENVIRONMENTAL SCIENCE&TECHNOLOGY/VOL.33,NO.3,199910.1021/es980798a CCC:$18.00?1999American Chemical Society

Published on Web12/30/1998

and quantified as naphthol and pyrenol equivalents,re-spectively.Detection limits s calculated as signal-to-noise ratio 3:1s were 0.7ng for 1-naphthol and 0.3pg for 1-pyrenol.Analysis by GC -MS -EI.Individual quantification of PAHs metabolites was achieved by GC -MS -EI,using a Fisons GC 8000series chromatograph interfaced to a Fisons MD800mass spectrometer.The column,a 30m ×0.25mm i.d.HP-5MS cross-linked 5%PH ME siloxane (Hewlett-Packard),was programmed from 80to 120°C at 15°C/min and from 120°C to 300°C at 6°C/min,holding the final temperature for 5min.The carrier gas was helium at 80kPa.The injector temperature was 250°C,and the ion source and the analyzer were maintained at 200and 250°C,respectively.The mass spectra were obtained at 70eV by selected ion register (SIR)mode.Metabolites were identified and quantified by com-parison of retention times and spectra of reference com-pounds.Ions used for monitoring were as follows:m /z 144,115for 1-naphthol;m /z 170,141for 2-phenylphenol;m /z 182,152for 9-fluorenol;m /z 194,165for 9-phenanthrol,and m /z 218,189for 1-pyrenol.2,6-Dibromophenol (m/z 252,250)and hexamethylbenzene (m/z 162,147)were used as a surrogate standard and a GC internal standard,respectively,and their recoveries were higher than 95%.Detection limits of the GC -MS -EI technique s calculated as signal-to-noise ratio 3:1s were at the low picogram level (4-9pg),except for 1-naphthol (95pg)and 1-pyrenol (68pg).

Measurement of Bile Proteins.Total biliary proteins were measured by the method of Lowry et al.(20),using bovine serum albumin as a standard.

Results

HPLC chromatograms of enzymatically hydrolyzed bile recorded at the excitation/emission wavelength pairs of 1-naphthol (290/335nm)showed a complex mixture of fluorescent compounds.Areas of peaks eluting after 7.5min in the chromatograms were integrated,summed,and quantified as naphthol equivalents (Table 2).Trouts from Bed?ichov Lake presented the highest levels of FACs in terms of naphthol equivalents (243μg/mL bile),followed by those from ?vre Neadalsvatn and Redo ′Lakes (153and 115μg/mL bile,respectively),whereas the lowest levels were recorded

in trouts from Gossenko ¨llesee and Aube ′Lakes (75and 82μg/mL bile,respectively).Conversely,when hydrolyzed bile samples were analyzed at the fluorescence excitation/emission wavelengths of pyrenol (345/395nm),1-pyrenol was the major peak detected in the chromatogram and the only one quantified (Table 2).Trouts from Bed?ichov Lake presented again the highest levels of FACs (463ng/mL bile);intermediate levels were recorded in fish from Gossenko ¨lle-see,?vre Neadalsvatn,and Aube ′Lakes (114to 229ng/mL,respectively);and very low levels were detected in organisms from Redo ′Lake (13ng/mL bile).

Samples from acidic hydrolysis,which corresponded to glutathione conjugates,did not give any fluorescence at the wavelength pairs tested (naphthol and pyrenol);thus,the metabolized PAHs appear to be excreted primarily via glucuronidation or sulfatation in trout.

The different concentrations detected in terms of naphthol or pyrenol equivalents are indicative of the presence of different mixtures of PAH metabolites in fish bile and hence different patterns of exposure.This fact was further inves-tigated by analyzing hydrolyzed bile samples by GC -MS -EI (Table 2).In agreement with FACs data,trout from Bed?ichov Lake presented the highest levels of total identified PAH metabolites (991ng/mL bile)followed by those from ?vre Neadalsvatn Lake (454ng/mL bile).Intermediate levels were observed in fish from Gossenko ¨llesee and Aube ′Lakes (196and 169ng/mL),and the lowest concentration of PAHs was detected in trouts from Redo ′Lake (69ng/mL).Looking at the metabolite profiles,9-phenanthrol and 1-pyrenol were the major metabolites detected in trout from ?vre Nead-alsvatn Lake,which represented 35%and 45%of total PAH metabolites,respectively.A similar distribution was found in trouts from Bed?ichov Lake,where 9-phenanthrol and 1-pyrenol respectively represented also 38%and 46%of the detected metabolites.Conversely,1-pyrenol was the pre-dominant metabolite in trouts from Gossenko ¨llesee Lake;it represented 76%of the total PAH metabolites.Trout from the Pyrenees lakes (Aube ′and Redo ′)were characterized by a relative enrichment in low molecular weight PAHs.

Discussion

Levels of hydroxylated PAHs in bile detected by HPLC fluorescence (290/335nm)and quantified as naphthol equivalents are in good agreement with the sum of con-centrations of 1-naphthol and 2-phenylphenol determined by GC -MS -EI (r 2)0.78;n )18)(Figure 2).2-Phenylphenol fluoresces at the same excitation/emission wavelength as naphthol,and it is consequently quantified among the unresolved mixture of compounds detected by fluorescence.Similarly,bile residues of 1-pyrenol determined by HPLC (345/395nm)showed a good correlation with the amount of 1-pyrenol determined by GC -MS -EI (r 2)0.89;n )18)(Figure 2).These results together with the elevated sensitivity of the fluorescence detection highlight the usefulness of the HPLC technique as a first screening method.The GC -MS technique,although it can provide more information about which particular metabolites are present in the hydrolyzed sample,is limited by the few metabolite standards available and by the need to use derivatization techniques.Attempts were made to silanize samples and standards,but the sensitivity and accuracy of the method was too low to work with field samples with low concentrations of PAH metabo-lites.

Considering that hydroxylated PAHs in fish bile reflect levels of exposure,the obtained quantitative results showed that Bed?ichov Lake (Jizera Mountains,Black Triangle)suffers the highest PAH contamination,whereas Redo ′Lake is among the less polluted.This is in agreement with previous data on sediments from several remote lakes in Europe that showed the highest concentration of PAHs in Central Alps and Tatra

FIGURE 1.Location of the studied lakes.

VOL.33,NO.3,1999/ENVIRONMENTAL SCIENCE &TECHNOLOGY

9

407

Mountains (Black Triangle)and a significant decrease when moving away to more peripheral areas (e.g.,the Iberian Peninsula)(21).

Given the fact that the studied lakes are all located far from urban areas,the hydroxylated PAHs pattern detected in fish bile may be a consequence of atmospheric transport of https://www.wendangku.net/doc/8413838193.html,anisms from Bed?ichov (Czech Republic)and

?vre Neadalsvatn (Norway)Lakes showed high levels of hydroxylated PAHs and similar PAH patterns,dominated by the presence of pyrenol and phenanthrol.Both lakes are located below an 800m altitude,but whereas ?vre Nead-alsvatn is a remote lake,Bed?ichov receives water flows from the river E ?erna ′Desna ′,thus anthropogenic local inputs cannot be discarded.Moreover,trout from Bed?ichov Lake probably reflect the influence of airborne pollution from the Black Triangle,a fairly polluted area located on the border of the Czech Republic,Poland,and Germany.Concerning the ?vre Neadalsvatn,Rose (4)studied the deposition enhancement of carbonaceous particles in its sediments,and he suggested that these particles were most probably from the United Kingdom;thus,airborne pollutants may have a similar origin.Apart from the influence of regional sources of pollution,long-range atmospheric transport and deposition of PAHs cannot be ruled out,particularly in remote lakes.Several studies have demonstrated that chemicals emitted in low latitudes may be transported to higher latitudes as part of the moving air mass,where due to cooler temperatures they condense (22,23).The atmospheric transport will be affected by the physicochemical properties of the compounds,and any persistent chemical with a vapor pressure in the range 0.001-0.1Pa may actually show higher concentrations in arctic ecosystems than in temperate environments (23).In the present study,the more volatile compounds naphthol and phenylphenol (vapor pressure 10.9and 5.5Pa at 25°C)were detected in fish bile from all the lakes,and differences in concentration among lakes were not striking.Due to its elevated vapor pressure,these compounds can be easily transported through the atmosphere for long distances.Conversely,stronger differences among lakes were detected in terms of relative exposure to less volatile compounds (phenanthrol and pyrenol;vapor pressure 0.018and 0.0009,respectively),with higher levels in northern lakes and very low concentration in Aube ′and Redo ′Lakes (French and Spanish Pyrenees).For comparison purposes,Salmo trutta from a fish farm located in the pre-Pyrenees area at an altitude of 700m were analyzed.These organisms showed a con-centration of hydroxylated PAHs in bile of 1422ng/mL,20-fold higher than those from Redo ′Lake with 1-pyrenol being

TABLE 1.Geographical and Biological Data of Studied Lakes and Fish a

lake

situation altitude (m)lake area (ha)fish species

weight (g)length (nm)CF (g/cm 3)bile proteins (mg/mL)?vre Neadalsvatn 62°46′N/9°0′E

72850Salmo trutta

318(41295(15 1.24(0.02 3.7(0.2Bed?ichov 50°33′N/13°29′E 77537Salvelinus fontinalis 171(39252(18 1.01(0.02 6.9(1.5Gossenko ¨llesee 47°13′N/11°5′E 2413Salmo trutta

164(19250(9 1.02(0.04 1.6(0.1Aube ′42°44′N/1°20′E 20918.6Salvelinus alpinus 298(22298(8 1.12(0.03 5.0(1.2Redo ′

42°38′N/0°46′E

2240

24

Salmo trutta

222(9

288(9

0.85(0.03

18.0(1.9

a

CF is the condition factor calculated as [weight/(length)3]×100;N )4specimens analyzed per lake.Values are mean (SEM.

TABLE 2.Biliary Levels of Hydroxylated PAHs in Trout from Five Remote Lakes in Europe Determined by (a)HPLC Fluorescence and Expressed as Naphthol (μg/mL)or Pyrenol (ng/mL)Equivalents and (b)by GC -MS -EI SIR Mode (ng/mL)a

?vre Neadalsvatn Bed?ichov Gossenko 1llesee Aube ′Redo ′FACs (naphthol equiv)152.7(12.8243.0(59.475.1(12.982.3(12.6114.6(40.9FACs (pyrenol equiv)229.0(60.1463.5(75.5158.9(68.2114.0(33.912.6(10.41-naphthol

18.7(10.550.0(19.39.8(3.032.6(21.710.3(2.02-phenylphenol 55.7(19.270.4(45.625.2(3.420.6(9.228.6(1.39-fluorenol 12.9(5.442.6(15.07.0(2.151.0(31.730.2(10.19-phenanthrol 148.9(3.7362.0(80.7nd

nd

nd 1-pyrenol

218.3(96.1465.8(141.4154.2(45.164.6(7.3nd ΣPAHs (ng/mL)

454.5(19.7990.8(34.2196.2(9.1168.8(8.069.1(2.1ΣPAHs (ng/mg protein)

122.2(22.2

158.2(24.8

127.6(20.5

49.0(23.3

4.1(0.6

a

nd,not detected.Values are means (SEM (n )4).

FIGURE 2.Correlation between (A)levels of hydroxylated PAHs in

fish bile detected by HPLC fluorescence (290/335nm)and quantified as naphthol equivalents vs the sum of 1-naphthol and 2-phenylphenol determined by GC -MS -EI and (B)levels of pyrenol detected by HPLC fluorescence (345/395nm)vs concentration of pyrenol measured by GC -MS -EI.

408

9

ENVIRONMENTAL SCIENCE &TECHNOLOGY /VOL.33,NO.3,

1999

the most abundant metabolite detected(76-83%of total), which indicates the existence of local sources of PAHs.

Apart from atmospheric inputs,many other factors can contribute to the distribution of contaminants in remote lakes and the subsequent detection in fish bile,viz.,properties of terrestrial catchments,food web characteristics,etc.Among others,the feeding status of fish could certainly affect levels of biliary metabolites(10,24),and consequently,methods to establish this status should be developed in order to improve the accuracy of the PAHs analysis.In this study,we have calculated the condition factor(CF)of the analyzed organisms as a general measure of their nutritional status (25).Differences among lakes were observed in terms of the calculated CF(Table1);however,no clear relationship among levels of PAHs in fish bile and CF could be established.In addition,levels of protein per milliliter of bile were deter-mined(Table1),as it has been observed that the amount of proteins increases markedly in nonfeeding fish(10).Organ-isms from Redo′Lake showed an extremely elevated con-centration of proteins in bile in comparison with fish from other lakes and showed the lowest condition factor,which suggest that they were in a bad nutritional status.When the concentration of proteins was used to normalize residues of hydroxylated PAHs,the observed concentrations did not differ strongly from data expressed per milliliter of bile(Table 2).It is possible to clearly distinguish two groups:(a)fish sampled in?vre Neadalsvatn,Gossenko¨llesee,and Bed?ichov Lakes with very similar levels of hydroxylated PAHs,ranging from122to158ng/mg protein;(b)fish sampled in Aube′(49 (23ng/mg protein)and Redo′Lake(4.1(0.6ng/mg protein) with a significantly lower concentration of PAHs.

Overall,levels of hydroxylated PAHs detected in trout from mountain lakes are in the range of those found in Mullus barbatus(90-1600ng/mL bile),a benthic coastal fish sampled from different stations along the NW Mediterranean and directly affected by anthropogenic activities.Despite the number of studied lakes and fish being rather small,the obtained results could be understood as a first indication that fish from high-altitude mountain lakes in Europe may be exposed to similar levels of PAHs than fish from coastal areas.This fact certainly needs further research given the high susceptibility/fragility of these ecosystems(3).Moreover, future improvements in analytical instrumentation would hopefully lead to the detection of a greater number of metabolites and a better characterization of the atmospheric inputs.

Acknowledgments

The authors acknowledge Dr.J.Grimalt,Dr.P.Ferna′ndez, https://www.wendangku.net/doc/8413838193.html,ckner,Dr.J.C.Massabuau,and Dr.E.Stuchlik as well as other partners of EC Project MOLAR(ENV4-CT95-0007)for kindly providing the samples and information on lakes and fish characteristics.This work was supported by the Spanish National Plan for Research(PLANYCIT)under Project Refs.AMB96-0926and AMB97-1800-CE. Literature Cited

(1)Baker,J.E.;Eisenreich,S.J.Environ.Sci.Technol.1990,24,

342-352.

(2)Swackhamer,D.L.;Hites,R.Environ.Sci.Technol.1988,22,

543-548.

(3)Schindler,S.W.;Kidd,K.A.;Muir,D.C.G.;Lockhart,W.L.Sci.

Total Environ.1995,160/161,1-17.

(4)Rose,N.L.Sci.Total Environ.1995,160/161,487-496.

(5)Ferna′ndez,P.;Vilanova,R.;Grimalt,J.O.Polycyclic Aromat.

Compd.1996,9,121-128.

(6)Vartiainen,T.;Nannio,J.;Korhonen,M.;Kinnunen,K.;Strand-

man,T.Chemosphere1997,34,1341-1350.

(7)Vilanova,R.;Ferna′ndez,P.;Grimalt,J.O.In Sea-Air Exchange:

Processes and Modelling;Pacyma,J.M.,Broman,D.,Lipiatou,

E.,Eds.;Office for Official Publications of the European

Communities:Luxembourg,1998;pp209-215.

(8)Sa′nchez,J.;Sole′,M.;Albaige′s,J.Int.J.Environ.Anal.Chem.

1993,50,269-284.

(9)Varanasi,U.;Stein,J.E.;Nishimoto,M.In Metabolism of

Polycyclic Aromatic Hydrocarbon in the Aquatic Environment;

Varanasi,U.,Ed.;CRC Uniscience Series;CRC Press:Boca Raton, FL,1989;pp93-150.

(10)Collier,T.K.;Varanasi,U.Arch.Environ.Contam.Toxicol.1991,

20,462-473.

(11)Britvic,S.;Lucic,D.;Kurelec,B.Environ.Toxicol.Chem.1993,

12,765-773.

(12)Upshall,C.;Payne,J.F.;Hellou,J.Environ.Toxicol.Chem.1993,

12,2105-2112.

(13)van der Oost,R.;van Schooten,F.J.;Ariese,F.;Heida,H.;

Satumalay,K.;Vermeulen,N.P.E.Environ.Toxicol.Chem.1994, 13,859-870.

(14)Yu,Y.;Wade,T.L.;Fang,J.;McDonald,S.;Brooks,J.M.Arch.

Environ.Contam.Toxicol.1995,29,241-246.

(15)Krahn,M.;Burrows,D.G.;Ylitalo,G.M.;Brown,D.W.;Wigren,

C.A.;Collier,T.K.;Chan,S.L.;Varanasi,U.Environ.Sci.Tecnol.

1992,26,116-126.

(16)Krahn,M.;Ylitalo,G.M.;Buzitis,J.;Bolton,J.L.Mar.Pollut.

Bull.1993,27,285-292.

(17)McDonald,S.J.;Kennicutt,M.C.,II;Liu,H.;Safe,S.H.Arch.

Environ.Contam.Toxicol.1995,29,232-240.

(18)Krahn,M.;Burrows,D.G.;MacLeod,W.D.,Jr.;Malins,D.C.

Arch.Environ.Contam.Toxicol.1987,16,511-522.

(19)Krahn,M.;Myers,M.S.;Burrows,D.G.;Malins,D.C.Xenobiotica

1984,14,633-646.

(20)Lowry,O.H.;Rosebrough,N.J.;Farr,A.L.;Randall,R.J.J.Biol.

Chem.1951,193,265-275.

(21)European Community’s Acidification of Mountain Lakes:Pale-

aeolimnology and Ecology(AL:PE)Programme,1995.

(22)Wania,F.;Mackay,D.Ambio1993,22,10-18.

(23)Mackay,D.;Wania,F.Sci.Total Environ.1995,160/161,25-38.

(24)Brumley,C.M.;Haritos,V.S.;Ahokas,J.T.;Holdway,D.A.

Ecotoxicol.Environ.Saf.1998.39,147-153.

(25)Bagenal,T.B.;Tesch,F.W.In Age and Grow;Bagenal T.B.,Ed.;

Blackwell Scientific Publications:Oxford,1978;pp101-136. Received for review August6,1998.Revised manuscript received November9,1998.Accepted November9,1998. ES980798A

VOL.33,NO.3,1999/ENVIRONMENTAL SCIENCE&TECHNOLOGY9409

急性中毒抢救护理常规

急性中毒抢救护理常规 【护理评估】 1、及时了解中毒物的种类、名称、剂量、途径和接触时间。 2、评估患者生命体征的变化,注意皮肤黏膜颜色、温度、湿度 及有无腐蚀征象。 3、观察呼吸的频率、深浅,评估呼出的气体是否有特殊气味。 4、观察患者意识神态及神经反射,评估有无神经系统改变。 5、观察患者洗胃、用药后的生命体征变化,监测尿量,了解肾 功能。 【护理措施】 1、立即终止接触毒物。 2、迅速清除体内尚未被吸收的毒物。 (1)毒物由呼吸道吸入者,立即脱离中毒现场,移至通风良好的环境中,给予氧气吸入、休息、保暖。 (2)毒物经皮肤和粘膜吸收者,立即去除污染衣服,用清水彻底清洗体表皮肤、头发及指缝。 (3)毒物由消化道吸收者,立即进行催吐、洗胃、导泻。但对服强酸、强碱等腐蚀性毒物者禁止洗胃,可用蛋清、牛奶等沉 淀物保护胃粘膜。 3、保持呼吸道通畅,维持有效的呼吸功能。一氧化碳中毒时, 给予高流量氧气吸入或高压氧治疗,加速一氧化碳排除。4、建立静脉通道,予以对症补液以促进以吸收毒物的排除。

5、鼓励患者大量饮水,同时遵医嘱应用利尿剂,加速毒物的排 除。 6、做好心电监护及抢救配合,如神志不清或惊厥者,设专人护 理。 7、观察生命体征及神志、意识、瞳孔、循环等变化,准确观察 出入水量,并作好记录。如出现昏迷,肺,脑水肿及呼吸、循环、肾衰竭时,积极配合医师抢救。 8、及时留取大小便、呕吐物、分泌物送检,正确采集血标本进 行毒物分析检测。 9、重度中毒需作透析治疗时,应做好透析前准备工作。 【健康指导】 1、做好患者思想工作,解除顾虑, 2、告知患者恢复期注意事项。 3、向患者宣教预防中毒及自救防护知识。 4、

鱼胆中毒急救安全常识

编号:AQ-CS-02807 ( 安全常识) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 鱼胆中毒急救安全常识 First aid for fish gall poisoning

鱼胆中毒急救安全常识 备注:安全是指没有受到威胁、没有危险、危害、损失。人类的整体与生存环境资源的和谐相处,互相不伤害,不存在危险、危害的隐患, 是免除了不可接受的损害风险的状态,安全是在人类生产过程中,将系统的 运行状态对人类的生命、财产、环境可能产生的损害控制在人类能接受水平以下的状态。 鱼胆中毒者在服食鱼胆后半小时到14小时内,会出现胃肠道症状,表现上腹部、脐周、下腹等部位的疼痛,频繁的呕吐,反复的拉黄色水样或稀烂不带脓血的大便,容易与一般的胃肠炎相混淆,因此,有“服食鱼胆史”便成为早期诊断鱼胆中毒的重要依据。 比较严重的鱼胆中毒患者,除了上述胃肠道症状外,还会有肝脏损害的表现,如肝肿大,肝区触痛、扣击痛,皮肤、眼巩膜发黄,血清转氨酶升高;肾脏的表现如腰痛,肾区扣击痛,少尿、无尿、蛋白尿、显微镜下见到尿中有红细胞和管型等;心血管系统的损害,如血压升高或降低,面部、下肢或全身的水肿;神经系统的损害,如头痛、嗜睡、神志模糊、谵语、抽搐昏迷等等。有些鱼胆中毒者还可能出现发热、休克、DIC(弥漫性血管内凝血)等病理过程。 急救措施 由于鱼胆中毒尚无特殊的解毒疗法,病情的发展又可能导致多

个器官的功能衰竭,招致患者死亡,故发生鱼胆中毒时,以赶紧送单位就医为妥。如果距离医疗单位较远,则可在准备交通工具或联系救护车的同时,针对腹痛、呕吐、腹泻等症状,就近找卫生员或备有药物的邻居,予口服颠茄之类的胃肠道解痉止痛药物;因患者频繁的吐泻可能会出现体内失水,有输液条件时可给予静脉补液,无输液条件也可给口服淡糖水、金银花水、生甘草水、生姜水等。如果距离近即送医院诊治。 这里填写您的公司名字 Fill In Your Business Name Here

鱼胆中毒急救安全常识(标准版)

鱼胆中毒急救安全常识(标准 版) By learning safety knowledge, we can have a deeper understanding of the importance of safety knowledge in daily life. Safety is closely related to life and life. ( 安全常识) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

鱼胆中毒急救安全常识(标准版) 鱼胆中毒者在服食鱼胆后半小时到14小时内,会出现胃肠道症状,表现上腹部、脐周、下腹等部位的疼痛,频繁的呕吐,反复的拉黄色水样或稀烂不带脓血的大便,容易与一般的胃肠炎相混淆,因此,有“服食鱼胆史”便成为早期诊断鱼胆中毒的重要依据。 比较严重的鱼胆中毒患者,除了上述胃肠道症状外,还会有肝脏损害的表现,如肝肿大,肝区触痛、扣击痛,皮肤、眼巩膜发黄,血清转氨酶升高;肾脏的表现如腰痛,肾区扣击痛,少尿、无尿、蛋白尿、显微镜下见到尿中有红细胞和管型等;心血管系统的损害,如血压升高或降低,面部、下肢或全身的水肿;神经系统的损害,如头痛、嗜睡、神志模糊、谵语、抽搐昏迷等等。有些鱼胆中毒者还可能出现发热、休克、DIC(弥漫性血管内凝

血)等病理过程。 急救措施 由于鱼胆中毒尚无特殊的解毒疗法,病情的发展又可能导致多个器官的功能衰竭,招致患者死亡,故发生鱼胆中毒时,以赶紧送单位就医为妥。如果距离医疗单位较远,则可在准备交通工具或联系救护车的同时,针对腹痛、呕吐、腹泻等症状,就近找卫生员或备有药物的邻居,予口服颠茄之类的胃肠道解痉止痛药物;因患者频繁的吐泻可能会出现体内失水,有输液条件时可给予静脉补液,无输液条件也可给口服淡糖水、金银花水、生甘草水、生姜水等。如果距离近即送医院诊治。 可在本位置填写公司名或地址 YOU CAN FILL IN THE COMPANY NAME OR ADDRESS IN THIS POSITION

急性有机磷农药中毒的急救与护理

急性有机磷农药中毒 急救原则 1迅速清除毒物,限制毒物吸收。迅速脱离中毒环境,清除呼吸道阻塞,清洗皮肤脱去污染衣物在其阶段必须及时的更换患者的衣服,用清水或肥皂水清洗被污染的皮肤、发毛和指甲,常用2%碳酸氢钠溶液,30%的乙醇皂和氧化镁溶液。因几乎所用的有机磷农药都有经皮肤吸收毒性,而且大多数品种对皮肤没有刺激性,在全身中毒症状出现前不易察觉,避免通过皮肤再吸收。眼部污染可用0.9%氯化钠注射液连续冲洗。 2洗胃及时、正确、彻底洗胃,是抢救成败的第一个关键。最有效的洗胃是在口服毒剂30分钟内,但服毒后危重昏迷病人即使超 过24小时仍应洗胃。 3解毒剂的应用:对中毒病人立即建立静脉通路,早期合理应用阿托品是提高有机磷农药中毒抢救成功的关键。应用原则为早期、足量、联合、中服用药。 4对症治疗:有机磷中毒主要致死原因有水肿、休克、心脏损害,特别是中枢性呼吸衰竭和急性水肿,因此应加强对重要脏器的监护,保持护理道通畅,吸氧或使用机械辅助呼吸,发现病情变化及时处理。

治疗方案及其护理 1 明确中毒的途径:护理人员在接触病人时,首先询问患者或其家属,了解其中毒的品种、剂量、中毒途径及具体中毒时间。同时观察典型的症状和体征,判断中毒程度。 2 洗胃护理:洗胃最佳时间是中毒的2小时内。有机磷农药中毒首先在有效时间内及时迅速反复彻底的洗胃,此举对提高抢救成功率起着相当重要的作用。洗胃不彻底,可使毒物不断的吸收,病情加重,甚至死亡。 常用洗胃法与常用洗胃溶液

因此,患者入院时,护理人员应及时准确的插入胃管,在插胃管时,注意取出口腔内异物及义齿,插入深度一般为从发际至剑突55cm;行电动吸入,洗胃至洗胃夜澄清无味为止。同时观察洗出胃夜的颜色、气味,要注意每次灌入量与吸出量的基本平衡。每次灌入量不宜超过500m1。灌入量过多可引起急性胃扩张,使胃内压上升,增加毒物吸收;或者因过多灌洗液不能排出引发呕吐,造成洗胃液误吸入呼吸道,并发肺部感染并发症。在洗胃过程中应随时观察病人生命体征的变化,如病人感觉腹痛、流出血性灌洗液或出现休克现象,应立即停止洗胃,并及时通报医生;在洗胃时,应左右旋转胃管,避免胃管吸住胃壁,造成黏膜破裂出血。凡呼吸停止、心脏停搏者,应先行心肺复苏,再行洗胃术。洗胃前应检查生命体征,如有缺氧或呼吸道分泌物过多,应先吸取痰液、保持呼吸道通畅,再行胃管洗胃术。洗胃后可经胃管内注入硫酸镁或甘露醇导泻,避免毒物再吸收;或注入药用炭片,能有效地从消化道中吸附毒物,使毒物不进入血液循环,而成消化道排出,避免出现病情反复。 3解毒剂的应用的观察与护理:特效抗毒药的应用国内外所采用的抗毒药均为抗胆硷能药和复能剂两大类。口服毒物时间过长(超过6h以上者),可酌情采用血液透析治疗有效解毒剂及迅速阿托品化,对中毒病人立即建立静脉通路,早期合理应用阿托品是提高有机磷农药中毒抢救成功的关键。遵医嘱静注阿托品和解磷定。(1)阿托品首次剂量:轻度中毒1~3毫克、中度中毒3~10毫

急性药物中毒的救治和护理

急性药物中毒的救治和护理 一、定义 急性中毒(acute intoxication)是指毒物短时间内经皮肤、粘膜、呼吸道、消化道等途径进入人体,使机体受损并发生器官功能障碍。急性中毒起病急骤,症状严重,病情变化迅速,不及时治疗常危及生命,必须尽快作出诊断与急救处理。 二、种类 毒物品种繁多,按其使用范围和用途可分为下列几种: 1、工业性毒物包括工业原材料,如化学溶剂、油漆、重金属汽油、氯气氰化物、甲醇硫化氢等。 2、农业性毒物有机磷农药,化学除草剂,灭鼠药,化肥等。 3、药物过量中毒(poisoning) 许多药物(包括中药)过量均可导致中毒,如地高辛抗癫痫药,退热药麻醉镇静药,抗心律失常药等。 4、动物性毒物毒蛇、蜈蚣、蜂类蝎、蜘蛛、河豚、新鲜海蜇等。 5、食物性毒物过期或霉变食品,腐败变质食物,有毒食品添加剂

6、植物性毒物野蕈类,乌头,白果等。 7、其他强酸强碱,一氧化碳,化妆品,洗涤剂,灭虫药等。 此外根据毒物的物理状态还可分为挥发性与非挥发性毒物,根据毒物吸收方式分为食入、吸入皮肤接触吸收性毒物等。 三、中毒的一般急救措施: 1.首先将患者搬离中毒现场(特别是现场环境中有高浓度的有毒气体的情况下),同时也要注意自身的安全与防毒;清除鼻、口腔内分泌物,保持呼吸道通畅。 2.去除被毒素污染的衣物、注意保暖;清洗皮肤、眼的毒物污染。 3.检查是否存在外伤及内伤。 4.关注患者的生命体征(呼吸、心跳、血压)、意识状态和一股情况,如出现生命体征不稳定的状况,如呼吸困难、脉搏细数或微弱、血压降低等情况时,立即现场实施抢救,必要时进行心肺复苏,维持和稳定生命体征。 中毒的处理: 处理原则为发生急性中毒时,应立即治疗,否则会失去抢救机会。在毒物性质未明时,按一般的中毒治疗原则抢救患儿。在一般情况下,以排除毒物为首要措施,尽快减少毒物

硫化氢急性中毒的急救护理(新编版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 硫化氢急性中毒的急救护理(新 编版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

硫化氢急性中毒的急救护理(新编版) 【摘要】总结17例急性硫化氢中毒的急救护理措施,包括保持呼吸道通畅、迅速建立静脉通道、及时准确用药、密切观察病情变化、对症护理、安全的护理、心理护理、卫生宣教、饮食护理等。 【关键词】硫化氢;中毒;急救护理 硫化氢是多种工业生产中的副产物,目前有70多种职业有机会接触到硫化氢,如采矿、石油开采和提炼、皮革制造、橡胶合成、煤气制取、人造纤维、造纸、染料制造、食品加工等。此外有机物腐败场所也有硫化氢产生,如水井、下水道、隧道、阴沟、粪池等。硫化氢是一种刺激性和窒息性的无色气体,具有臭蛋气味,由含硫化合物腐败生成,是强烈的神经毒物,对黏膜有强烈的刺激作用。相对密度为1.19,熔点为-82.9℃,沸点为-61.8℃,燃点为292℃,易溶于水、甲醇类、石油溶剂和原油中。如通风不良可在空气中浓

度极高,在无防护措施的情况下进入这种环境,可能发生中毒。空气中浓度达4.3%~45.5%容量范围,即可发生爆炸,吸入空气中含量超过30mg/m3~40mg/m3即可引起中毒[1]。2007年5月?008年5月我院收治吸入硫化氢中毒病人17例,经过及时抢救及精心治疗与护理,取得满意效果。现将抢救与护理体会介绍如下。 1临床资料 本组吸入硫化氢中毒病人17例,均为男性;年龄21岁~48岁,平均29.6岁;其中2批为造纸厂工人在清理浆池时发生中毒;另1批为化工厂工作车间硫化氢泄漏后中毒;脱离现场至入院时间最短20min,最长1h;2例入院时呼吸心跳停止,抢救无效死亡;昏迷4例,频繁呕吐伴呼吸不规则2例,喷射状呕吐、抽搐2例,谵语3例,头痛、头晕、恶心、全身不适9例,烦躁不安2例,全身发绀1例,面部口唇发绀2例,双肺满布大小水泡音3例;15例经急诊室抢救,病情稳定后住院治疗,6d~28d临床治愈出院。 2急救护理 2.1保持呼吸道通畅

鱼胆中毒

鱼胆中毒 文章目录*一、鱼胆中毒的概述*二、鱼胆中毒的症状*三、鱼胆中毒的急救措施*四、鱼胆中毒的急救注意事项*五、鱼胆中毒的护理知识*六、如何预防鱼胆中毒 鱼胆中毒的概述鱼胆中毒,鱼胆中毒系食鱼胆而引起的一种急性中毒。青、草、白鲢、鲈、鲤鱼胆中含胆汁毒素,能损害人体肝、肾,使其变性坏死。也可损伤脑细胞和心肌,造成神经系统和心血管系统的病变。 鱼胆中毒的症状起病较急,多在服鱼胆后1~3小时发病。鱼胆中毒后主要经过5期: 潜伏期:约2-5d;胃肠炎期:有恶心、呕吐、腹痛、腹泻等;呕吐较重,多者每日可达30次以上,吐出食物甚至胆汁,有时可带血。腹痛多为阵发,位在上腹部,并不太重。腹泻较轻,呈不消化便。 假愈期:上述胃肠炎症状,常在一日内自愈,患者此时并无不适或仅有轻微乏力、纳差;肝、肾、心损害。 恢复期:患者不但有胃肠炎、肝损害等,尤为突出的是急性少尿型肾衰,鱼胆中毒无特效解毒剂,主要是对症治疗。 尸检主要表现为胃及空肠上段粘膜水肿、出血、肝细胞混浊肿胀及变性,肾小管变性、坏死,肾乳头及肾盂出血。心、肺、脑

均有水肿。 鱼胆中毒的急救措施由于鱼胆中毒尚无特殊的解毒疗法,病情的发展又可能导致多个器官的功能衰竭,招致患者死亡,故发 生鱼胆中毒时,以赶紧送单位就医为妥。 如果距离医疗单位较远,则可在准备交通工具或联系救护车的同时,针对腹痛、呕吐、腹泻等症状,就近找卫生员或备有药物的邻居,予口服颠茄之类的胃肠道解痉止痛药物; 因患者频繁 的吐泻可能会出现体内失水,有输液条件时可给予静脉补液,无 输液条件也可给口服淡糖水、金银花水、生甘草水、生姜水等。如果距离近即送医院诊治。 鱼胆中毒的急救注意事项1、若能饮水者,多饮水,然后再催吐。一般采用催吐法(用筷子、勺子刺激嗓子眼造成呕吐,以达到排毒的目的)。 2、身边有硫酸镁药物时可服用以造成腹泻。 3、可多食用含维生素、胡萝卜素、维生素B2及维生素C丰富的食物。 但最好的方法是迅速送往医院,以免延误病情。 鱼胆中毒的护理知识病人卧床安静休息,专人看护,多饮水,低蛋白、低盐饮食。如有浮肿,可暂时限盐限水。

鱼胆中毒急救安全常识(新版)

( 安全常识 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 鱼胆中毒急救安全常识(新版) Safety accidents can cause us great harm. Learn safety knowledge and stay away from safety accidents.

鱼胆中毒急救安全常识(新版) 鱼胆中毒者在服食鱼胆后半小时到14小时内,会出现胃肠道症状,表现上腹部、脐周、下腹等部位的疼痛,频繁的呕吐,反复的拉黄色水样或稀烂不带脓血的大便,容易与一般的胃肠炎相混淆,因此,有“服食鱼胆史”便成为早期诊断鱼胆中毒的重要依据。 比较严重的鱼胆中毒患者,除了上述胃肠道症状外,还会有肝脏损害的表现,如肝肿大,肝区触痛、扣击痛,皮肤、眼巩膜发黄,血清转氨酶升高;肾脏的表现如腰痛,肾区扣击痛,少尿、无尿、蛋白尿、显微镜下见到尿中有红细胞和管型等;心血管系统的损害,如血压升高或降低,面部、下肢或全身的水肿;神经系统的损害,如头痛、嗜睡、神志模糊、谵语、抽搐昏迷等等。有些鱼胆中毒者还可能出现发热、休克、DIC(弥漫性血管内凝血)等病理过程。 急救措施

由于鱼胆中毒尚无特殊的解毒疗法,病情的发展又可能导致多个器官的功能衰竭,招致患者死亡,故发生鱼胆中毒时,以赶紧送单位就医为妥。如果距离医疗单位较远,则可在准备交通工具或联系救护车的同时,针对腹痛、呕吐、腹泻等症状,就近找卫生员或备有药物的邻居,予口服颠茄之类的胃肠道解痉止痛药物;因患者频繁的吐泻可能会出现体内失水,有输液条件时可给予静脉补液,无输液条件也可给口服淡糖水、金银花水、生甘草水、生姜水等。如果距离近即送医院诊治。 云博创意设计 MzYunBo Creative Design Co., Ltd.

急性中毒的抢救与护理

急性中毒的抢救与护理 【摘要】目的:研究老人急性中毒时的急救护理方法和临床观察要点,提高救治急性中毒患者的成功率。方法:以我院收治的37例老年急性中毒患者为例,对这些中毒患者采取催吐、洗胃、灌肠等急救措施,且过程中严格无菌操作,并加强气道管理、药物及心理护理等有效 的急救护理干预。结果:该37例急性中毒老年患者经过精心救护和有效的护理干预后,共 有33例被成功治愈,有2例抢救无效死亡,另外2例自动出院。结论:在抢救老年中毒患 者时,需要重点加强对脏器功能的监测并及时采取正确有效的急救护理措施,如此才能不断 提高抢救成功率。 【关键词】急性中毒;护理;抢救 前言:急性中毒是急诊科最常见的一种疾病,从几岁的小孩到几十岁老人,每一个年龄阶段 的人都有可能因为生活当中的不注意或者是因为缺乏相关的知识而中毒。而在这其中,老年 急性中毒患者往往因为自身身体机能的下降,对病毒的抵抗力也同样下降,因此,对于老年 急性中毒患者的抢救和护理需要格外的专业、小心。本研究对本院2013年2月至201 4年6月收治的37例老年急性中毒患者进行抢救和护理,现体会如下。 1一般资料和方法 1.1资料 选取我院2013年2月至2014年6月收治地37例老年急性中毒患者,其中男24例,女13例。最大的年龄89岁,最小的年龄60岁,平均为70.45岁。中毒途径分别为:自服 28例,误服4例,皮肤吸收5例。中毒分类:有机磷农药中毒23例,百草枯中毒3例, 酒精中毒2例,安定中毒2例,草乌中毒2例,二氟一氯甲烷气体1例,化学品、强碱1例,灭鼠药3例。中毒前合并疾病:高血压11例,冠心病7例,慢性支气管炎5例,恶性肿瘤 2例。发病至就诊时间20分钟至5个小时。 1.2方法 该37例患者经过洗胃、导泻、解毒、补液、利尿、维持水电解质及酸碱平衡、维持脏器功能、预防感染等治疗过程。其中5例患者为皮肤吸收中毒,立即脱去污染衣物,用肥皂水彻 底清洗污染皮肤黏膜。其余32例口服中毒的患者入院后,均予彻底洗胃。另外,其中8例 抽搐患者,应用地西泮等治疗;19例心脏、肝脏损害患者应用相应的保护药物治疗;6例 并发脑水肿患者用甘露醇、速尿等减轻水肿;25例出现呼吸衰竭患者行呼吸机辅助通气; 29例患者根据病情行血液灌流、连续性血液净化治疗。此外,本组患者在救治过程中,根 据中毒物性质的不同,遵医嘱分别予阿托品、氯解磷定、二巯丙磺钠、纳洛酮等特效药解毒 及补液治疗,同时,予纠正水和电解质紊乱和酸中毒、应用激素抗感染等综合治疗,根据患 者的实际病情调整用药。在观察护理阶段,本组患者均给予24h持续动态心电监护,密切 观察患者的意识、瞳孔、脉搏、呼吸、血压、面色、尿量、体温,详细准确的记录病情变化。 2.结果 经过抢救治疗,本组的37例患者共治愈33例,有2例抢救无效死亡;还有2例自动出院。 3.讨论 3.1急救措施及原理 洗胃是临床上最有效、最能清除有害毒物,并最大限度减少毒物吸收而达到治疗目的的方法。为及早、彻底清除毒物,故应及早插胃管洗胃。对确诊的患者,洗胃时间越早越好。国内传 统观点认为,洗胃最好在中毒后6h内进行,但中毒时间虽已超过6h甚至24h,呕吐物

四氯乙烯急性中毒病人的抢救及护理

为Hp感染诊断的金标准。以往认为Hp培养繁琐、困难,近年来随着培养技术的改进与完善,Hp培养已较方便。我们的体会是细菌培养的繁琐程度与组织学检查相当,成本并不高,因此细菌培养+快速尿素酶试验都具有临床应用价值。 参考文献 1 M ar shall BJ.Helicobacter pylor i.A m J Gastr oenter ol, 1994,89(Suppl):116 2 M egr aud F.Adv ant ages a nd disadvantag es o f curr ent di-ag no s-tic tests fo r the det ect ion of helico bacter pylor i. Scand J Ga st ro ent ero l,1996,31(Suppl):215,257 3 A nso rg R,Recklinghausen G V,Romar ius R,et al.E-va lua-t ion o f techniques for iso lat ion,subcultivation, and preser vation o f helicobacter pylor i.J Clin M icr obi-ol,1991,29:514 NI H.Helicobacter pylor i in peptic ulcer disease.JA-M A,1994,272:65 5 Y ang DH,Bom HS,Joo Y E,et al.Ga st ric juice ammo-nia v s CL O test f or diag no sis o f helicobacter pylor i infec-t ion.Dig Dis Sci,1995,40:1083 6 Hunt RH.M alfert heiner P,Yeo mans ND,et al.Cr iti-cal is-sues in the patho phy siolog y and m anag ement of peptic ulcer disease.Eur J Gastr o enter o l Hepato l, 1995,7:685 7 Schrader JA,Rek HV,N ot is W M,et al.A ro le for cul-t ur e in diagno sis o f helico bact er pylor i-related gastr ic diease.A m J G astr oenter ol,1993,88:1729 8 Bayer do r ffer E,O ertel H,L ehn N,et al.T opog raphic asso c-iat ion betw een a ctive g astritis and campy lo bacter py lo ri colonization.J Clin P athol,1989,42:843 (1999-02-08收稿) 四氯乙烯急性中毒病人的抢救及护理李惠芬 南京医科大学第一附属医院急诊中心,南京 210029 关键词 四氯乙烯;中毒;护理 四氯乙烯是去污剂中常用的一种有机溶剂。我院自1995年以来共收治了四氯乙烯急性中毒病人16例,现将我们的抢救和护理体会介绍如下。 1 临床资料 一般资料 16例中,男9例,女7例;年龄15~68y,中毒后1~12h入院。 中毒途径 3例皮肤接触,2例因误服中毒,11例因吸入高浓度的四氯乙烯挥发性气体而中毒。 临床表现 本组轻度中毒6例、中度4例、重度6例。因中毒途径、损伤部位不同,其临床表现也不同。吸入性中毒轻度者,出现头痛、眩晕、呕吐、全身乏力等症状;重度者,出现意识障碍、反射迟钝、抽搐、脑水肿、昏迷。口服中毒者表现为胸骨后疼痛,伴上腹痛,咽喉食管、胃部烧灼感,引起化学性胃炎。可引起急性肝坏死及其相应的症状。亦可导致急性肾坏死、肾小球损害等。接触性中毒者,局部皮肤麻木、红斑、起水疱,重度时出现坏死等急性皮炎症状。 2 抢救及护理 尽快脱离现场,迅速清除毒物,阻止毒物继续进入体内。口服者立即采用催吐、洗胃或导泻的方法清除毒物。对于神志不清需洗胃者应尽量先将胃内容物抽出后再进行灌洗。灌洗液每次注入400ml,一般不超过500ml,过多易将毒物驱入肠道,直至洗出液基本无味且较清澈为止。洗液总量10000~15000ml。如果误服量大,在第1次洗胃后4h可再重复洗胃。对四氯乙烯中毒目前尚无特殊解毒剂。 吸入者立即将病人移至新鲜空气处,给予吸氧3~4L/ m in,对急性肺水肿者给予50%乙醇湿化吸氧。 接触皮肤粘膜者,立即脱去污染衣物,用肥皂水及清水洗净污染皮肤,生理盐水湿敷伤口,百多邦软膏涂患处。眼睛用0.25%苏打水冲洗,抗生素眼膏或眼药水滴眼。 观察呼吸、心跳、瞳孔、眼底变化及液体出入量。根据病情作相应的实验室检查,如肝肾功能、心电图、X线胸片等。 密切观察患者的呼吸情况,有呼吸衰竭者可予呼吸兴奋剂,必要时可行气管插管机械通气。同时做好气道的护理,以防引起呼吸道感染。神志的变化可以反应病情发展趋势。轻者眩晕、头痛、乏力、嗜睡;重者为不同程度的昏迷,根据意识障碍的程度,每15~30min观察病情1次。做好瞳孔和眼底的观察。重症患者出现脑水肿时,要立即给予20%甘露醇静脉滴注,头部用冰帽以减少脑细胞的耗氧量,并使用促进脑细胞代谢的药物。昏迷病人除了做好气道护理外,还应做好皮肤护理,保持床铺干燥清洁,2~4h翻身拍背一次,谨防坠积性肺炎和褥疮的发生。患者有心律改变或有心功能障碍者可劝其静卧休息,同时可适当使用营养心肌药物。避免使用损伤肝肾的药物。经口中毒者于中毒后24h查肝、肾功能,记录24h出入液量,同时用一些护肝药物提高肝脏的解毒能力。 (1999-02-08收稿) 408 南京医科大学学报 第19卷第5期1999年9月

急性沼气中毒的抢救护理

急性沼气中毒的抢救护理 摘要】目的沼气中毒是人们在清池过程中,吸入了残留于沼气池内混合性气体而引起的中毒,较轻者表现为头晕痛,中度中毒者面部潮红,心跳加快,出汗较多,重度中毒出现深度昏迷、体温升高,脉搏加快,呼吸急促,大小便失禁[1],实行积极有效的抢救是提高存活率的关键,现将我科2008年5月—7月成功救治10例中毒患者谈谈护理体会。 【关键词】沼气中毒抢救护理 1、临床资料 我科收治的10例沼气中毒病人均为男性,年龄36—53岁,均为急诊入院患者,都是进入沼气池而发生中毒,中毒后就诊时间为10—90分钟;10例患者均存在意识障碍,其中2例眼部有不同程度的烧伤,粪水淹溺8例,致吸入性气道损伤1例,发生呼吸衰竭2例,机构通气6例,经积极抢救治疗护理,均治愈出院无护理并发症发生。 2、抢救与护理 2.1 抢救治疗 2.1.1 立即给氧,采用高浓度面罩或鼻导管给氧。建立静脉通道,脱去污染衣物,用大量清水全身清洗皮肤,尤其是污染部位。严格遵医嘱予20%甘露醇 125ml,静滴q8h,降颅压、防治脑水肿,并用尼莫地平0.83mg/h 静脉微泵泵入,预防脑血管痉挛。胞二磷胆碱、醒脑静营养脑细胞,改善脑功能,地塞米松 10mg 静脉q8h抗炎减轻脑水肿。参麦、镁钾合剂营养心肌。 2.1.2 保持气道通畅:粪水淹溺者气道内会吸入粪渣阻塞气道造成窒息,应保持患者气道通畅,注意呼吸频率、节律、血氧饱和度(2),发现异常,立即给予吸痰,同时行气管插管术,根据病情变化随时予呼吸机辅助呼吸。吸痰时做到轻快,并观察痰液性状、色、量和气管插管及呼吸机管道是否通畅,严密记录呼吸机各参数数据的变化情况。 2.2 护理 2.2.1 病情观察 在治疗过程中严密观察病人有无神经系统和心脏并发症的发生[3],如有无急性痴呆失语、癫痫、惊厥、肢体瘫痪、心律失常、心肌损害及时纠正休克,代谢性酸中毒,水与电解质代谢失衡,防治发生迟性脑病,高热者予头部降温,并观察病人意识有无改变,有无频繁呕吐、脉搏减慢、血压升高等颅内高压表现。 2.2.2呼吸机及气道的护理 应用呼吸机能迅速有效纠正低氧血症,因此应用时应保持各管道通畅,防止管道脱落,扭曲、受压,呼吸模式采用机控呼吸或辅助呼吸(SIMV或 SIMV+PSV),呼吸参数设定为潮气量6—8ml/kg,呼吸频率10—12次/分,氧浓度开始时用60%,以后根据血气分析结果调整。湿化器的温度以32—35℃为宜,罐内加蒸馏水[4]。同时加强管道的护理,及时清除呼吸道分泌物,特别应做好气道湿化,可通过蒸气雾化。痰液粘稠者予湿化液沐舒坦15mg+庆大霉素 8mg+0.9%NS50mg微泵泵入气道,能很好起到湿化气道作用。 2.2.3心理护理:由于沼气中毒突然发生,清醒病人易产生恐惧感,应尽量营造轻松的治疗环境,消除紧张恐惧心理,使之角色转变,各项治疗操作应尽量集中,主动与家属沟通,了解病人的喜好与生活习惯,采取更好的护理,减轻心理压力,对于插管或机器通气的清醒病人,应向其说明治疗的目的,需要配合的方

生吃鱼胆致急性肾损伤及心、肝功能损害

生吃鱼胆致急性肾损伤及心、肝功能损害 【摘要】目的:分析进食生鱼胆中毒并发急性肾损伤的临床特点及治疗方法。方法:收集我科近期收治1例鱼胆中毒并发急性肾损伤患者的临床资料,包括病史、症状、肝肾功能检查 及临床转归等。结果:患者男性,34岁,进食生鱼胆后出现急性肾损伤及肝功能损害,经积 极保护肝肾功能治疗,并行血液透析,康复出院。结论:生吃鱼胆可能导致急性肾损伤或伴心、肝功能损害,及时血液净化治疗是抢救成功的关键。 【关键词】鱼胆中毒;急性肾损伤;肝功能损害 鱼胆性寒,味苦,我国民间素有其清热解毒、明目止咳、降血压之说法,故常有人生吞鱼胆 以治上火、牙痛、眼疾、高血压,甚至气管炎等疾病。然而服用鱼胆常可引起多器官损害, 尤以肝肾多见,其次为心脏、消化道、神经系统等,若救治不及时,常可致死。我科近期收 治生吃鱼胆致急性肾损伤及心、肝功能损害患者1例,分析其临床表现及治疗方法、预后。 报告如下: 1、临床资料 患者男性,34岁,因“恶心、呕吐2天。”入院。患者入院2天前晚餐生吃草鱼胆1枚(约 20g左右)后出现恶心、呕吐,伴腹泻。1天前就诊我院,急诊查血常规:白细胞: 8.24×109/L 中性粒细胞百分比:70.8%血红蛋白:158.1g/L 血小板:283×109/L。考虑“急性胃肠炎”,予以氟哌酸0.4抗感染,林格氏液500ml补液等治疗。腹泻好转,但仍有恶心、呕吐。再次就诊我院,查肝肾功能示:总蛋白62.11g/L,白蛋白36.23g/L,总胆红素114μmol/L,直 接胆红素73.40μmol/L,间接胆红素40.60μmol/L,天门冬氨酸氨基转移酶1513IU/L,丙氨酸 氨基转移酶3274IU/L,γ-谷氨酰转移酶178IU/L,总胆汁酸113.81μmol/L,尿素氮 18.35mmol/L,肌酐538.20μmol/L。急诊以“鱼胆中毒”收入我科。患者既往体健。入院查体: T37.1℃P50次/分R19次/分BP152/92mmHg。神清。全身皮肤粘膜黄染,未见皮疹、出血点。双肺呼吸音清,未闻及干湿性啰音。心界无扩大,心率50次/分,律齐,各瓣膜听诊区未闻 及病理性杂音。腹平软,无压痛、反跳痛。肝脾肋下未触及。肝肾区无明显叩痛。双下肢无 水肿。腱反射存在,病理反射未引出。入院后查尿常规:白细胞4.73/HP、红细胞13.0/HP、 尿蛋白+。各种肝炎病毒标志物均(-)。心电图:1.窦性心动过缓(心率45次/分)。泌尿 系彩超:双肾稍大,形态饱满,包膜光滑,左肾大小约101×65mm,实质厚度约23mm,右 肾大小约107×63mm,实质厚度约24mm,双肾实质回声弥漫性增强,CDFI:双肾血供正常。肝、胆、脾、胰彩超:未见明显异常声像。 2、治疗方法 入院后予以洗胃、导泻,并紧急行连续性肾脏替代治疗(CRRT)2天,同时保肝、补液、营 养支持、防止上消化道出血等处理。2天后患者因经济困难,改为普通血液透析每周3次治疗。患者病情较为稳定后行肾活检,病理提示为急性肾小管坏死。 3、结果 入院3周后心率恢复至68次/分,复查血白蛋白40.3g/L、总胆红素17.4μmol/L、间接胆红素13.3μmol/L、直接胆红素4.1μmol/L、天门冬氨酸氨基转移酶22IU/L、丙氨酸氨基转移酶 53IU/L、尿素氮6.15mmol/L、肌酐95.7μmol/L。痊愈出院。 4、讨论 鱼胆中毒临床常见,一般进食一枚,若不及时救治,易发生胃肠功能及肝肾功能衰竭,重者 导致死亡[1]。而此例肝、肾、心同时受损则较为少见,临床上应引起重视。 食用鱼胆后毒素吸收入血,损害靶器官,中毒程度与食用鱼胆量呈正相关[2]。其成分复杂, 毒性较大,中毒机制尚不完全清楚。鱼胆汁中含有多种毒性成分,如氢氰酸、组胺样物质和

相关文档
相关文档 最新文档