文档库 最新最全的文档下载
当前位置:文档库 › 2011高考数学解答题专题攻略--函数与导数

2011高考数学解答题专题攻略--函数与导数

2011高考数学解答题专题攻略--函数与导数
2011高考数学解答题专题攻略--函数与导数

2011高考数学解答题专题攻略--函数与导数

一、08高考真题精典回顾: 1.(全国一19).(本小题满分12分) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;

(Ⅱ)设函数()f x 在区间2

133??-- ???

,内是减函数,求a 的取值范围. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当2

3a

≤时,0?≤,()0f x '≥,()f x 在R 上递增

当2

3a >,()0f x '=求得两根为23

3

a a x -±-=

即()f x 在233a a ??

----∞ ? ???,递增,223333a a a a ??----+- ? ???,递减,

233a a ??

-+-+∞

? ???,递增 (2)2232

3331

33

a a a a ?--

--???

-+-?-??

≤≥,且2

3a

>解得:7

4

a ≥

2.(辽宁卷22).(本小题满分14分) 设函数ln ()ln ln(1)1x

f x x x x

=

-+++. (Ⅰ)求f(x)的单调区间和极值;

(Ⅱ)是否存在实数a ,使得关于x 的不等式()f x a ≥的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.

本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.满分14分. 解:(Ⅰ)22

1ln 11ln ()(1)(1)1(1)

x x

f x x x x x x x '=

--+=-++++. ········· 2分 故当(01)x ∈,

时,()0f x '>, (1)x ∈+,∞时,()0f x '<

所以()f x 在(01),单调递增,在(1)+,∞单调递减. ·············· 4分 由此知()f x 在(0)+,∞的极大值为(1)ln 2f =,没有极小值. ········· 6分 (Ⅱ)(ⅰ)当0a ≤时, 由于[]ln(1)ln(1)ln (1)ln(1)ln ()011x x x x x x x x f x x x

+++-++-=

=>++,

故关于x 的不等式()f x a ≥的解集为(0)+,∞.················

10分 (ⅱ)当0a >时,由ln 1()ln 11x f x x x ??=++ ?+??知ln 21(2)ln 1122n n

n n f ??=++ ?+??

,其中n 为正整数,且有 2

2211ln 11log (1)222n n

n n a e n e ??+-- ???

. ·············

12分 又2n ≥时,ln 2ln 2ln 22ln 2

(1)121(11)1

2

n n n n n n n n =<=-+++-. 且

2ln 24ln 2

112a n n n

+-. 取整数0n 满足2

02log (1)n

n e >--,04ln 2

1n a

>

+,且02n ≥, 则0000ln 21(2)ln 112222

n

n n

n a a

f a ?

?=

++<+= ?+??, 即当0a >时,关于x 的不等式()f x a ≥的解集不是(0)+,∞

. 综合(ⅰ)(ⅱ)知,存在a ,使得关于x 的不等式()f x a ≥的解集为(0)+,∞,且a 的取值范围为(]0-∞,. 14

3.(江苏卷17).某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD 的中点P 处,已知AB=20km,CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为y km .

选校网 https://www.wendangku.net/doc/8113855260.html, 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库

(Ⅰ)按下列要求写出函数关系式:

①设∠BAO=θ(rad),将y 表示成θ的函数关系式; ②设OP x =(km) ,将y 表示成x x 的函数关系式. (Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,

使三条排污管道总长度最短.

【解析】本小题主要考查函数最值的应用.

(Ⅰ)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad) ,则10

cos cos AQ OA θθ

=

=, 故 10

cos OB θ

=

,又OP =1010tan θ-10-10ta θ, 所以1010

1010tan cos cos y OA OB OP θθθ=++=

++-, 所求函数关系式为2010sin 10cos y θθ-=

+04πθ?

?<< ??

?

②若OP=x (km) ,则OQ =10-x ,所以OA =OB=

()

2

22101020200x x x -+=-+

所求函数关系式为()2

220200010y x x x x =+-+<<

(Ⅱ)选择函数模型①,()()()

'

2210cos cos 2010sin 102sin 1cos cos sin y θθθθθθθ

-----==

令'

y =0 得sin 12θ=

,因为04

π

θ<<,所以θ=6π,

当0,

6πθ?

?

∈ ??

?

时,'

0y < ,y 是θ的减函数;当,64ππθ??

???

时,'0y > ,y 是θ的增函数,所以当θ=6π时,

min 10103y =+。这时点P 位于线段AB 的中垂线上,且距离AB 边

103

3

km 处。 二、09高考数列分析与预测:

以函数为载体,以导数为工具,考查函数性质及导数极值理论,单调性及其应用为目标,是最近几年函数与导数交汇试题的显著特点和命题趋向,预测2009年高考导数问题命题的五大热点如下:

热点一、在导数与函数性质的交汇点命题:主要考查导数的简单应用,包括求函数的极值,求函数的单调区间,证明函数的单调性等。命题的热点:三次函数求导后为二次函数,结合一元二次方程根的分布,考查代数推理能力、语言转化能力和待定系数法等数学思想。

热点二、在导数与含参数函数的交汇点命题:主要考查含参数函数的极值问题,分类讨论思想及解不等式的能力,利用分离变量法求参数的取值范围等问题。

热点三、在导数与解析几何交汇点命题:主要考查对导数的几何意义,切线的斜率,导数与函数单调性,最(极)值等综合运用知识的能力。

热点四、在导数与向量问题交汇点命题:依托向量把函数单调性,奇偶性,解不等式等知识融合在一起。即考查了向

C

B

P

O

A

D

量的有关知识,又考查了函数性质及解不等式等内容。

热点五、在导数与函数模型构建交汇点命题:主要考查考生将实际问题转化为数学问题,运用导数工具和不等式知识去解决最优化问题的数学应用意识和实践能力。 备考指南:

复习时,考生要“回归”课本,浓缩所学的知识,夯实基础,熟练掌握解题的通性、通法,提高解题速度。同时,许多高考试题在教材中都有原型,即由教材中的例题、习题引申变化而来。因此,考生必须利用好课本,夯实基础知识。

三、高考热点新题: 1.已知函数)(ln )(R a x

a

x x f ∈+=

(Ⅰ)求)(x f 的极值;

(Ⅱ)若函数)(x f 的图象与函数)(x g =1的图象在区间],0(2e 上有公共点,求实数a 的取值范围。

2.已知函数)1ln()ln(1

)

ln()(++-+=

x ax x ax x f , ),0(R a a ∈≠ (Ⅰ)求函数()f x 的定义域; (Ⅱ)求函数()f x 的单调区间;

(Ⅲ)当a >0时,若存在x 使得()ln(2)f x a ≥成立,求a 的取值范围.

3.某种商品的成本为5元/ 件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销。经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量Q (件)与实际销售价x (元)满足关系:

239(229107)x x -+ (57)x << 19865

x x -- (78)x ≤<

(1)求总利润(利润=销售额-成本)y (元)与销售价x (件)的函数关系式; (2)试问:当实际销售价为多少元时,总利润最大.

4.已知函数21()x g x x c +=+的图像关于原点成中心对称 ,设函数21()()ln x cx f x g x x

++=.

(1)求()f x 的单调区间;

(2)已知x

m

e x >对任意(1,)x ∈+∞恒成立.求实数m 的取值范围(其中e 是自然对数的底数).

5.设函数x b x x f ln )1()(2

+-=,其中b 为常数.

(Ⅰ)当2

1

>

b 时,判断函数()f x 在定义域上的单调性; (Ⅱ)若函数()f x 的有极值点,求b 的取值范围及()f x 的极值点;

(Ⅲ)若1b =-,试利用(II )求证:n ≥3时,恒有()2

11

ln 1ln n n n n

<+-<。

Q =

6.已知函数2

21

()ln(1),().1

f x x

g x a x =+=

+- (1) 求()g x 在(2,(2))P g 处的切线方程;l

(2) 若()f x 的一个极值点到直线l 的距离为1,求a 的值; (3) 求方程()()f x g x =的根的个数.

7.某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为

曲线

2()1(0)f x ax a =->的一部分,栏栅与矩形区域的边界交于点M 、N ,交曲

线于点P ,设

(,())P t f t

(1)将OMN ?(O 为坐标原点)的面积S 表示成t 的函数()S t ; (2)若在1

2

t =处,()S t 取得最小值,求此时a 的值及()S t 的最小值.

O

x

y

M

N

P

四、高考热点新题参考答案:

1解:(1)2

)

(ln 1)(),,0()(x a x x f x f +-=

'+∞的定义域为

令a e x x f -=='10)(得

当)(,0)(,),0(1x f x f e x a

>'∈-时是增函数

当)(,0)(,),(1x f x f e

x a

<'+∞∈-时是减函数

∴111)()(,)(---===a a a

e e

f x f e x x f 极大值处取得极大值在

(2)(i )当21e e

a

<-时,时1->a ,由(Ⅰ)知),0()(1a e x f -在上是增函数,在],(21e e a -上是减函数

11()()a a max f x f e e --∴==

又当],(.0)(],0(,0)(,2e e x x f e x x f e x a a a ---∈<∈==当时当时时,).0()(1

-∈a e x f 所以1)()(=x g x f 与图象的图

象在],0(2

e 上有公共点,等价于11

≥-a e

解得1,1,1≥->≥a a a 所以又 (ii )当121-≤≥-a e e

a 即时,],0()(2e x f 在上是增函数,

∴22

22)(],0()(e

a

e f e x f +=

上的最大值为在 所以原问题等价于

.2,122

2

-≥≥+e a e

a 解得 又1-≤a ,∴无解

2解:(Ⅰ)当0>a 时函数()f x 的定义域为),0(+∞;

当0

(Ⅱ)111)

1()

ln(1

)(2

++-+-+='x x x ax x x x f 2

22)

1()

ln()1()1()1()ln()1(+-=++++--+=x ax x x x x x ax x x 令()0f x '=时,得ln 0ax =即1

x a

=

, ①当0a >时,1(0,)x a

∈时()0f x '>,当1(,)x a

∈+∞时,()0f x '<, 故当0a > 时,函数的递增区间为1(0,)a ,递减区间为1(,)a

+∞ ②当10a -≤<时,10ax -<<,所以()0f x '>, 故当10a -≤<时,()f x 在(1,0)x ∈-上单调递增.

③当1a <-时,若1(1,)x a ∈-,()0f x '<;若1(,0)x a

∈,()0f x '>, 故当1a <-时,()f x 的单调递增区间为1(,0)a ;单调递减区间为1(1,)a

-. (Ⅲ)因为当0a >时,函数的递增区间为1(0,)a ;单调递减区间为1(,)a

+∞ 若存在x 使得()ln(2)f x a ≥成立,只须1()ln(2)f a a

≥,

即0

11ln()ln 2201112

a a a a a a a a a >?++?

≤?≥??<≤?-≤≤?? 3解:(1)据题意的

[]239(229107)(5)...(57)1986(5)....................(78)5

5010(8)(5) (8)

{x x x x x y x x x x x x -+-<<-=-≤<----≥

32239(239252535) (57)

6(33)..................................(78)10180650.. (8)

{x x x x x x x x x ?-+-<<=-≤<-+-≥

(2)由(1)得:当57x <<时,32

39(239252535)y x x x =?-+-

'2234(1342)234(6)(7)y x x x x =-+=--

当56x <<时,'0y >,()y f x =为增函数 当67x <<时,'0,()y y f x <=为减函数

∴当6x =时,max ()(16)195f x f ==

当78x ≤<时,(]6(33)150,156y x =-∈ 当8x ≥时,210(9)160y x =--+

当9x =时,max 160y = 综上知:当6x =时,总利润最大,最大值为195

4解: (1) 由已知可得C=0, ∴,ln )(,1)(2x x

x f x x x g =+= 2ln 1

()ln x f x x

-'=

, 令()0f x '=,得x e =.列表如下: x

(0,1) (1,)e

(,)e +∞

()f x ' - - + ()f x

单调减

单调减

单调增

所以()f x 的单调增区间为(,)e +∞,单调减区间为(0,1)和(1,)e (2)在x

m

e x >两边取对数,得ln x m x >.而1x >.所以ln x

m x

< 由(1)知当(1,)x ∈+∞时,()()f x f e e ≤=.所以m e <. 5解:(1)由题意知,()f x 的定义域为),0(+∞,

)0( 21)21(22222)('22

>-

+-=+-=+-=x x

b x x b x x x b x x f ∴当2

1

>b 时, ()0f x '>,函数()f x 在定义域),0(+∞上单调递增.

(2) ①由(Ⅰ)得,当1

2

b ≥时,/()0f x ≥,函数()f x 无极值点. ②当12b <

时,()0f x '=有两个不同解,221211b x --=2

2121 ,2b

x -+=

0 )≤∴b i 时,,舍去),0(0221211+∞?≤--=b x ,),0(12

2121 2+∞∈≥-+=b

x 而,

此时 ()f x ',()f x 随x 在定义域上的变化情况如下表:

x

),0(2x 2x 2()x +∞,

()f x ' -

+

()f x

极小值

由此表可知:0b ≤时,()f x 有惟一极小值点2

2121 ,b

x -+

=, ii ) 当1

02

b <<

时,0<21x x <<1 此时,()f x ',()f x 随x 的变化情况如下表: x

()10,x

1x

12()x x ,

2x

2()x +∞,

()f x ' +

-

+

()f x

极大值

极小值

由此表可知:102b <<

时,()f x 有一个极大值221211b x --=和一个极小值点2

21212b

x -+=; 综上所述:当0≤b 时,()f x 有惟一最小值点2

2121 ,b

x -+=;

当102b <<时,()f x 有一个极大值点22121b x --=和一个极小值点2

2121b

x -+=

(3)由(2)可知当1b =-时,函数x x x f ln )1()(2

--=,此时()f x 有惟一极小值点31

2

x +=

且为减函数在时,)2

3

1,0()( ,0)(')231,

0(+<+∈x f x f x 成立

时恒有当,即恒有恒有,

时,当 1

ln )1ln( 3 )1

1ln(10 )11(f(1) 23

134111 0 3 22n

n n n n n

n f n n >-+≥∴+->+>∴+<≤+<<≥

令函数 )0 ln )1()(>--=x x x x h (x

x x x h 1

11)(' -=-=则

2

1

ln )1ln(1 3 1

)11ln(ln )1ln(0

)1

1ln(n 1 )1()11( 111 3)(),1[1)( 0)(' 1n

n n n n n n n n n

h n h n n x h x x x h x h x >-+>≥<

+=-+∴>+->+∴+<≥+∞∈∴=>>∴时恒有综上述可知即时为增函数时处连续在,又时,

6解:(1)'

22

2()(1)

x g x x -=

- '(2)22g ∴=-且(2)1g a =+ 故()g x 在点(2,(2))P g 处的切线方程为:2250x y a +--= (2)由'

2

2()01

x

f x x =

=+得0x =, 故()f x 仅有一个极小值点(0,0)M ,根据题意得:

513

a

d +=

= 2a ∴=-或8a =- (3)令2

2

1

()()()ln(1)1

h x f x g x x a x =-=+--- '2222222211()21(1)1(1)x x h x x x x x x ??

=

+=+??+-+-??

当[0,1)(1,)x ∈?+∞时,'()0h x ≥ 当(,1)(1,0)x ∈-∞-?-时,'()0h x <

因此,()h x 在(,1),(1,0)-∞--时,()h x 单调递减, 在(0,1),(1,)+∞时,()h x 单调递增.

又()h x 为偶函数,当(1,1)x ∈-时,()h x 极小值为(0)1h a =- 当1x -

→-时,()h x →-∞, 当1x +

→-时,()h x →+∞ 当x →-∞时,()h x →+∞, 当x →+∞时,()h x →+∞ 故()()f x g x =的根的情况为:

当10a ->时,即1a <时,原方程有2个根;

当10a -=时,即1a =时,原方程有3个根;

当10a -<时,即1a >时,原方程有4个根

7解:(1)2y ax '=-,切线的斜率为2at -,∴切线l 的方程为2

(1)2()y at at x t --=--

令0,y =得2222

1121222at at at at x t at at at

--++=+== 2

1(,0)2at M at +∴,令0t =,得2222121,(0,1)y at at at N at =-+=+∴+

MON ∴?的面积2222

11(1)()(1)224at at S t at at at ++=?+=

(2) 2422222

321(1)(31)

()44a t at at at S t at at +-+-'== 0,0a t >> ,由()0S t '=,得21

310,3at t a

-==

得 当2

1

310,3at t a

->>

即时, ()0S t '>

当2

1

310,03at t a

-<<<

即时, ()0S t '< 1

,()3t S t a

∴=

当时有最小值 已知在12t =

处, ()S t 取得最小值,故有

114

,2

33a a =∴= 故当41

,32

a t =

=时,2

min 41

(1)1234()()4123432

S t S +?==

=??

选校网https://www.wendangku.net/doc/8113855260.html,高考频道专业大全历年分数线上万张大学图片大学视频院校库(按ctrl 点击打开)

选校网(https://www.wendangku.net/doc/8113855260.html,)是为高三同学和家长提供高考选校信息的一个网站。国内目前有2000多所高校,高考过后留给考生和家长选校的时间紧、高校多、专业数量更是庞大,高考选校信息纷繁、复杂,高三同学在面对高考选校时会不知所措。选校网就是为考生整理高考信息,这里有1517专业介绍,近2000所高校简介、图片、视频信息。选校网,力致成为您最强有力的选校工具!

产品介绍:

1.大学搜索:介绍近2000所高校最详细的大学信息,包括招生简章,以及考生最需要的学校招生办公室联系方式及学校地址等.

2.高校专业搜索:这里包含了中国1517个专业介绍,考生查询专业一目了然,同时包含了专业就业信息,给考生报考以就业参考。

3.图片搜索:这里有11万张全国高校清晰图片,考生查询学校环境、校园风景可以一览无余。4视频搜索:视频搜索包含了6162个视频信息,大学视频、城市视频、访谈视频都会在考生选校时给考生很大帮助。

5.问答:对于高考选校信息或者院校还有其他疑问将自己的问题写在这里,你会得到详尽解答。6新闻:高考新闻、大学新闻、报考信息等栏目都是为考生和家长量身定做,和同类新闻网站相比更有针对性。

7.千校榜:把高校分成各类,让考生选校时根据类别加以区分,根据排名选择自己喜欢的高校。8选校课堂:这里全部的信息都是以考生选校、选校技巧、经验为核心,让专家为您解答高考选校的经验和技巧。

9.阳光大厅:考生经过一年紧张的学习生活心理压力有待缓解和释放,阳光大厅给家长以心灵启示,给考生心里以阳光。

10.港澳直通:很多考生都梦想去香港澳门读大学,港澳直通,给考生的梦想一个放飞的地方,港澳直通囊括了港澳大学的所有信息,将一切更直观的呈现给考生。

11.选校社区:注册您真是的信息,在这里可以和大家分享您所在城市的到校信息,读到好的选校文章也可以拿到这里,让大家共同品尝,您还可以加入到不同的大学、专业、城市群组,和大家一起讨论这些话题分享信息。

选校网,为你整合众多高考选校信息,只为考生、家长能够从中受益。让我们共同为考生的未来,努力!

我们在不断完善,以更加符合家长和同学们的需求。

陆续我们将推出城市印象频道,让大家了解学校所在城市的详细情况;预报名系统(https://www.wendangku.net/doc/8113855260.html,),为您更加准确地根据高考分数填报志愿提供利器.......

一切,贵在真实。

函数与导数经典例题(含答案)(训练习题)

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,2 t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: x ,2t ??-∞ ?? ? ,2t t ?? - ??? (),t -+∞ ()f x ' + - + ()f x 所以,()f x 的单调递增区间是(), ,,;()2t t f x ? ?-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,2 t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: x (),t -∞ ,2t t ??- ??? ,2t ?? +∞ ??? ()f x ' + - + ()f x

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧. 技法一:“比较法”构造函数 [典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解] (1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的

结论求解. [对点演练] 已知函数f (x )=x e x ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1) 处的切线,求证:f (x )≤g (x ). 证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)= 1-x e x - 1-x 0 e 0 x = ?1-x ?e 0 x -?1-x 0?e x e 0 +x x . 设φ(x )=(1-x )e 0 x -(1-x 0)e x , 则φ′(x )=-e 0 x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ). 技法二:“拆分法”构造函数 [典例] 设函数f (x )=ae x ln x +be x -1 x ,曲线y =f (x )在点(1,f (1)) 处的切线为y =e (x -1)+2. (1)求a ,b ; (2)证明:f (x )>1. [解] (1)f ′(x )=ae x ? ?? ??ln x +1x +be x -1 ?x -1? x 2 (x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),

导数练习题 含答案

导数练习题 班 级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2 +1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4+2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2 运动,则在t =3时的瞬时速度为( ) A . 6 B .18 C .54 D .81 5.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C . 2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程 为( ) A .y =x -2 B .y =x C .y =x + 2 D .y =-x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点 处的切线倾斜角为π 4的是( ) A .(0,0) B .(2,4) C .(14,1 16) D .(12,1 4) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b = 1 B .a =-1,b =1 C .a =1,b =- 1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C . 6 D .9 12.已知函数f (x )=1 x ,则f ′(-3)=( ) A . 4 B.1 9 C .-14 D .-1 9 13.函数y =x 2 x +3 的导数是( )

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答 案) 选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是() A.b2-4ac0 B.b0,c0 C.b=0,c D.b2-3ac0 [答案] D [解析]∵a0,f(x)为增函数, f(x)=3ax2+2bx+c0恒成立, =(2b)2-43ac=4b2-12ac0,b2-3ac0. 2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3) C.(1,4) D.(2,+) [答案] D [解析]考查导数的简单应用. f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex, 令f(x)0,解得x2,故选D. 3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+) B.(-,2]

C.(-,-1)和(1,2) D.[2,+) [答案] B [解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2]. 4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf(x)0 f(x)0,故y=f(x)在(0,1)上为减函数 当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x(-)的单调增区间是() A.-,-2和0,2 B.-2,0和0,2 C.-,-2, D.-2,0和 [答案] A [解析]y=xcosx,当-x2时, cosx0,y=xcosx0, 当02时,cosx0,y=xcosx0. 6.下列命题成立的是() A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0

函数与导数经典例题高考压轴题含答案

函数与导数经典例题-高考压轴 1. 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()3 2 f x x =+,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)2 4 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1()()[(1)(2)()]6 f n h n h h h n -+++≥. 3. 设函数ax x x a x f +-=22ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自 然对数的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

合理构造函数解导数问题

合理构造函数解导数问题 从近几年的高考命题分析,高考对导数的考查常以函数为依托的小综合题,考查函数、导数的基础知识和基本方法.近年的高考命题中的解答题将导数内容和传统内容中有关不等式和函数的单调性、方程根的分布、解析几何中的切线问题等有机的结合在一起,设计综合试题。在内容上日趋综合化,在解题方法上日趋多样化. 解决这类有关的问题,有时需要借助构造函数,以导数为工具构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。 例1:(2009年宁波市高三第三次模拟试卷22题) 已知函数()()ax x x ax x f --++=2 3 1ln . (1) 若 3 2 为()x f y =的极值点,求实数a 的值; (2) 若()x f y =在[)+∞,1上增函数,求实数a 的取值范围; (3) 若1-=a 时,方程()()x b x x f = ---3 11有实根,求实数b 的取值范围。 解:(1)因为3 2= x 是函数的一个极值点,所以0)32 (='f ,进而解得:0=a ,经检验是 符合的,所以.0=a (2)显然(),2312a x x ax a x f --++='结合定义域知道01>+ax 在[)+∞∈,1x 上恒成立,所以0≥a 且01≥+ax a 。同时a x x --232此函数是31x 时递增, 故此我们只需要保证()0231 1≥--++= 'a a a f ,解得:.2510+≤≤a (3)方法一、变量分离直接构造函数 解:由于0>x ,所以:( )2 ln x x x x b -+=32 ln x x x x -+= ()2 321ln x x x x g -++=' ()x x x x x x g 1 266212---=-+='' 当6710+< ''x g 所以()x g '在6 7 10+< x 时,(),0<''x g 所以()x g '在6 71+>x 上递减; 又(),01='g ().6 7 10, 000+< <='∴x x g

函数与导数解答题训练

函数与导数解答题训练2 1.设函数ax x x a x f +-=22ln )(,0>a . (1)求)(x f 的单调区间; (2)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立.注:e 为自然对数的底数. 2.已知函数322()4361,f x x tx t x t x R =+-+-∈,其中t R ∈. (1)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0t ≠时,求()f x 的单调区间; (3)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 3.设01a <<,集合{|0}A x R x =∈>,2{|23(1)60}B x R x a x a =∈-++>,D A B =. (1)求集合D (用区间表示); (2)求函数32()23(1)6f x x a x ax =-++在D 内的极值点.

4.已知函数321()3 f x x x ax =++. (1)讨论()f x 的单调性; (2)设()f x 有两个极值点12,x x ,若过两点11(,())x f x ,22(,())x f x 的直线l 与x 轴的交点在曲线()y f x =上,求a 的值. 5.已知函数32()f x x ax bx c =+++在23 x =-与1x =时都取得极值. (1)求a 、b 的值与函数()f x 的单调区间; (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围. 6.设函数2()ln f x x ax b x =++,曲线()y f x =过(1,0)P ,且在P 点处的切斜线率为2. (1)求,a b 的值; (2)证明:()2 2.f x x ≤-

函数与导数专题试卷(含答案)

高三数学函数与导数专题试卷 说明:1.本卷分第Ⅰ卷(选择题),第Ⅱ卷(填空题与解答题),第ⅠⅡ卷的答案写在答题卷的答案纸上,学生只要交答题卷. 第Ⅰ卷 一.选择题(10小题,每小题5分,共50分) (4)()f x f x +=,当(0,2)x ∈时,()2f x x =+,则(7)f =( ) A . 3 B . 3- C . D . 1- 2.设A ={x ||x |≤3},B ={y |y =-x 2+t },若A ∩B =?,则实数t 的取值范围是( ) A .t <-3 B .t ≤-3 C .t >3 D .t ≥3 3.设0.3222,0.3,log (0.3)(1)x a b c x x ===+>,则,,a b c 的大小关系是 ( ) A .a b c << B .b a c << C .c b a << D .b c a << 4.函数x x f +=11)(的图像大致是( ) 5.已知直线ln y kx y x ==是的切线,则k 的值为( ) A. e B. e - C. 1e D. 1e - 6.已知条件p :x 2+x-2>0,条件q :a x >,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .1≥a B .1≤a C .1-≥a D.3-≤a 7.函数3()2f x x ax =+-在区间(1,)+∞上是增函数,则a 的取值范围是( ) A. [3,)+∞ B. [3,)-+∞ C. (3,)-+∞ D. (,3)-∞- 8. 已知函数f (x )=log 2(x 2-2x -3),则使f (x )为减函数的区间是( ) A .(-∞,-1) B .(-1,0) C .(1,2) D .(-3,-1)

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A. B. C. D. 2.设函数是奇函数的导函数,,当时,,则使得 成立的的取值范围是() A. B. C. D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A. B. C. D. 4.已知函数定义在数集上的偶函数,当时恒有,且,则不等式的解集为( ) A. B. C. D. 5.定义在上的函数满足,,则不等式的解集为() A. B. C. D. 6.设定义在上的函数满足任意都有,且时,有,则的大小关系是() A. B. C. D. 7.已知偶函数满足,且,则的解集为 A. B. C. D.

8.定义在R上的函数满足:是的导函数,则不等式(其中e为自然对数的底数)的解集为( ) A. B. C. D. 9.已知定义在上的函数的导函数为,满足,且,则不等式 的解集为() A. B. C. D. 10.定义在上的函数f(x)满足,则不等式的解集为A. B. C. D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A. B. C. D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A. e2017f(-2017)e2017f(0) B. e2017f(-2017)f(0),f(2017)>e2017f(0) D. e2017f(-2017)>f(0),f(2017)

函数与导数练习题(有答案)

函数与导数练习题(高二理科) 1.下列各组函数是同一函数的是 ( ) ①()f x = ()g x =()f x x = 与()g x =; ③0()f x x =与01 ()g x x = ;④2()21f x x x =--与2()21g t t t =--. A 、①② B 、①③ C 、③④ D 、①④ 2.函数2 4 ++= x x y 的定义域为 . 3.若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 4.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 5.下列函数中,在()0,2上为增函数的是( ) A .12 log (1)y x =+ B .2 log y =C .2 1log y x = D .2 log (45)y x x =-+ 6.)(x f y =的图象关于直线1-=x 对称,且当0>x 时,,1 )(x x f =则当2-

函数与导数大题部分-高考数学解题方法归纳总结专题训练

专题03 函数与导数大题部分 【训练目标】 1、 理解函数的概念,会求函数的定义域,值域和解析式,特别是定义域的求法; 2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题; 3、 掌握指数和对数的运算性质,对数的换底公式; 4、 掌握指数函数和对数函数的图像与性质; 5、 掌握函数的零点存在定理,函数与方程的关系; 6、 熟练数形结合的数学思想在解决函数问题的运用; 7、 熟练掌握导数的计算,导数的几何意义求切线问题; 8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,会根据单调性确定参数的取 值范围; 9、 会利用导数求函数的极值和最值,掌握构造函数的方法解决问题。 【温馨小提示】 本章内容既是高考的重点,又是难点,再备考过程中应该大量解出各种题型,总结其解题方法,积累一些常用的小结论,会给解题带来极大的方便。 【名校试题荟萃】 1、(2019届新余四中、上高二中高三第一次联考)已知函数 .,R n m ∈ (1)若函数()x f 在()()2,2f 处的切线与直线0=-y x 平行,求实数n 的值; (2)试讨论函数()x f 在区间[)+∞,1上最大值; (3)若1=n 时,函数()x f 恰有两个零点,求证:221>+x x 【答案】(1)6n =(2)1ln m n --(3)见解析 【解析】(1)由, ,由于函数()f x 在(2,(2))f 处的切线与直线0x y -=平行, 故 2 14 n -=,解得6n =。 (2) ,由()0f x '<时,x n >;()0f x '>时,x n <,所以 ①当1n ≤时,()f x 在[)1,+∞上单调递减,故()f x 在[)1,+∞上的最大值为 ;

(完整word版)2018年高考数学专题复习突破训练(高考真题专题练)_构造函数解决高考导数问题

构造函数解决高考导数问题 1.(2015·课标全国Ⅰ理)设函数a ax x e x f x +--=)12()(,其中1

6.(2016?课标全国Ⅱ文)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 7.(2017·天津文)(本小题满分14分) 设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间; (Ⅱ)已知函数()y g x =和x y e =的图像在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0; (ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围. 8.(2016·江苏)(本小题满分16分)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =1 2 . ①求方程f (x )=2的根; ②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.

集合与简易逻辑函数与导数测试题(含答案)

集合与简易逻辑、函数与导数测试题 1.若集合{ }8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U )B 等于 ( )A.{}5 B . { }7,3,1 C .{}8,2 D. {}8,7,6,5,4,3,1 2.函数()2()3log 6f x x x =+-的定义域是( ) A .{}|6x x > B .{}|36x x -<< C .{}|3x x >- D .{}|36x x -<≤ 3.已知23:,522:≥=+q p ,则下列判断中,错误的是 ( ) A .p 或q 为真,非q 为假 B . p 或q 为真,非p 为真 C .p 且q 为假,非p 为假 D . p 且q 为假,p 或q 为真 4.下列函数中,既是偶函数又在)0,(-∞上单调递增的是 ( ) A .3y x = B .y cos x = C .y ln x = D .2 1 y x = 5.对命题” “042,02 00≤+-∈?x x R x 的否定正确的是 ( ) A .042,02 00>+-∈?x x R x B .042,2≤+-∈?x x R x C .042,2>+-∈?x x R x D .042,2≥+-∈?x x R x 6.为了得到函数x y )3 1(3?=的图象,可以把函数x y )31 (=的图象 A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度 7.如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是 A .在区间(-2,1)上)(x f 是增函数 B .在(1,3)上)(x f 是减函数 C .在(4,5)上)(x f 是增函数 8. 若函数) )(12()(a x x x x f -+= 为奇函数,则a 的值为 ( ) A .21 B .32 C .4 3 D .1 9.已知定义域为R 的函数f (x )在区间(4,+∞)上为减函数,且函数y =f (x +4)为偶函数,则( ) O y x 1 2 4 5 -3 3 -2

函数与导数大题训练试题+答案

函数与导数大题训练 1已知函数.2 3)32ln()(2x x x f -+= (I )求f (x )在[0,1]上的极值; (II )若对任意0]3)(ln[|ln |],3 1,61[>+'+-∈x x f x a x 不等式成立,求实数a 的 取值范围; (III )若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的 取值范围. 2. 设.2)(ln )()(2)(--==-- =e p qe e g x x f x f x q px x g ,且,其中(e 为自然对数的底数) (Ⅰ)求p 与q 的关系; (Ⅱ)若)(x g 在其定义域内为单调函数,求p 的取值范围; (Ⅲ)证明:①)1(,1)(->-≤x x x f ②).2,()1(412ln 33ln 22ln 2222≥∈+--<+++n N n n n n n n Λ 3.设函数a x x a x f +++-=1)(2,]1,0(∈x ,+ ∈R a . (1)若)(x f 在]1,0(上是增函数,求a 的取值范围; (2)求)(x f 在]1,0(上的最大值.

答案 1解:(I )2 3)13)(1(33323)(+-+-=-+= 'x x x x x x f , 令13 10)(-==='x x x f 或得(舍去) )(,0)(,3 10x f x f x >'<≤∴时当单调递增; 当)(,0)(,13 1x f x f x <'≤<时单调递减. ……………………………………3分 ]1,0[)(613ln )31(在为函数x f f -=∴上的极大值 ……………………………4分 (II )由0]3)(ln[|ln |>+'+-x x f x a 得 x x a x x a 323ln ln 323ln ln ++<+->或, …………① ……………………5分 设3 32ln 323ln ln )(2 x x x x x h +=+-=, x x x x x g 323ln 323ln ln )(+=++=, 依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立, 0)32(2) 32(33)32(3332)(2>+=+?-+?+='x x x x x x x x g Θ, 03262)62(31323)(22>++=+?+= 'x x x x x x x h ,………………………………6分 ]3 1,61[)()(都在与x h x g ∴上单增,要使不等式①成立, 当且仅当.5 1ln 31ln ),61()31(<><>a a g a h a 或即或 ………………………8分 (III )由.0223)32ln(2)(2=-+-+?+-=b x x x b x x f 令x x x x x b x x x x 329723323)(,223)32ln()(2 2+-=+-+='-+-+=??则, 当]3 7,0[)(,0)(,]37,0[在于是时x x x ??>'∈上递增;

导数与函数的单调性练习题

2.2.1导数与函数的单调性 基础巩固题: 1.函数f(x)= 21 ++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.021 C.a>2 1 D.a>-2 答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>2 1 . 2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( ) A .a ≥0 B .a <-4 C .a ≥0或a ≤-4 D .a >0或a <-4 答案:C 解析:∵f ′(x )=2x +2+a x ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1) 上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),02 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +

2021届高三理科数学二轮复习专练:构造函数解决导数问题(含解析)

《构造函数解决导数问题》专练 一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数()f x 的定义域为R ,(1)2f -=,对任意x ∈R ,()2f x '>,则 ()24f x x >+的解集为( ). A .R B .(),1-∞- C .()1,1- D .()1,-+∞ 2.设函数()f x 是定义在()0-∞, 上的可导函数,其导函数为()'f x ,且有22()()f x x f x x '+?>,则不等式2(2021)(2021)4(2)0x f x f +?+-?->的解集为 ( ) A .(2023)-∞-, B .()2-∞-, C .(20)-, D .(20220)-, 3.设()f x 是定义在(,0) (0,)ππ-的奇函数,其导函数为()'f x ,当(0,)x π∈时, ()sin ()cos 0f x x f x x '-<,则关于x 的不等式()2()sin 6 f x f x π <的解集为 ( ) A .(,0)(0,)66 π π - ? B .(,0)(,)66 π π π- C .(,)(,)66 π π ππ-- ? D .()(0,)66 π π π-- , 4.定义在R 上的函数()f x 的导函数为()'f x ,若()()f x f x '>,(2)1008f =,则不等式2 1 e ( 1) 1008e 0x f x ++->的解集为( ) A .(1,)-+∞ B .(2,)+∞ C .(,1)-∞ D .(1,)+∞ 5.已知()f x 是定义在()(),00,-∞?+∞上的奇函数,且0x >时 ()()20xf x f x '+>,又()10f -=,则()0f x <的解集为( ) A .() (),11,-∞-+∞ B .()()1,00,1- C .()()1,01,-?+∞ D .()(),10,1-∞-? 6.设定义在R 上的函数()f x 的导函数为()'f x ,若()()'2f x f x +<, ()02021f =,则不等式()22019x x e f x e >+(其中e 为自然对数的底数)的解集 为( )

函数与导数解答题答案文科

函数与导数解答题答案(文科) 1. (2017省一统21)解:(I)当 f‘(x)令f‘ (x)=0计算得出当时,f' (x)函数(II )对 令时f (x), 此时函数 ,此时函数单调递减.时, 单调递减区间为, 恒成立 ? 单调递增; 当, 时, 函数, 的单调递增区间为: , 恒成立?, 则g‘ (x),① 此时函数 时,g‘(x)在R上单调递增 ,,恒成立,满足条件.②时,令g‘ (x)=0计算得出,则时,g‘ (x),此时函数在R上单调递增;时,g‘ (x),此时函数在R上单调递减.当时,函数取得极小值即最小值,则, 计算得出③ 则 时,令

g‘(x)=0计算得出时,g‘ (x) 时,g‘(x),此时函数, 此时函数,在R上单调递增;在R上单调递减.当时,函数取得极小值即最小值, 则综上可得:a 的求值范围是, 计算得出 2.(2017 省二统21)解:(1)根据题意可以知道函数的定义域为 当时,, ①当②当综上 , 或时 5 的单调递增区间为时, 5 ,单调递减. ,单调递增. ,单调递减区间为 (2)由,得, 整理得, , 令,则 令,, 在上递增

得,, 存在唯一的零点 当 在 当时 ,上递减; 时 ,, 在上递增. , 要使对任意恒成立,只需 又 3.解 :(1),且时 ,,的最大值为3. 5 '(x),‘(1)=3,,数在点处的切线方程为,(2)函数在上是增函数,‘(x),在上恒成立, 即,在上恒成立, 令,当且仅当时,取等号, 5 (3) 的取值范围为 5 '(x),①当时,在上单调递减,, 计算得出(舍去); ②当且时,即,在上单调递减,在 上单调递增,,计算得出,满足条件;③当,且时,即,在上单调

集合与简易逻辑函数与导数测试题(含答案)

集合与简易逻辑、函数与导数测试题 时间:100分钟 满分:130分 1.若集合{ }8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U )B 等于( ) A.{}5 B . { }7,3,1 C .{}8,2 D. {}8,7,6,5,4,3,1 2.函数()2()3log 6f x x x =+-的定义域是( ) A .{}|6x x > B .{}|36x x -<< C .{}|3x x >- D .{}|36x x -<≤ 3.已知23:,522:≥=+q p ,则下列判断中,错误的是 ( ) A .p 或q 为真,非q 为假 B . p 或q 为真,非p 为真 C .p 且q 为假,非p 为假 D . p 且q 为假,p 或q 为真 4.下列函数中,既是偶函数又在)0,(-∞上单调递增的是 ( ) A .3y x = B .y cos x = C .y ln x = D .21 y x = 5.对命题” “042,02 00≤+-∈?x x R x 的否定正确的是 ( ) A .042,02 00>+-∈?x x R x B .042,2≤+-∈?x x R x C .042,2>+-∈?x x R x D .042,2≥+-∈?x x R x 6.为了得到函数x y )3 1(3?=的图象,可以把函数x y )31 (=的图象 A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度 D .向右平移1个单位长度 7.如图是函数)(x f y =的导函数)(x f '的图象,则下面判断正确的是 A .在区间(-2,1)上)(x f 是增函数 B .在(1,3)上)(x f 是减函数 C .在(4,5)上)(x f 是增函数 8. 若函数) )(12()(a x x x x f -+= 为奇函数,则a 的值为 ( ) A .21 B .32 C .4 3 D .1 9.已知定义域为R 的函数f (x )在区间(4,+∞)上为减函数,且函数y =f (x +4)为偶 O y x 1 2 4 5 -3 3 -2

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

相关文档
相关文档 最新文档