文档库 最新最全的文档下载
当前位置:文档库 › 2011届高三文科数学数列经典练习

2011届高三文科数学数列经典练习

2011届高三文科数学数列经典练习
2011届高三文科数学数列经典练习

2011届高三文科数学数列经典练习

1. 已知数列{}()n a n N *∈是等比数列,且130,2,8.n a a a >==

(1)求数列{}n a 的通项公式; (2)求证:

111113

2

1

<+

++

+n

a a a a ;

(3)设1log 22

+=n n a b ,求数列{}n b 的前100项和.

2.数列{a n }中,18a =,42a =,且满足21n n a a ++-=常数C (1)求常数C 和数列的通项公式; (2)设201220||||||T a a a =+++ , (3) 12||||||n n T a a a =+++ ,n N +∈

3. 已知数列n n 2,n a =2n 1,n ???

为奇数;

-为偶数; , 求2n S

4 .已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且

11=a .

(1) 求证: 数列?

??

?

???-

n n a 231

是等比数列; (2) 求数列{}n b 的前n 项和n S .

5.某种汽车购车费用10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,…,各年的维修费平均数组成等差数列,问这种汽车使用多少年报废最合算(即使用多少年时,年平均费用最少)?

6. 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少51

,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的

促进作用,预计今后的旅游业收入每年会比上年增加

4

1.

(1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式; (2)至少经过几年,旅游业的总收入才能超过总投入?

7. 在等比数列{a n}(n∈N*)中,已知a1>1,q>0.设b n=log2a n,且b1+b3+b5=6,b1b3b5=0.

(1)求数列{a n}、{b n}的通项公式a n、b n;

(2)若数列{b n}的前n项和为S n,试比较S n与a n的大小.

8. 已知数列{a n}的前n项和为S n,且a n是S n与2的等差中项,数列{b n}中,b1=1,

点P(b n,b n+1)在直线x-y+2=0上。

(1)求a1和a2的值;

(2)求数列{a n},{b n}的通项a n和b n;

(3)设c n=a n·b n,求数列{c n}的前n项和T n。

9. 已知数列{}n a 的前n 项和为11,4

n S a =

且1112

n n n S S a --=++

,数列{}n b 满足11194

b =-

13n n b b n --=(2)n n N *

≥∈且.

(1)求{}n a 的通项公式;

(2)求证:数列{}n n b a -为等比数列; (3)求{}n b 前n 项和的最小值.

10. 已知等差数列{}a n 的前9项和为153.

(1)求5a ;

(2)若,82=a ,从数列{}a n 中,依次取出第二项、第四项、第八项,……,第2n 项,按原来的顺序组成一个新的数列{}c n ,求数列{}c n 的前n 项和S n .

11.已知曲线C :x y e =(其中e 为自然对数的底数)在点()1,P e 处的切线与x 轴交于点1Q ,过点1Q 作x 轴的垂线交曲线C 于点1P ,曲线C 在点1P 处的切线与x 轴交于点2Q ,过点2Q 作x 轴的垂线交曲线C 于点2P ,……,依次下去得到一系列点1P 、2P 、……、n P ,设点n P 的坐标为(),n n x y (*n ∈N ).

(Ⅰ)分别求n x 与n y 的表达式;

(Ⅱ)求1

n

i i i x y =∑.

12. 在数列{})0,(2)2(,21

11

>∈-++==*

++λλλ

λN n a a ,a

a n n n n n 中

(1) 求证:数列2

{

(

)}n

n

n

a λλ

-是等差数列;

(2) 求数列{}n a 的前n 项和n S ;

13. 在等差数列{}n a 中,公差d 0≠,且56a =,

(1)求46a a +的值.

(2)当33a =时,在数列{}n a 中是否存在一项m a (m 正整数),使得 3a ,5a ,m a 成等比数列,若存

在,求m 的值;若不存在,说明理由.

(3)若自然数123t n , n , n , , n , , ??????(t 为正整数)满足5< 1n <2n < ??? < t n

31t 5n n a , a ,a , ,a , ??????成等比数列,当32a =时, 用t 表示t n

14. 已知二次函数2()f x ax bx =+满足条件:①(0)(1)f f =; ②()f x 的最小值为18

-.

(Ⅰ)求函数()f x 的解析式;

(Ⅱ)设数列{}n a 的前n 项积为n T , 且()

45f n n T ??

= ?

??

, 求数列{}n a 的通项公式;

(Ⅲ) 在(Ⅱ)的条件下, 若5()n f a 是n b 与n a 的等差中项, 试问数列{}n b 中第几项的 值最小? 求出这个最小值.

15. 已知函数f(x)=x2-4,设曲线y=f(x)在点(x

n ,f(x

n

))处的切线与x轴的交点为(x

n+1

, 0)(n∈N +),

(Ⅰ)用x

n 表示x

n+1

(Ⅱ)若x

1=4,记a

n

=lg

2

2

n

n

x

x

+

-

,证明数列{

n

a}成等比数列,并求数列{

n

x}的通项公式;

(Ⅲ)若x

1=4,b

n

=x

n

-2,T

n

是数列{b

n

}的前n项和,证明T

n

<3.

数列专题练习参考答案

1. 解:(1)设等比数列{}n a 的公比为q .

则由等比数列的通项公式11n n a a q -=得3131a a q -=,284,2q ∴==

又()0,22n a q >∴=L L

∴数列{}n a 的通项公式是()1

22

23n n

n a -=?=分L L

.

()

1

2

3

2

3

1111211111112

2

2

12

2

2

2

12

n

n

n

a a a a +

+

++

-?

=+

+

++

=-

L L ()11,2

n

=-

6分L L

()11,117,2

n

n ≥∴-<分Q L L

()1

2

3

111118.

n

a a a a ∴

+

+

++

<分L L L ()()()(){}()2132log 21219,

212112,

,n

n

n n n b n b b n n b -=+=+-=+--+=????∴由分又常数数列是首项为3,公差为2的等差数列11分L L

Q L L

∴数列{}n b 的前100项和是()

10010099

1003210200122

S ?=?+

?=分L L 2.解:(1)C 2102n a n ==-,-

1256

125671251

25

6720

5

20

(2)||||||

|||

=(+a ) =2()(++a ) =2S S

=260

n n

n

T a a a a a a a a a a a a a a a a a a =++++++++++++++++ |--- (3)22

9 , 5

409, 5

n n n n T n n n ?≤?=?+>??--

12321352124621

3

5

2-1

2

()()2(14)(-1 2222)(3711)3414

2

2(41)

23

n n n n n

n n S a a a a a a a a a a a a n n n n n

=+++???=+++???++++???=???++++???=

++

?=

++-3.解:-)

(+++--

4 .解:证法1: ∵1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根, ∴??

?==+++.

,

211n n n n n n a a b a a

由n n n a a 21=++,得??

?

???--=?-

++n n n n a a 2312

3

11

1,

故数列?

??

?

??

?-

n n a 231

是首项为31321=-a ,公比为1-的等比数列.

证法2: ∵1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根, ∴??

?==+++.

,

211n n n n n n a a b a a

n

n n n n

n

n n n a a a a 2

3

12

3

122

312311

1

1?-

?--=

?-

?-

+++12

3

1231-=?-?

?

?

???--=n

n n n a a ,

故数列???

?

???-

n n a 231

是首项为31321=-a ,公比为1-的等比数列.

(2)解: 由(1)得()

1

13

12

31--?=

?-

n n

n a , 即()

[]n

n

n a 12

3

1--=

.

∴()

[]()

[]1

1

112

12

91+++--?--==n n n

n

n n n a a b

()[]

122

9

11

2---=

+n

n .

∴n n a a a a S ++++= 321 ()()()

()

[]{}n

n

1112

22

23

12

32

-++-+--++++=

()??

????----=+21122311

n n .

2

2

2

0.20.40.60.2(1) 0.20.10.1 (42)

100.90.10.1 100.1.........................................6 n

n n n n n n n

n n +++??????++=?

=+++=++5.解:维修费总费用=分

=+分2

10 100.1

10 0.11

21 3............................................9 .............................10n n n n n

n

=++=+

+≥+=平均费用当时,汽车报废最合算=

分分

6. 解:(1)第1年投入为800万元,第2年投入为800×(1-

5

1)万元,…

第n 年投入为800×(1-

5

1)

n -1

万元,所以,n 年内的总投入为

a n =800+800×(1-

5

1)+…+800×(1-5

1)

n -1

=∑=n

k 1

800×(1-

5

1)k -1

=4000×[1-(

5

4)n ]

第1年旅游业收入为400万元,第2年旅游业收入为400×(1+4

1),…,第n 年旅游业收入400×(1+

4

1)n -1

万元.所以,n 年内的旅游业总收入为

b n =400+400×(1+

4

1)+…+400×(1+

4

1)

k -1

=∑=n

k 1

400×(

4

5)k -1.

=1600×[(

4

5)n -1]

(2)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即: 1600×[(

4

5)n -1]-4000×[1-(

5

4)n ]>0,令x =(

5

4)n ,

代入上式得:5x 2

-7x +2>0.解此不等式,得x <5

2,或x >1(舍去).即(5

4)n

5

2,

由此得n ≥5.

∴至少经过5年,旅游业的总收入才能超过总投入.

7.

1

1121351556

135513213132

3

3

22522111(1),,1,0,{}, log , 01,1,0.

60,6,log 6,264,1 64,8.81,. 16.

2

n n n n n n n a a q

a q a

b a b b b a a b b b b b b b a a a a a a a a q q q a a q a a a q

--=>>∴==>==++==+==∴===∴=∴===∴===∴= 7.解∶由题设有数列是单调数列又

及知必有即由及得即即由得1

15214116()2log 5. (6)

2

()

(9)

(2)(1),5,.

2

2

9,0,0,;

12,47;168,;

111

345678,91010974,421,248n n

n n n n n n n n n n n n n n n b a n n b b n n b n S n S a a S n S a a S n S a a S --====-+-=-=

=

>∴>===∴>===∴<;分由知当≥时≤当或时或或当时、、、、、、、、、、、、、、、.

,129,; 345678,.(13)

n n n n n n n a S n a S =>=<综上所述当或或≥时有当时有分、、、、、

8. 解:(1)∵a n 是S n 与2的等差中项 ∴S n =2a n -2 ∴a 1=S 1=2a 1-2,解得a 1=2 a 1+a 2=S 2=2a 2-2,解得a 2=4 ···3分

(2)∵S n =2a n -2,S n -1=2a n -1-2, 又S n —S n -1=a n ,*),2(N n n ∈≥ ∴a n =2a n -2a n -1, ∵a n ≠0, ∴

*),2(21

N n n a a n n ∈≥=-,即数列{a n }是等比树立∵a 1=2,∴a n =2n

∵点P (b n ,b n +1)在直线x-y+2=0上,∴b n -b n +1+2=0,

∴b n +1-b n =2,即数列{b n }是等差数列,又b 1=1,∴b n =2n-1,

···8分

(3)∵c n =(2n -1)2n

∴T n =a 1b 1+ a 2b 2+····a n b n =1×2+3×22+5×23+····+(2n -1)2n , ∴2T n =1×22

+3×23

+····+(2n -3)2n

+(2n -1)2n +1

因此:-T n =1×2+(2×22+2×23+···+2×2n )-(2n -1)2n +1, 即:-T n =1×2+(23+24+····+2n +1)-(2n -1)2n +1,

∴T n =(2n -3)2n +1+6

··14分

9. 解: (1)由112221n n n S S a --=++得1221n n a a -=+, 112

n n a a --=

……2分

∴111(1)24

n a a n d n =+-=

- ……………………………………4分

(2)∵13n n b b n --=,∴11133n n b b n -=+

,

∴1111111111113()332

43

64324n n n n n b a b n n b n b n ----=

+

-

+

=-

+

=-

+

;

11111113(1)2

4

2

4

n n n n b a b n b n -----=-

-+

=-

+

∴由上面两式得

11

13

n n n n b a b a ---=-,又111191304

4b a -=-

-=-

∴数列{}n n b a -是以-30为首项,

13

为公比的等比数列.…………………8分

(3)由(2)得11

30()3

n n n b a --=-?,∴11

1

11

130()30()3

243

n n n n b a n --=-?=

-

-? 12

111

111130()(1)30()243243

n n n n b b n n ----=

-

-?--++? =

22

1

111130()(1)20()023323

n n --+?-=+?> ,∴{}n b 是递增数列 ………11分 当n =1时, 11194

b =-

<0;当n =2时, 23104

b =

-<0;

当n =3时, 35104

3

b =-

<0;当n =4时, 47104

9

b =

-

>0,

所以,从第4项起的各项均大于0,故前3项之和最小. 且31101(135)301041

4

312

S =

++---

=-…………………………13分

10. 解:(1)153

92

292

)

(955

919==?=

+=

a a a a S

17

5=∴a

………5分

(2)设数列 {}a n 的公差为d ,则?

??==∴??

?=+==+=3517

48

11512d a d a a d a a

23+=∴n a n

………9分

S a a a a n n n

n n =++++=+++++=++24821

32482232

……·()26n - …12分

11.解:(Ⅰ)∵x y e '=,

∴曲线C :x y e =在点()1,P e 处的切线方程为()1y e e x -=-,即y ex =. 此切线与x 轴的交点1Q 的坐标为()0,0,

∴点1P 的坐标为()0,1. ……2分

∵点n P 的坐标为(),n n x y (*

n ∈N ),

∴曲线C :x y e =在点n P (),n n x y 处的切线方程为()n n x x

n y e e x x -=-, ……4分

令0y =,得点1n Q +的横坐标为11n n x x +=-.

∴数列{}n x 是以0为首项,1-为公差的等差数列.

∴1n x n =-,1n n y e -=.(*

n ∈N ) ……8分

(Ⅱ)∴1122331

......... n

i i n n i x y x y x y x y x y ==++++∑

12

34

10

1

2

3

21

2

2112

234 ........(1) (1)234 ........(1) (2)(1)(2)(1)1........(1)1(1) [

1](1)

(1n

n

n

n

n

n

S e e e e

n e

eS e

e e

e

n e

e S e e

e n e

e n e

S e e

==∴=++++∴=

------------------------------得到:------

--)

e

……14分

12. 解:(1)由1*

1(2)2,(,0)n n n n a a n N λλ

λλ++=++-∈>,可得

1

1

1

2

2

(

)

(

)1n n

n n

n n

a a λλ

λλ

+++-=

-+

所以2

{

(

)}n

n

n

a λλ

-是首项为0,公差为1的等差数列.

(2)解:因为

2

(

)1n n

n

a n λλ

-=-即*

(1)2,()n n n a n n N λ=-+∈

设2312(2)(1)n n n T n n λλλλ-=++???+-+-……①

3

4

1

2(2)(1)n

n n T n n λλλλλ

+=++???+-+-……②

当1λ≠时,①-②得2341(1)(1)n n n T n λλλλλλ+-=+++???+--

21

1

(1)

(1)1n n n λλλ

λ

-+-=

---

211

2

1

2

2

2

(1)(1)(1)

1(1)

n n n n n n n n T λλ

λλλ

λ

λλ

λ++++----+=

-

=

---

13. 解:(1)在等差数列{}n a 中,公差d 0≠,且56a =,

则546462a a a , a a 12=+∴+= …………………… 3分 (2)在等差数列{}n a 中,公差d 0≠,且56a =,33a = 则()11233

0146

21n a d 3 d= , a ,a n a d 2+=??=∴=-?

+=? n N *∈ 又 2

35m a a a = 则 ()363

1

m 3

a , 12=m , m =92

=∴-∴……… 7分

(3)在等差数列{}n a 中,公差d 0≠,且56a =,3a 2= 则112446

1n a d 2 d=2 , a 2 ,a 2n ,n N a d *

+=??=-∴=-∈?

+=? 又因为公比53

632

a q , a =

=

=首项32a =,1

23

t t n a +∴=?

又因为 1

1

24423

3

2t t t n t t t a n , 2n , n ++=-∴-=?=+ n N *∈………… 12分

14.解: (1) 由题知: 20

01

48a b a b a

?

?+=??>???-=-

?? , 解得12

1

2a b ?=????=-?? , 故211()22f x x x =-. ………2分

(2) 2

2

1245n n

n n T a a a -??

== ?

?? ,

2

(1)(1)

2

1121

4(2)5n n n n T a a a n -----??==≥ ???

,

1

14(2)5n n n n T a n T --??∴=

=≥ ???

,

又111a T ==满足上式. 所以1

4()5n n a n N -*

??

=∈ ?

??

……………7分

(3) 若5()n f a 是n b 与n a 的等差中项, 则25()n n n f a b a ?=+,

从而21

110()22

n n n n a a b a -

=+, 得2

2

39565()5

5

n n n n b a a a =-=-

-

.

因为1

4()5n n a n N -*

??

=∈ ?

??

是n 的减函数, 所以

当35n a ≥, 即3()n n N *≤∈时, n b 随n 的增大而减小, 此时最小值为3b ; 当35

n a <, 即4()n n N *≥∈时, n b 随n 的增大而增大, 此时最小值为4b .

又34335

5

a a -

<-

, 所以34b b <,

即数列{}n b 中3b 最小, 且2

22

3442245655125b ??????

=-=-?? ? ?????????

. …………12分

15. 解:(Ⅰ)由题可得'()2f x x =.

所以曲线()y f x =在点(,())n n x f x 处的切线方程是:()'()()n n n y f x f x x x -=-.

即2

(4)2()n n n y x x x x --=-.

令0y =,得2

1(4)2()n n n n x x x x +--=-. 即2

142n n n x x x ++=.

显然0n x ≠,∴122

n n n

x x x +=+

(Ⅱ)由122

n n n

x x x +=+

,知2

1(2)22222n n n n

n

x x x x x +++=

++=

,同理2

1(2)22n n n

x x x +--=

2

1122(

)2

2

n n n n x x x x ++++=--.从而1122lg

2lg

2

2

n n n n x x x x ++++=--,即12n n a a +=.所以,数列{}n a 成等比数列.故

1

1

1

11122

2lg

2lg 32

n n n n x a a x ---+===-.即1

2lg

2lg 32

n n n x x -+=-.

从而

1

2

23

2

n n n x x -+=-所以1

1

2

2

2(31)3

1

n n n x --+=

-

(Ⅲ)由(Ⅱ)知1

1

2

2

2(31)3

1

n n n x --+=-, ∴1

2

4203

1

n n n b x -=-=

>-∴1

1

1

11

2

12

2

2

2

3

11

11

13

3

1

3

1

3

3

n n

n n n n

b b ----+-==<≤=

-+

当1n =时,显然1123T b ==<.当1n >时,21

1211

11()()333

n n n n b b b b ---<

<<< ∴12n n T b b b =+++ 111111()33n b b b -<+++ 11[1()]

3113

n b -=-

133()33n

=-?<. 综上,3n T <(*)n N ∈.

求数列通项专题高三数学复习教学设计

假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的. 求数列通项专题高三数学复习教学设计 海南华侨中学邓建书 课题名称 求数列通项(高三数学第二阶段复习总第1课时) 科目 高三数学 年级 高三(5)班 教学时间 2009年4月10日 学习者分析 数列通项是高考的重点内容 必须调动学生的积极让他们掌握! 教学目标 一、情感态度与价值观 1. 培养化归思想、应用意识. 2.通过对数列通项公式的研究 体会从特殊到一般 又到特殊的认识事物规律 培养学生主动探索 勇于发现的求知精神 二、过程与方法 1. 问题教学法------用递推关系法求数列通项公式 2. 讲练结合-----从函数、方程的观点看通项公式 三、知识与技能 1. 培养学生观察分析、猜想归纳、应用公式的能力; 2. 在领会函数与数列关系的前提下 渗透函数、方程的思想 教学重点、难点 1.重点:用递推关系法求数列通项公式 2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足 若不满足必须写成分段函数形式;若满足

则应统一成一个式子. 教学资源 多媒体幻灯 教学过程 教学活动1 复习导入 第一组问题: 数列满足下列条件 求数列的通项公式 (1);(2) 由递推关系知道已知数列是等差或等比数列即可用公式求出通项 第二组问题:[学生讨论变式] 数列满足下列条件 求数列的通项公式 (1);(2); 解题方法:观察递推关系的结构特征 可以利用"累加法"或"累乘法"求出通项 (3) 解题方法:观察递推关系的结构特征 联想到"?=?)" 可以构造一个新的等比数列 从而间接求出通项 教学活动2 变式探究 变式1:数列中 求 思路:设 由待定系数法解出常数

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

高三数学数列专题复习题含答案

高三数学数列专题复习题含答案 一、选择题 1.等比数列{}n a 中,12a =,8a =4,函数 ()128()()()f x x x a x a x a =---L ,则()'0f =( ) A .62 B. 92 C. 122 D. 152 【答案】C 【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。考虑到求导中,含有x 项均取0,则()' 0f 只与函数()f x 的一次项 有关;得:412 123818()2a a a a a a ??==L 。 2、在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )12 【答案】C 3、已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ?? ???? 的前5项和为 (A ) 158或5 (B )3116或5 (C )3116 (D )15 8 【答案】C 【解析】本题主要考查等比数列前n 项和公式及等比数列的性质,属于中等题。 显然q ≠1,所以3639(1q )1-=121-q 1q q q q -?+?=-,所以1{}n a 是首项为1,公比为1 2 的等比数列, 前5项和5 51 1()31211612 T -= =-. 4、已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = (A) 【答案】A

【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,3 7897988()a a a a a a a ===g 10,所以 13 2850a a =, 所以13 3 3 64564655 28()()(50)52a a a a a a a a a =====g 5.已知等比数列{m a }中,各项都是正数,且1a , 321 ,22 a a 成等差数列,则91078a a a a +=+ A.12+ B. 12- C. 322+ D 322- 6、设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是 A 、2X Z Y += B 、()()Y Y X Z Z X -=- C 、2 Y XZ = D 、()()Y Y X X Z X -=- 【答案】 D 【分析】取等比数列1,2,4,令1n =得1,3,7X Y Z ===代入验算,只有选项D 满足。 8、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于 A .6 B .7 C .8 D .9 【答案】A 【解析】设该数列的公差为d ,则461282(11)86a a a d d +=+=?-+=-,解得2d =, 所以22(1) 11212(6)362 n n n S n n n n -=-+ ?=-=--,所以当6n =时,n S 取最小值。 9、已知等比数列{}n a 满足0,1,2,n a n >=L ,且25252(3)n n a a n -?=≥,则当1n ≥时, 2123221log log log n a a a -+++=L A. (21)n n - B. 2 (1)n + C. 2n D. 2 (1)n -

高三数学小题训练(10)(附答案)

高三数学小题训练(10) 一、选择题:本大题共10小题,每小题5分;共50分. 1.已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4 π =x 处取 得最小值,则函数)4 3( x f y -=π 是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,2 3(π 对称 C .奇函数且它的图象关于点)0,2 3(π 对称 D .奇函数且它的图象关于点)0,(π对称 2.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? -???? 上的最小值是2-,则ω的最小值等于 ( ) (A )23 (B )3 2 (C )2 (D )3 3.将函数sin (0)y x ωω=>的图象按向量,06a π?? =- ??? 平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( ) A .sin()6y x π =+ B .sin()6y x π =- C .sin(2)3y x π=+ D .sin(2)3 y x π =- 4.设0a >,对于函数()sin (0)sin x a f x x x π+= <<,下列结论正确的是( ) A .有最大值而无最小值 B .有最小值而无最大值 C .有最大值且有最小值 D .既无最大值又无最小值 5.已知1,3,.0,OA OB OAOB ===点C 在AOC ∠30o =。 设(,)OC mOA nOB m n R =+∈,则 m n 等于 ( )

(A ) 1 3 (B )3 (C )33 (D 3 6.与向量a =71,,22b ?? = ??? ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ???- ??53,54 (B) ???- ??53,54或?? ? ??-53,54 (C )???- ??31,322 (D )???- ??31,3 22或??? ??-31,322 7.如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是( ) (A )1213,PP PP (B )1214,PP PP (C )1215,PP PP (D ) 1216,PP PP 8.如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 9.已知不等式1 ()()9a x y x y ++≥对任意正实数,x y 恒成立,则正实数a 的最小值为 ( ) (A)8 (B)6 (C )4 (D )2 10.若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为 ( ) (A )3-1 (B) 3+1 (C) 23+2 (D) 23-2 二、填空题(本大题共6小题,每小题5分,共30分) 11.cos 43cos77sin 43cos167o o o o +的值为 12.已知βα,??? ??∈ππ,43,sin(βα+)=-,53 sin ,13124=??? ??-πβ则os ??? ? ? +4πα=___.

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

高考数学第2讲数列求和及综合问题

第2讲数列求和及综合问题 高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透. 真题感悟 1.(2020·全国Ⅰ卷)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=________. 解析法一因为a n+2+(-1)n a n=3n-1, 所以当n为偶数时,a n+2+a n=3n-1, 所以a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41, 所以a2+a4+a6+a8+a10+a12+a14+a16=92. 因为数列{a n}的前16项和为540, 所以a1+a3+a5+a7+a9+a11+a13+a15=540-92=448.① 因为当n为奇数时,a n+2-a n=3n-1, 所以a3-a1=2,a7-a5=14,a11-a9=26,a15-a13=38, 所以(a3+a7+a11+a15)-(a1+a5+a9+a13)=80.② 由①②得a1+a5+a9+a13=184. 又a3=a1+2,a5=a3+8=a1+10,a7=a5+14=a1+24,a9=a7+20=a1+44,a11=a9+26=a1+70,a13=a11+32=a1+102,

所以a 1+a 1+10+a 1+44+a 1+102=184,所以a 1=7. 法二 同法一得a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448. 当n 为奇数时,有a n +2-a n =3n -1, 由累加法得a n +2-a 1=3(1+3+5+…+n )-n +1 2 =32(1+n )·n +12-n +12=34n 2+n +1 4, 所以a n +2=34n 2+n +1 4+a 1. 所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15 =a 1+? ????34×12+1+14+a 1+? ????34×32+3+14+a 1+? ?? ?? 34×52+5+14+a 1+ ? ????34×72+7+14+a 1+? ????34×92+9+14+a 1+? ?? ??34×112 +11+14+a 1+ ? ???? 34×132+13+14+a 1=8a 1+392=448,解得a 1=7. 答案 7 2.(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 法一 因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列, 所以a n =-2n -1. 所以S 6=-1×(1-26)1-2 =-63. 法二 由S n =2a n +1,得S 1=2S 1+1,所以S 1=-1,当n ≥2时,由S n =2a n +1得S n =2(S n -S n -1)+1,即S n =2S n -1-1,∴S n -1=2(S n -1-1),又S 1-1=-2,∴{S n -1}是首项为-2,公比为2的等比数列,所以S n -1=-2×2n -1=-2n ,所以S n =1-2n ,∴S 6=1-26=-63.

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

连云港市田家炳中学高三数学小题训练(1)

一、填空题: 1.已知集合{|3,},{1,2,3,4}A x x x R B =>∈=,则()R A B = e . 2.已知复数1(1) a z i =+ -,若复数z 为纯虚数,则实数a 的值为 . 3.已知角α的终边经过点(2,1)P --,则cos()3 π α+ 的值为 . 4.已知数据a ,4,2,5,3的平均数为b ,其中a ,b 是方程2430x x -+=的两个根,则这组数据的标准差是 . 5.已知函数()f x 是以5为周期的奇函数,且(3)2f -=,则(2)f -= . 6.以下程序运行后结果是__________. 1i ← 8While i < 2 233 i i S i i i ←+←?+←+ End While Pr int S 7.如图,一个正四面体的展开图是边长为22的正三角形ABC ,则该四面体的外接球 的表面积为 . 8.已知||1,(1,3)==-a b ,||3+=a b ,则a 与b 的夹角为 . 9.已知数列{}n a 的前n 项和为n S ,11=a ,且3231=++n n S a (n 为正整数)则数列{}n a 的通项公式为 . 10.命题:“存在实数x ,满足不等式2(1)10m x mx m +-+-≤”是假命题,则实数m 的取值范围是 . 11.已知直线20ax by --=(,)a b R ∈与曲线3 y x =过点(1,1)的切线垂直,则 b a = . 12.如果椭圆)0(122 22>>=+b a b y a x 上存在一点P ,使得点P 到左准线的距离等于 它到右焦点的距离的两倍,那么椭圆的离心率的取值范围为 . 13、(已知函数2()2sin 23sin cos 13f x x x x =--+的定义域为0, 2π?? ???? ,求函数()y f x =的值域和零点. C B A (第7题)

高三 数学 科 数列的综合应用

高三 数学 科 数列的综合应用 (复习)学案 考纲要求:综合利用等差数列与等比数列的有关知识,解决数列综合问题和实际问题。 课前预习 一、 知识梳理 1. 解答数列应用题的步骤: 2. 数列应用题常见模型:(1)等差模型 (2)等比模型 (3)递推数列模型 二、 自我检测 1.等比数列{a n }的前 n 项和为 s n ,且 12344a 2a a a 1s ==1,,成等差数列,若,则 ( )A 7 B 8 C 15 D 16 2.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比 数列,且c=2a ,则cosB= ( )A 1 4 B 34 3.有一种细菌和一种病毒,每个细菌在每秒末能在杀死一个病毒的同时将自身分裂为2个,现在有1个这样的细菌和100个这样的病毒,问细菌将将病毒全部杀死至少需要( ) A 6秒 B 7秒 C 8秒 D 9秒 4.等差数列{n a }中,n a ≠0,n ∈N +,有2 3711220,a a a -+=数列{b n }是等 比数列,且7768,b a b a ==则 ( )A 2 B 4 C 8 D 16 5.已知三个数a 、b 、c 成等比数列,则函数f (x )=ax 2+bx+c 的图像与x 轴公共点的个数为 6.在数列{n a }中,对任意自然数n ∈N +,1221,n a a a ++=-n …则

122 2a a ++=2n …+a 课内探究 典例讲解 题型一:性质的综合应用 例1 设{n a }为等差数列,{n b }为等比数列,112432431,,,a b a a b b b a ==+==分别求出{n a }及{n b }的前10项和1010,.S T 题型二:求通项公式 例2 在数列{n a }中,111,22.n n n a a a +==+(1)设1 ,2n n n a b -=证明数列{n b }是等差数列; (2)求n a 数列{n a }前n 项和s n 。 例3 (2009全国1,理20)在数列{n a }中,1n+1n n 1 n 1 a 1a 1a .n 2 +== ++,() (1)设b n = n a n ,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和s n .

高考数学压轴专题最新备战高考《数列》难题汇编附答案

新数学《数列》期末复习知识要点 一、选择题 1.在数列{}n a 中,若10a =,12n n a a n +-=,则23111 n a a a +++L 的值 A . 1 n n - B . 1 n n + C . 1 1n n -+ D . 1 n n + 【答案】A 【解析】 分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111 n a a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=, 则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L , 所以 1111 (1)1n a n n n n ==--- 所以 231111111111(1)()()12231n n a a a n n n n -+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力. 2.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84 【答案】B 【解析】 由a 1+a 3+a 5=21得24242 1(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2 135()22142q a a a ++=?=,选B. 3.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21 C .24 D .36 【答案】B 【解析】 【分析】 根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】 因为数列{}n a 是等差数列,1356a a a ++=,

等差数列(高三文科数学第一轮复习)

课题:等差数列(高三文科数学第一轮复习) 开课时间:20XX 年10月 18 日 授课班级:高三(4)班 主讲教师: 张文雅 [教学目标] 1、 知识目标:理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用 等差数列的性质解决有关问题。 2、 能力目标:培养学生观察能力、探究能力、体现用方程的数学思想方法分析问题、解 决问题的能力。 3、 情感目标:通过等差数列公式的应用,激发学生学习数学的兴趣,培养学生勇于思考、善于思考的品质。 [重点]:理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式 [难点]:理解并掌握等差数列的有关性质及应用。 [教学方法]:类比式、 探究式、讨论式、合作式。 [教学过程]: 知识梳理: 一、等差数列的定义: 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则该数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示。 用式子可表示为 二、等差数列的公式: 2、等差数列的前n 项和公式: 三、等差中项: 巩固练习: {}17611,35)5(S S S n a S n n 求项和,且的前是等差数列已知+= 四、判定与证明方法: ) ,2(1*-∈≥=-N n n d a a n n d m n a a m n )(-+=推广:d n n na a a n S n n 2)1(2)(11-+=+=,的等差中项与叫做成等差数列,那么、、如果b a A b A a b a A +=2且为同一常数;的任意自然数,证明定义法:对于12)1(--≥n n a a n )2,(1 ≥∈=-*-n N n d a a n n 即:d n a a n )1(11-+=:、等差数列的通项公式)(*∈N m n 、{}670669668667,20053,1)1(1、、、、)等于(则序号的等差数列,如果公差为是首项D C B A n a d a a n n ==={}614515,70,102a a a a n 求中)等差数列(=={}11128,168,48,)3(a S S S n a n n 求若项和为的前等差数列=={}725,32554a a S a n 求且项和的前)若等差数列(==的思想解决问题。 外两个,体现了用方程,知其中三个就能求另、、、、共涉及五个量及注:n n n n n S a n d a d n n na a a n S d n a a 11112)1(2)()1(-+=+=-+=

最新届高三数学第二轮复习数列综合

届高三数学第二轮复习数列综合

数列综合 ★★★高考要考什么 本章主要涉及等差(比)数列的定义、通项公式、前n 项和及其性质,数列的极限、无穷等比数列的各项和.同时加强数学思想方法的应用,是历年的重点内容之一,近几年考查的力度有所增加,体现高考是以能力立意命题的原则. 高考对本专题考查比较全面、深刻,每年都不遗漏.其中小题主要考查1()a d q 、、 n n n a S 、、间相互关系,呈现“小、巧、活”的特点;大题中往往把等差(比)数列与函数、方程与不等式,解析几何 等知识结合,考查基础知识、思想方法的运用,对思维能力要求较高,注重试题的综合性,注意分类讨论. 高考中常常把数列、极限与函数、方程、不等式、解析几何等等相关内容综合在 一起,再加以导数和向量等新增内容,使数列综合题新意层出不穷.常见题型: (1)由递推公式给出数列,与其他知识交汇,考查运用递推公式进行恒等变形、推理与综合能力. (2)给出S n 与a n 的关系,求通项等,考查等价转化的数学思想与解决问题能力. (3)以函数、解析几何的知识为载体,或定义新数列,考查在新情境下知识的迁移能力. 理科生需要注意数学归纳法在数列综合题中的应用,注意不等式型的递推数列. ★ ★★ 突 破 重 难 点 【范例1】已知数列{}n a ,{}n b 满足12a =,11b =,且11 113114413144 n n n n n n a a b b a b ----?=++??? ?=++??(2n ≥) (I )令n n n c a b =+,求数列{}n c 的通项公式; (II )求数列{}n a 的通项公式及前n 项和公式n S .

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

高三数学小题训练(学生用)(14)

数学小题训练(14) 班级 姓名 1.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若, A+C=2B,则sinC= . 2.函数()(sin )(cos )f x x a x a =++(0<a )的最大值为 . 3.已知22()53196196f x x x x x =-++| -53+ |,则(1)(2)(50)......f f f +++= . 4.设()x f 定义在正整数集上,且(1)()()()1,x y x y f f f f xy +==++,则()x f = . 5.边长为1的正五边形的对角线长= . 6.已知函数f(x)=3sin(x-)(>0)6π ωω和g(x)=2cos(2x+)+1?的图象的对称轴完全相同。若 x [0,]2π ∈,则f(x)的取值范围是 . 7.等比数列{}n a 中,12a =,8a =4,函数 ()128()()()f x x x a x a x a =---,则()'0f = . 8.直线x+2y-3=0与ax+4y+b=0关于点(1,0)对称,则b= . 9.在区间(-1,1)上任意取两点a 、b,方程2x +ax +b=0的两根均为实数的概率为p,则p 的值为 . 10.设0<x <2 π,则“x sin 2x <1”是“x sinx <1”的 条件. 11.定义平面向量之间的一种运算“ ”如下: 对任意的(,)a m n =,(,)b p q =,令a b mq np =-,下面说法正确的是 . (A)若a 与b 共线,则0a b = (B)a b b a = (C)对任意的R λ∈,有() ()a b a b λλ= (D)2222()()||||a b a b a b +?= 12.设集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈,则A ?B 成立的充要条件是 .

天津市高三数学总复习 综合专题 数列 理 (学生版)

数列(理) 考查内容:本小题主要考查等差数列与等比数列的通项公式及其前n 项和公式、 不等式证明等基础知识,考查分类讨论的思想方法,考查运算能力、 推理论证能力及综合分析、解决问题的能力。 1、在数列{}n a 中,11a =,122n n n a a +=+。 (1)设1 2 n n n a b -= 。证明:数列{}n b 是等差数列; (2)求数列{}n a 的前n 项和n S 。 2、设数列{}n a 的前n 项和为n S ,已知()21n n n ba b S -=- (1)证明:当2b =时,{} 12n n a n --?是等比数列; (2)求{}n a 的通项公式 3、已知数列{}n a 的首项12 3 a = ,121n n n a a a +=+,1,2,3,n =…。 (1)证明:数列? ?? ?? ?-11n a 是等比数列; (2)数列? ?? ?? ?n a n 的前n 项和n S 。 4、已知数列{}n a 满足:1±≠n a ,2 11=a ,()() 2211213n n a a -=-+,记数列21n n a b -=,221n n n c a a +=-, n N *∈。 (1)证明数列 {}n b 是等比数列; (2)求数列{}n c 的通项公式; (3)是否存在数列{}n c 的不同项k j i c c c ,,,k j i <<,使之成为等差数列?若存在请求出这样的不同项 k j i c c c ,,,k j i <<;若不存在,请说明理由。 5、已知数列{}n a 、{}n b 中,对任何正整数n 都有:

11213212122n n n n n n a b a b a b a b a b n +---+++++=--L 。 (1)若数列{}n a 是首项和公差都是1的等差数列,求证:数列{}n b 是等比数列; (2)若数列{}n b 是等比数列,数列{}n a 是否是等差数列,若是请求出通项公式,若不是请说明理由; (3)若数列{}n a 是等差数列,数列{}n b 是等比数列,求证:1132 n i i i a b =<∑ 。 6、设数列{}n a 满足11a =,22a =,121 (2)3 n n n a a a --= +,(3,4,)n =L 。数列{}n b 满足11,(2,3,)n b b n ==L 是非零整数,且对任意的正整数m 和自然数k ,都有 111m m m k b b b ++-≤+++≤L 。 (1)求数列{}n a 和{}n b 的通项公式; (2)记(1,2,)n n n c na b n ==L ,求数列{}n c 的前n 项和n S 。 7、有n 个首项都是1的等差数列,设第m 个数列的第k 项为mk a , (,1,2,3,,, 3)m k n n =L ≥,公差为m d ,并且123,,,,n n n nn a a a a L 成等差数列。 (1)证明1122m d p d p d =+,n m ≤≤3,12,p p 是m 的多项式,并求12p p +的值; (2)当121, 3d d ==时,将数列{}m d 分组如下:123456789(), (,,), (,,,,),d d d d d d d d d L (每组数的个数构成等差数列),设前m 组中所有数之和为4()(0)m m c c >,求数列{2}m c m d 的前n 项和n S 。 (3)设N 是不超过20的正整数,当n N >时,对于(2)中的n S ,求使得不等式1 (6)50 n n S d ->成立的所有N 的值。 8、数列}{n a 的通项公式为?? ? ? ?-=3sin 3cos 22 2 ππn n n a n ,其前n 项和为n S 。 (1)求n S ; (2)设n n n n S b 4 3?= ,求数列}{n b 的前n 项和n T 。 9、数列}{n a 满足}221221,2,(1cos )sin ,1,2,3,.22 n n n n n a a a a a n ππ+===++=L 满足。

2021高考数学二轮复习小题专题练3

小题专题练(三) 数 列 1.无穷等比数列{a n }中,“a 1>a 2”是“数列{a n }为递减数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 2.设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4 的值为( ) A.12 B.1716 C .2 D .17 3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为( ) A .2 B .-2 C.12 D .-12 4.已知数列{a n }满足2a 1+22a 2+…+2n a n =n (n ∈N * ),数列?? ?? ??1log 2a n log 2a n +1的前n 项和为S n ,则S 1·S 2·S 3·…·S 10=( ) A.1 10 B.15 C.111 D.211 5. 如图,矩形A n B n C n D n 的一边A n B n 在x 轴上,另外两个顶点C n ,D n 在函数f (x )=x +1 x (x >0) 的图象上,若点B n 的坐标为(n ,0)(n ≥2,n ∈N * ),记矩形A n B n C n D n 的周长为a n ,则a 2+a 3+…+a 10=( ) A .208 B .212 C .216 D .220 6.设等差数列{a n }的公差为d ,其前n 项和为S n .若a 1=d =1,则S n +8 a n 的最小值为( ) A .10 B.92

C.72 D.1 2 +2 2 7.已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N * 都有1a 1+1a 2+…+1a n 0,6S n =a 2 n +3a n ,n ∈N *, b n =

相关文档
相关文档 最新文档