文档库 最新最全的文档下载
当前位置:文档库 › 实验一 锯齿波同步移相触发电路实验

实验一 锯齿波同步移相触发电路实验

实验一  锯齿波同步移相触发电路实验
实验一  锯齿波同步移相触发电路实验

实验一锯齿波同步移相触发电路实验

一、实验目的

(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

(2)掌握锯齿波同步触发电路的调试方法。

二、实验线路及原理

锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见有关《电力电子技术》教材。

三、实验内容

(1)锯齿波同步移相触发电路的调试。

(2)锯齿波同步移相触发电路各点波形观察和分析。

四、实验设备

(1)主控屏DK01;

(2)DK01组件挂箱

(3)DK11组件挂;

(4)双踪记忆示波器;

(5)数字式万用表。

五、预习要求

(1)阅读本教材§3-8及电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。

(2) 掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。

六、思考题

(3)锯齿波同步移相触发电路有哪些特点?

(4)锯齿波同步移相触发电路的移相范围与哪些参数有关?

(5)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大?

七、实验方法

1、接线与开关设置

将DK01面板上左上角的同步电压输入接主控制屏输出电压的U、V端,“触发电路选择”拨向“锯齿波”。

2、触发电路调试

(1) 三相调压器逆时针调到底,合上主电路电源开关,调节主控制屏输出电压U uv=220v,并打开DK01面板右下角的电源开关。

(2) 用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。

(3) 观察“3”~“5”孔波形及输出电压u g的波形,记下各波形的幅值与宽度,比较“3”孔电压u3与u5的对应关系;

3、脉冲移相范围调节

将给定器的U ct输出电压调至0V,即控制电压U ct为零,用示波器观察u2电压(即“2”孔)及u2的波形,调节偏移电压U b(即调RP),使α=180O,其波形如图4-4所示。

调节给定器的电位器RP1,增加U ct,观察脉冲的移动情况,要求U ct=0时,α=180°,U ct=U max时,α=30°,以满足移相范围α=30°~180°的要求。

图4-4 触发脉冲移相范围

4、实验数据记录

调节U ct,使α=60°,观察并记录u1~u5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。并标出其幅值与宽度并记录在下表中(可在示波器上直接读出,读数时应将示波器的V/cm和t/cm的旋钮放置在校准位置,以仿读数误差)。

八、实验报告

(1) 整理,描绘实验中记录的各点波形,并标出幅值与宽度。

(2) 总结锯齿波同步触发电路移相范围的调试方法,如果要求U ct=0时,α=90°,应如何调整?

(3) 讨论分析其它实验现象。

九、注意事项

参见实验1、2的注意事项。

(完整版)实验一锯齿波同步移相触发电路实验

实验一锯齿波同步移相触发电路实验 一.实验目的 1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2.掌握锯齿波同步触发电路的调试方法。 二.实验内容 1.锯齿波同步触发电路的调试。 2.锯齿波同步触发电路各点波形观察,分析。 三.实验线路及原理 锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”教材。 四.实验设备及仪器 1.NMCL系列教学实验台主控制屏 2.NMCL-32组件和SMCL-组件 3.NMCL-05组件 4.双踪示波器 5.万用表 五.实验方法

图1-1 锯齿波同步移相触发电路 1.将NMCL-05面板左上角的同步电压输入接到主控电源的U、V端,“触发电路选择”拨向“锯齿波”。 2. 将锯齿波触发电路上的Uct接着至SMCL-01上的Ug端,‘7’端地。 3.合上主电路电源开关,并打开NMCL-05面板右下角的电源开关。用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。 同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。观察“3”~“5”孔波形及输出电压UG1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。 4.调节脉冲移相范围 将SMCL-01的“Ug”输出电压调至0V,即将控制电压Uct调至零,用示波器观 察U 1电压(即“1”孔)及U 5 的波形,调节偏移电压Ub(即调RP2),使α=180°。 调节NMCL-01的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,α=180°,Uct=Umax时,α=30°,以满足移相范围α=30°~180°的要求。 5.调节Uct,使α=60°,观察并记录U1~U5及输出脉冲电压U G1K1,U G2K2 的 波形,并标出其幅值与宽度。 用双踪示波器观察U G1K1和U G3K3 的波形,调节电位器RP3,使U G1K1 和U G3K3

实验一:西门子TCA785集成触发电路实验V3.0版.doc

实验一西门子TCA785集成触发电路实验 一、实验目的 (1)加深理解锯齿波集成同步移相触发电路的工作原理及各元件的作用。 (2)掌握西门子的Tca785集成锯齿波同步移相触发电路的调试方法。 二、实验所需挂件及附件 三、实验线路及原理 单相集成锯齿波同步移相触发电路的内部框图如图3-3所示。 Tca785集成块内部主要由“同步寄存器”、“基准电源”、“锯齿波形成电路”、“移相电压”和“锯齿波比较电路”和“逻辑控制功率放大”等功能块组成。 同步信号从TCA785的第5脚输出,“过零检测”部分对同步电压信号进行检测,当检测到同步信号过零时,信号送“同步寄存器”。 “同步寄存器”输出控制锯齿波发生电路,锯齿波的斜率大小由第9脚外接电阻和10脚外接电容决定;输出脉冲宽度由12脚外接电容的大小决定;14、15脚输出对应负半周和正半周的触发脉冲,移相控制电压从11脚输入。

图3-3 Tca785内部框图 典型应用电路如下图所示: 图3-4 Tca785锯齿波移相触发电路原理图

电位器RP1主要调节锯齿波的斜率,电位器RP2则调节输入的移相控制电压,脉冲从14、15脚输出,输出的脉冲恰好互差180O,可供单相整流及逆变实验用,各点波形请参考图3-5。 图3-5 单相集成锯齿波触发电路的各点电压波形(α=900)电位器RP1、RP2均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。 四、实验内容 (1)Tca785集成移相触发电路的调试。 (2)Tca785集成移相触发电路各点波形的观察和分析。

五、预习要求 阅读有关Tca785触发电路的内容,弄清触发电路的工作原理。 六、思考题 (1)Tca785触发电路有哪些特点? (2)Tca785触发电路的移相范围和脉冲宽度与哪些参数有关? 七、实验方法 (1) 将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作;用双踪示波器一路探头观测15V的同步电压信号,另一路探头观察Tca785触发电路,同步信号“1”点的波形,“2”点锯齿波,调节斜率电位器RP1,观察“2”点锯齿波的斜率变化,“3”、“4”互差1800的触发脉冲;最后观测输出的四路触发电压波形,其能否在30°~170°范围内移相? ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“2”点的锯齿波波形,调节电位器RP1,观测“2”点锯齿 波斜率的变化。 ③观察“3”、“4”两点输出脉冲的波形,记下各波形的幅值与宽度。 (2)调节触发脉冲的移相范围

正弦波-方波-锯齿波函数转换器

课程设计说明书 课程设计名称:模拟电子技术课程设计 课程设计题目:正弦波-方波-锯齿波函数转换器 学院名称:信息工程学院 专业:通信工程班级:090421 学号:09042134 :尚虎 评分:教师: 20 11 年 3 月16 日

任务书 题目3:设计制作一个产生正弦波—方波—锯齿波函数转换器。设计任务和要求 ①输出波形频率围为0.02Hz~20KHz且连续可调; ②正弦波幅值为±2V; ③方波幅值为2 V; ④锯齿波峰-峰值为2V,占空比可调;

摘要 本次课程设计的目的是: 应用电路分析低频等所学的知识设计一个正弦波-方波-锯齿波函数发生器。设计的正弦波-方波-锯齿波函数发生器是由正弦波发生器、过零比较器、积分电路等三大部分组成。正弦波发生器产生正弦波,正弦波经过过零比较器转变为方波,方波经过积分电路产生锯齿波。 关键字:正弦波、方波、锯齿波

目录 第一章设计目的及任务 1.1 课程设计的目的 (5) 1.2 课程设计的任务与要求 (5) 1.3 课程设计的技术指标 (5) 第二章系统设计方案选择…………………………………………… 2.1 方案提出 (6) 2.2 方案论证和选择 (6) 第三章系统组成及工作原理......................................................3.1 系统组成 (7) 3.2 正弦波发生电路的工作原理 (7) 3.3 正弦波转换方波电路的工作原理 (8) 3.4 方波转换成锯齿波电路的工作原理 (9) 3.5 总电路图 (11) 第四章单元电路设计、参数计算、器件选择........................4.1 正弦波发生电路的设计 (12) 4.2 正弦波转换方波电路的设计 (13) 4.3 方波转换成锯齿波电路的设计 (14) 第五章实验、调试及测试结果与分析.................................5.1电路总体仿真图如下所示 (17) 5.2 调试方法与调试过程 (18) 第六章结论 (21) 参考文献 (23) 附录(元器件清单) (23)

方波-三角波-正弦波-锯齿波发生器

方波-三角波-正弦波-锯齿波发生器

电子工程设计报告

目录 设计要求 1.前言 (1) 2方波、三角波、正弦波发生器方案 (2) 2.1原理框图 (2) 3.各组成部分的工作原理 (3) 3.1方波发生电路的工作原理 (3) 3.2方波--三角波转换电路的工作原理 (4) 3.3三角波--正弦波转换电路的工作原理 (6) 3.4方波—锯齿波转换电路的工作原理 (7) 3.5总电路图 (8)

方波—三角波—正弦波函数信号发生器 摘要 波形函数信号发生器广泛地应用于各场所。函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。 函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途 而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。 关键词:振荡电路;电压比较器;积分电路;低通滤波电路 设计要求 1.设计、组装、调试方波、三角波、正弦波发生器。 2.输出波形:方波、三角波、正弦波;锯齿波 3.频率范围:在0.02-20KHz范围内且连续可调; 1.前言 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实

锯齿波同步电压电路

1、此电路由哪几个基本环节组成? 2、简要分析各环节工作原理; 3、画出各个标注点的电压波形。 答案如下: 锯齿波同步触发电路,由以下五个基本环节组成:①同步环节;②锯齿波形成及脉冲移相环节;③脉冲形成、放大和输出环节;④双脉冲形成环节;⑤强触发环节。 一、同步环节 同步环节由同步变压器Tr,晶体管V2,二极管VD1,VD2,R1及C1等组成。锯齿波是由起开关作用的V2控制的,V2截止期间产生锯齿波,V2截止持续时间就是锯齿波的宽度,V2开关的频率就是锯齿波的频率。 二、锯齿波形成及脉冲移相环节 电路中由晶体管V1组成恒流源向电容C2充电,晶体管V2作为同步开关控制恒流源对C2的充、放电过程。晶体管V3为射极跟随器,起阻抗变换和前后级隔离作用,以减小后级对锯齿波线性的影响。 工作过程分析如下:当V2截止时,由V1管、Vs稳压二极管、R3、R4组成的恒流源以恒流IC1对C2充电,,调节R3可改变IC1从而调节锯齿波的斜率。当V2导通时,因R5阻值小,电容C2经R5、V2管迅速放电到零。所以,只要V2管周期性关断、导通,电容C2两端就能得到线性很好的锯齿波电压。锯齿波电压Ue3与Uc、Ub进行并联叠加,根据叠加原理,分析V3管基极电位时,可看成锯齿波电压Ue3、控制电压U4(正值)和偏移电压Ub(负值)三者单独作用的叠加。当三者合成电压Ub4为负时,V4管截止;合成电压Ub4由负过零变正时,V4由截止转为饱和导通,Ub4被钳位到0.7 V。电路工作时,往往将负偏移电压Ub调整到某值固定,改变控制电压Uc就可以改变Ub4的波形与横坐标(时间)的交点,也就改变了V4转为导通的时刻,即改变了触发脉冲产生的时刻,达到移相的目的。 三、脉冲形成、放大和输出环节 如图所示,脉冲形成环节由晶体管V4、V5、V6组成;放大和输出环节由V7、V8 组成;同步移相电压加在晶体管V4的基极,触发脉冲由脉冲变压器二次侧输出。 当V4的基极电位Ub4<0.7 V时,V4截止时,V5、V6分别经R14、R13提供足够的基极电流使之饱和导通,因此⑥点电位为一13.7 V(二极管正向压降按0.7 V,晶体管饱和压降按0.3 V计算),V7、V8处于截止,脉冲变压器无电流流过,二次侧无触发脉冲输出。

锯齿波同步移相触发电路及单相半波可控整流电路

实验三锯齿波同步移相触发电路及单相半波可控整流电路一.实验目的 1.熟悉正弦波同步触发电路的工作原理及各元件的作用。 2.掌握正弦波同步触发电路的调试步骤和方法。 3.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 4.掌握锯齿波同步触发电路的调试方法 5.对单相半波可控整流电路在电阻负载及电阻电感负载时工作情况作全面分析。 6.了解续流二极管的作用 二.实验内容 1.锯齿波同步触发电路的调试。

(一) 锯齿波同步移相触发电路实验 1.将MCL-05面板上左上角的同步电压输入接MCL —18的U 、V 端,“触发电路选择”拨向“锯齿波”。 2.三相调压器逆时针调到底,合上主电路电源开关,调节主控制屏输出电压U uv =220v ,并打开MCL —05面板右下角的电源开关。用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。注:如您选购的产品为MCL —Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同 同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。 观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U 3与U 5的对应关系。 3.调节脉冲移相范围 将MCL —18的“G ”输出电压调至0V ,即将控制电压Uct 调至零,用示波器观察U 2电压(即“2”孔)及U5的波形,调节偏移电压Ub (即调RP ),使α=180O ,其波形如图4-4所示。 调节MCL —18的给定电位器RP1,增加Uct ,观察脉冲的移动情况,要求Uct=0时,α=180O ,Uct=Umax 时,α=30O ,以满足移相范围α=30O ~180O 的要求。 4.调节Uct ,使α=60O ,观察并记录U 1~U 5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。 用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1 5 图3-3 锯齿波同步移相触发电路 5.锯齿波触发电路各测试点波形 co

锯齿波同步移相触发电路实验

重庆三峡学院 实验报告 课程名称 实验名称 实验类型学时 系别专业 年级班别开出学期 学生姓名学号 实验教师成绩 年月日

填写说明 1、基本内容 (1)实验序号、名称(实验一:xxx);(2)实验目的;(3)实验原理;(4)主要仪器设备器件、药品、材料;(5)实验内容; (6)实验方法及步骤(7)数据处理或分析讨论 2、要求: (1)用钢笔书写(绘图用铅笔) (2)凡需用坐标纸作图的应使用坐标纸进行规范作图 实验二锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 二、实验所需挂件及附件 序号型号备注 1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。 2 DJK03-1 晶闸管触发电路该挂件包含“锯齿波同步移相触发电路”等模块。 3 双踪示波器自备 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 锯齿波同步移相触发电路I、II由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其原理图如图1-12所示。

图1-12锯齿波同步移相触发电路I原理图 由V3、VD1、VD2、C1等元件组成同步检测环节,其作用是利用同步电压U T来控制锯齿波产生的时刻及锯齿波的宽度。由V1、V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R4、V3放电。调节电位器RP1可以调节恒流源的电流大小,从而改变了锯齿波的斜率。控制电压U ct、偏移电压U b和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2、RP3分别调节控制电压U ct和偏移电压U b的大小。V6、V7构成脉冲形成放大环节,C5为强触发电容改善脉冲的前沿,由脉冲变压器输出触发脉冲,电路的各点电压波形如图1-13所示。 本装置有两路锯齿波同步移相触发电路,I和II,在电路上完全一样,只是锯齿波触发电路II输出的触发脉冲相位与I恰好互差180O,供单相整流及逆变实验用。 电位器RP1、RP2、RP3均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。

方波三角波正弦波锯齿波发生器

方波三角波正弦波锯齿波 发生器 This manuscript was revised by the office on December 10, 2020.

电子工程设 计报告

目录

方波—三角波—正弦波函数信号发生器 摘要 波形函数信号发生器广泛地应用于各场所。函数信号发生器应用范围:通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波。除供通信、仪表和自动控制系统测试用外,还广泛用于其他非电测量领域,而我设计的正是多种波形发生器。设计了多种波形发生器,该发生器通过将滞回电压比较器的输出信号通过RC电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波,三角波通过低通滤波电路来实现正弦波的输出。其优点是制作成本低,电路简单,使用方便,频率和幅值可调,具有实际的应用价值。 函数(波形)信号发生器。能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫函数信号发生器在电路实验和设备检测中具有十分广泛的用途 而因此电子专业的学生,对函数信号发生器的设计,仿真,制作已成为最基本的一种技能,也是一个很好的锻炼机会,是一种综合能力的锻炼,它涉及基本的电路原理知识,仿真软件的使用,以及电路的搭建,既考验基础知识的掌握,又锻练动手能力。 关键词:振荡电路;电压比较器;积分电路;低通滤波电路 设计要求 1.设计、组装、调试方波、三角波、正弦波发生器。 2.输出波形:方波、三角波、正弦波;锯齿波 3.频率范围:在-20KHz范围内且连续可调; 1.前言 在人们认识自然、改造自然的过程中,经常需要对各种各样的电子信号进行测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,

锯齿波型发生电路

·1 设计目的 ·2 设计任务 ·3 锯齿波型发生电路的组成和工作原理 ·锯齿波型发生电路的构成 ·原理分析 ·基本逻辑功能框图 ·4 锯齿波形发生电路的电路设计 ·同向输入滞回比较器电路的设计 ·积分运算电路的设计 ·5 锯齿波形发生电路的电路仿真及结果分析 ·6 收获、体会和建议 ·参考文献 ·附录元件清单 1、设计目的 加强学生对电子技术专业知识的理解和掌握,训练并提高其在理论计算、电路设计、资料文献查

阅、运用相关标准与规范、电路仿真等方面的能力;为毕业设计(论文)奠定良好的基础。 2、设计任务 观测波形、读取参数 3、锯齿波型发生电路的组成和工作原理 、锯齿波型发生电路的构成 电路设计采用矩形波转变成三角波的波形转换的方法得到三角波,在其中加一个占空比调节电路,利用三角波发生电路中积分电路反向积分速度远大于正向积分速度,或者正向积分速度远大于反向积分速度,则输出电压u0就成为锯齿波。利用二极管的单向导电性可使积分电路两个方向的积分通路不同,并使两个通路的积分电流相差悬殊,就可得到锯齿波发生电路(通常Rw远大于R3)。 、原理分析 设二极管导通时的等效电路可忽略不计,电位器的滑动端移到最上端。当uo1=+Uz时,D1导通,D2截止,输出电压表达式为 uo=-1/R3*C[Uz(t1-t0)+uo(t0)] uo随时间线性下降。当Uo1=-Uz时,D2导通,D1截止,输出电压表达式为 [uo=1/(R3+Rw)C]Uz(t2-t1)+uo(t1) uo随时间线性上升。由于Rw〉〉R3,uo1和uo的波形如图(1)所示。 uo1输出波形图 uo输出波形图 图1 波形图 根据锯齿波形的幅值公式:+Uom=UT=(R1/R2)Uz,-Uom=-UT=-(R1/R2)Uz以及上面的两个公式可得下降时间:T1=t1-t0=2(R1/R2)R3*C 上升时间:T2=t2-t1=2(R1/R2)*(R3+Rw)*C

电力电子技术报告(1) 实验一 锯齿波同步移相触发电路实验

电力电子技术实验报告 教室机电楼101 学院自动化学院 专业班级自1103 姓名高云峰 学号41151092 同组人员 2013年11月

目录 实验一锯齿波同步移相触发电路实验 实验二单相桥式全控整流电路实验 实验三单相桥式有源逆变电路实验 实验四三相桥式全控整流及有源逆变电路实验 (示波器使用注意:如两个波形不共地,不能同时测量,根据波形幅值大小,有的波形需要选择*10档。) 实验五直流斩波电路(设计性)的性能研究 13 实验六单相交直交变频电路 16

实验一锯齿波同步移相触发电路实验 一.实验目的 1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2.掌握锯齿波同步触发电路的调试方法。 二.实验线路及原理 锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”有关教材。 三.实验设备及仪器 1.MEL—002组件 2.NMCL—31A组件 3.NMCL—05E组件 4.NMEL—03组件 5.双踪示波器 6.万用表 四.实验方法 1.将NMCL-05E面板上左上角的同步电压输入与MEL—002的U、V端相接,触发电路选择锯齿波。 2.合上主电路电源开关,用示波器观察各观察孔的波形,并记录各点波型,示波器的地线接于“7”端。 观察“1”~“6”孔的波形,了解锯齿波脉冲发生器的原理,记录各点波形。 3.调节脉冲移相范围 (1)将NMCL—31A的“G”(给定)接到NMCL-05E的U g 孔,并将输出电压U g 调至0V, 即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U 5 的波形,调节偏移 电压U b (调锯齿波触发电路中RP),使α=180O (即Uct=0时,α=180O),继续调节RP,观察角的变化,直到α=30O,。 (2)在Uct=0时,使α=180O,调节NMCL—31A的给定电位器RP1,增加U ct ,观察脉冲的移动情况,增大Uct直到α=30O,以满足移相范围α=30O~180O的要求,记录α=30O时 U max (Uct)值。 4.调节U ct ,使α=60O,观察输出脉冲电压U G1K1 ,U G6K6 的波形,并标出其幅值与宽度。 用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3 的波形,并标出其幅值 与宽度,记录U G1K1和U G3K3 的相位关系。 五.实验结果分析 1.整理,描绘实验中记录的各点波形。 1)合上主电路电源开关,用示波器观察各孔的波形

压控锯齿波发生器的设计.

2012级机械设计制造及其自动化专业 电子技术课程设计 压控锯齿波发生器的设计 姓名: 院别:工学院 专业:机械设计制造及其自动化 学号: 指导教师: 2014年12月

工学院课程设计评审表

《电子技术课程设计》课程设计任务书

压控锯齿波发生器的设计 1 设计任务与要求 1.1 设计任务: 利用集成运放实现一个压控锯齿波发生器的设计 1.2 设计要求: 自行设计并确定元件参数,画出电路图,列出元件明细表,做出产品。通过实验测试电路参数,验证电路是否符合设计要求。 2 设计原理 工作原理: ω与输入控制电指输出频率与输入控制电压有对应关系的发生器电路,其特性用输出角频率0 ω,0称为自由振荡角频率;曲压c u之间的关系曲线来表示(如图1)。图1中c u为零时的角频率0 ω,0处的斜率0K称为控制灵敏度。使振荡器的工作状态或振荡回路的元件参数受输入控制线在0 电压的控制,就可构成一个压控振荡器。 图1 压控震荡器的控制特性 3 电路设计 3.1 设计思路 本次设计采用比较电路输出矩形波,通过积分电路将波形转换为锯齿波,调节输入电压,当积分电路的正向积分时间常数远大于反向积分常数,或者反向积分时间常数远大于正向积分时间常数时,那么输出电压0u上升和下降的斜率相差很多,就可以获得锯齿波。利用二极管的单向导电性使积分电路两个方向的积分通路相同,就可得到锯齿波发生电路。 3.2压控锯齿发生电路的各部分电路 3.2.1滞回比较器

滞回比较器又称施密特触发器,迟滞比较器。这种比较器的特点是当输入信号逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。 滞回比较器也有反相输入和同相输入两种方式。 滞回比较器的电路图 3.2.2积分电路 积分电路是使输出信号与输入信号的时间积分值成比例的电路。改变三角波产生电路中积分电路的正向积分时间和反向积分时间,就可以在电路输出端得到锯齿波

占空比可调的锯齿波发生电路.

占空比可调的锯齿波发 生电路

一、设计任务 1、通过Multisim仿真软件设计一个锯齿波发生电路。 2、在这基础上设计一个占空比可调电路。 3、进一步了解各种运放元件的工作状态,熟练使用Multisim仿真软件。 二、设计电路 本电路设计采用矩形波转变成三角波的波形转换的方法得到三角波,在其中加一个占空比调节电路,当积分电路正向积分时间常数远大于方向积分时间常数,或者反向积分的时间常数远大于正向积分时间常数,那么输出电压上升和下降的斜率相差很多,就可得到锯齿波。 三、电路组成 在方波发生电路中,当滞回比较器的阈值电压数值较小时,可将电容两端的电压看成为近似三角波。但是,一方面这个三角波的线性度较差,另一方面带负载后将使电路的性能产生变化。实际上,只要将方波电压作为积分运算电路的输出电压u01=Uz时,积分运算电路的输出电压u0将线性下降;而当u01=-Uz时,u0将线性上升。波形如下图所示。

四、工作原理 (A)(B) 本方案设计的电路(A)为同相输入滞回比较器,电路(B)为积分运算电路。图中滞回比较器的输出电压u01=+-Uz,它的输入电压是积分电路的输出电压u0。则阈值电压+-UT=+-(R3/R4)Uz。积分电路的输入电压是滞回比较器的输出电压u01,输出电压的表达式为u0=-1/(1/R2+1/R5)*Uz(t1-t0)+u0(t0)。积分电路反向积分,u0随时间的增长线性下降,则使公式变成为u0=1/(1/R2+1/R5)*Uz (t2-t1)+u0(t1)。U0(t1)为u01产生跃变时的输出电压。电路以上循环产生自激振荡。 当积分电路正向积分时间常数远大于方向积分时间常数,或者反向积分的时间常数远大于正向积分时间常数,那么输出电压上升和下降的斜率相差很多,就可得到锯齿波。利用二极管的单向导电性使积分电路两个方向上的积分通路不同,就可以得到锯齿波发生电路。如图(B)、图(C)所示。 (B)

实验二 锯齿波同步移相触发电路实验报告

实验二锯齿波同步移相触发电路实验 一.实验目的 1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2.掌握锯齿波同步触发电路的调试方法。 二.实验内容 1.锯齿波同步触发电路的调试。 2.锯齿波同步触发电路各点波形观察,分析。 三.实验线路及原理 锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”有关教材。 1)电源控制屏位于NMCL-32/MEL-002T等 2) MCL-01调速系统控制单元中 3) Uct位于锯齿波触发电路中 图3-1 四.实验设备及仪器 1.教学实验台主控制屏2.晶闸管 3.锯齿波触发电路4.可调电阻 5.二踪示波器(自备)6.万用表(自备) 五.实验方法 1.将触发电路面板上左上角的同步电压输入接电源控制屏的U、V端。

2.合上电源控制屏主电路电源绿色开关。用示波器观察各观察孔的电压波形,示波器的地线接于“7”端。 同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。 观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。 3.调节脉冲移相范围 将低压单元的“G”输出电压调至0V(逆时针调节电位器),即将控制电压U ct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压U b(即调RP),使α=180O,(也可以用示波器观测锯齿波触发电路“1”脚与“6”脚之间电压波形,来判断α的大小)调节低压单元的给定电位器RP1,增加U ct,观察脉冲的移动情况,要求U ct=0时,α=180O,U ct=U max时,α=30O,以满足移相范围α=30O~180O的要求。 4.调节U ct,使α=60O,观察并记录U1~U5及输出脉冲电压U G1K1,U G2K2的波形。(没做到) 六.实验报告 1.整理,描绘实验中记录的各点波形,并标出幅值与宽度。 答:1孔电压波形——幅值:1×10V=10V,周期:2×10=20ms; (1)1、2孔波形比较 2孔电压波形——幅值:10V,周期:20ms; (2)1、3孔波形比较

锯齿波同步移相触发电路及单相半波可控整流

电力电子技术实验报告 题目:锯齿波同步移相触发电路及 单相半波可控整流 班级: 姓名: 学号: 指导老师:

单结晶体管触发电路及单相半波可控整流电路实验报告1.1 实验内容 1.单结晶体管触发电路的调试。 2.单结晶体管触发电路各点波形的观察。 3.单相半波整流电路带电阻性负载时特性的测定。 4.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察。 1.2 实验设备及仪器 ⑴MCL-III型教学实验台 ⑵NMCL-33组件:触发电路和晶闸管主电路 ⑶NMCL-05(E)组件:触发电路 ⑷MEL03A组件:可调电阻 ⑸双踪示波器 ⑹万用表 1.3实验方法 1.3.1 单结晶体管触发电路调试及各点波形的观察 先不接主电路,NMCL-32的“三相交流电源”开关拨向“直流调速”侧。将NMCL-05E面板左上角的同步电压输入端与NMCL—32的U、V端相连,单结晶体管触发电路中G、K接线端悬空,“2”端(地)与脉冲输出“K”端相连。 按下“闭合”按钮,用示波器观察触发电路单相半波整流输出(“1”),梯形电压(“3”、“4”),锯齿波电压(“5”)及单结晶体管输出电压(“6”)和脉冲输出(“GK”)等波形。 调节移相可调电位器RP,参照图1-1,观察输出脉冲的移相范围,之后使相 位角 =180°。 图1-1 单相半波整流相位角的观察 观察完毕,断开主电源。 注:由于在以上操作中,脉冲输出未接至晶闸管的控制极和阴极,所以在用示波器观察触发电路各点波形时,特别是观察脉冲的移相范围时,可用导线把触发电路的地端(“2”)和脉冲输出“K”端相连。但一旦脉冲输出接至晶闸管,则不可把触发电路和脉冲输出相连,否则造成短路事故,烧毁触发电路。

锯齿波发生器要点

目录 摘要 一、设计要求 (2) 二、设计原理 (2) 三、硬件部分 (7) 四、软件部分 (11) 五、调试过程及结果 (13) 六、实验设计总结 (14)

摘要 随着科技的发展和现代科研的需要,信号发生器已经成为了很多行业进行研究测试不可或缺的工具,但目前使用波形发生器大部分体积大,可靠性差,准确度低。因此为了实验研究方便,研制一种体积小、可靠性强、准确性高的波形发生器显得尤为重要。 Abstract With the development of technology and modern scientific research, the signal generator industry has become a lot of research and testing an indispensable tool, but most of the waveform generator using bulky, poor reliability, low accuracy. Therefore, in order to facilitate the experimental studies, the development of a small size, high reliability, high accuracy is particularly important waveform generator.

题目:单片机输出锯齿发生器 一、设计要求 (1)用单片机设计一个锯齿波发生器,要求输出频率范围为1KHz ~10KHz ;幅度范围Vpp ≈10v 连续可调;上升斜率连续可调;直流偏置±5V 连续可调 (2)选择电路方案,确定电路方案的设计。计算电路元件参数与元件选择、并画出总体电路原理图,阐述基本原理。 二、设计原理 根据任务书的要求,需要设计锯齿波发生器环节,输出波形还需要一种可调节电路。 锯齿波发生器原理图 2.1. 锯齿波发生器 主要有迟滞比较器和RC 充放电电路组成。比较器属于信号处理的一种,他的作用是将输入信号的电平进行比较,然后把比较的结果输出。实验采用的迟滞比较器的特点是:单输入增大及减少时,两种情况下的门限电压不相等,传输特性呈现出“滞回”曲线的形状。 控制 旋钮 CP u O

锯齿波同步触发电路

市高级技工学校理论教学教案首页

教学步骤 一、课前准备: 场地、常用工具、电子元器件、示波器、测量仪表等 二、组织教学 检查学生出勤情况 检查学生劳保用品穿戴情况 三、入门指导 实训课题:锯齿波同步触发电路的安装与调试 锯齿移相触发电路可分为脉冲的形成与放大、锯齿波和形成与脉冲移相、同步信号等三个基本环节。 1、锯齿波的形成和脉冲移相环节 锯齿波的形成和脉冲移相环节包括VT1、VT2、VS、C等元件,其中VT1、V1、RP3、R5、R4组成一个恒流源电路。当VT2截止时,恒流源电流对电容C6充电,C6两端电压按线性增长,也就是VT3的基极电位按线性增长。调节电位器RP3,即可改变C6的充电电流值,因此,RP3是用来调节锯齿波斜率的。UB3波形如图所示,当VT2导通时,C6通过R6、VT2迅速放电,由于R6阻值很小,使VT3的基极电位UB3(2)点迅速降到零伏附近。当VT2周期性地关断—导通时,UB3就形成一个锯齿波,同样UE3(与UB3相差一个PN结正向压降值)也是个锯齿波电压。射极跟随器VT3的作用是减小控制电路的电流对锯齿波的影响。 晶体管VT4的基极电位是由锯齿波电压UE3、直流控制电压

UCT和直流偏置电压UB三者叠加合成后所得,UE3、UCT和UB分别通过R9、R8、R10加到VT4基极。加入UB的目的是确定控制电压UCT的为零时的初始相位。调节UB的大小使产生脉冲点移至锯齿波的中间,相当于a=90°的位值。如果UCT为正值,则脉冲前移,a≤90°,晶闸管电路处于整流工作状态,如果UCT是负值,则脉冲后移,a≥90°晶闸管电路处于逆变工作状态。 2、同步信号环节: 它主要包括同步变压器,VT2、R3、C5、VD1、VD2等。其作用是保证锯齿波与主电路电源同步。同步变压器二次电压U2经二极管VD1间接地加在VT2的基极上。当U2负半周下降段时,VT1导通,电容C5被迅速充电,(1)点电位波形如图所示,在这一阶段VT2基极为反偏置,VT2截止。在负半周的上升段,+15V电源通过电阻R3给电容C5反向充电。U(1)上升比U2上升绶慢,故VD1截止。当U(1)上升到1、4V时,VT2导通,U(1)被箝位在1、4V。等到U2下一个负半周到来时,VD1重新导通,C5迅速放电后又被充电,VT2截止,如此周而复始。这样在一个正弦波周期,VT2包括截止与导通两个状态,对应锯齿波形恰好是一个周期,与主回路电源频率完全一致达到同步的目的。从电路原理分析,锯齿波的宽度是由充电时间常数R3、C5所决定的。 3.脉冲的形成与放大环节 如图所示,晶体管VT4、VT5组成脉冲形成环节:放大环节由VT6等组成,触发脉冲由脉冲变压器T1的二次绕组输出。当晶体管VT4

锯齿波型发生电路

锯齿波型发生电路文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

·1设计目的·2 设计任务 ·3 锯齿波型发生电路的组成和工作原理 · 3.1锯齿波型发生电路的构成 · 3.2原理分析 · 3.3基本逻辑功能框图 ·4 锯齿波形发生电路的电路设计 · 4.1同向输入滞回比较器电路的设计 · 4.2积分运算电路的设计 ·5 锯齿波形发生电路的电路仿真及结果分析 ·6 收获、体会和建议 ·参考文献 ·附录元件清单 1、设计目的 加强学生对电子技术专业知识的理解和掌握,训练并提高其在理论计算、电路设计、资料文献查阅、运用相关标准与规范、电路仿真等方面的能力;为毕业设计(论文)奠定良好的基础。 2、设计任务 观测波形、读取参数 3、锯齿波型发生电路的组成和工作原理

3.1、锯齿波型发生电路的构成 电路设计采用矩形波转变成三角波的波形转换的方法得到三角波,在其中加一个占空比调节电路,利用三角波发生电路中积分电路反向积分速度远大于正向积分速度,或者正向积分速度远大于反向积分速度,则输出电压u0就成为锯齿波。利用二极管的单向导电性可使积分电路两个方向的积分通路不同,并使两个通路的积分电流相差悬殊,就可得到锯齿波发生电路(通常Rw远大于R3)。 3.2、原理分析 设二极管导通时的等效电路可忽略不计,电位器的滑动端移到最上端。当uo1=+Uz时,D1导通,D2截止,输出电压表达式为 uo=-1/R3*C[Uz(t1-t0)+uo(t0)] uo随时间线性下降。当Uo1=-Uz时,D2导通,D1截止,输出电压表达式为[uo=1/(R3+Rw)C]Uz(t2-t1)+uo(t1) uo随时间线性上升。由于Rw〉〉R3,uo1和uo的波形如图(1)所示。 uo1输出波形图 uo输出波形图 图1 波形图 根据锯齿波形的幅值公式:+Uom=UT=(R1/R2)Uz,-Uom=-UT=-(R1/R2)Uz以及上面的两个公式可得下降时间:T1=t1-t0=2(R1/R2)R3*C 上升时间:T2=t2-t1=2(R1/R2)*(R3+Rw)*C所以振荡周期为:T=T1+T2=2R1(2R3+Rw)*C/R2由于R3远小于Rw,所以可以人为T约等于T2。所以uo1的占空比为R3/(2R3+Rw)

锯齿波发生电路解析

解: 该电路为锯齿波发生电路,二极管左边为滞回比较器,右边为积分电路;滞回比较器的输出电压u o1=±U z,它的输入电压是积分电路的输出; 根据叠加原理可得:±U T=±R1 R2 U Z(详见第四版P441)当u o1=+U z时,二极管导通: u o=?1 C ∫(U Z R3 ?U R R4 )dt=(U R R4C ?U Z R3C )(t1?t0)+u o(t0) R4?R3,U R R4C 可忽略不计 ∴u o≈?1 R3C U z(t1?t0)+u o(t0) ①u o随时间线性下降当u o1=?U z时,二极管截止: u o=?1 C ∫(?U R R4 )dt=U R R4C (t1?t0)+u o(t0) ②u o随时间线性上升 +U T ?U T ±U T=± R1 R2 U Z

在u o下降的时间内,+U T,?U T代入积分公式①得: ?U T=?1 R3C U z(t1?t0)+U T→T1=2R1R3C R2 在u o上升的时间内,+U T,?U T代入积分公式②得: U T=U R R4C (t1?t0)+(?U T)→T2=2R1R4C R2 U Z U R 其中T1?T2 T=2R1R3C R2+2R1R4C R2 U Z U R 综上所述: 1.R4和?U R是在u o1=?U z的时段内对电容C进行充放电;从而进行积分运算得出锯齿波 陡缓程度。 2.二极管是整个电路产生锯齿波的必要条件,u o1=?U z时阻断电流。 3.u o1,u o波形如题中所画。 4.T=2R1R3C R2+2R1R4C R2 U Z U R 5.通过R1,R2,,U z调幅;主要通过R4和U R调频。

电力电子技术锯齿波同步移相触发电路实验

电力电子技术实验报告 教室 学院 专业班级 姓名 学号 同组人员

目录 实验一锯齿波同步移相触发电路实验 实验二单相桥式全控整流电路实验 实验三单相桥式有源逆变电路实验 实验四三相桥式全控整流及有源逆变电路实验 (示波器使用注意:如两个波形不共地,不能同时测量,根据波形幅值大小,有的波形需要选择*10档。) 实验五直流斩波电路(设计性)的性能研究 13 实验六单相交直交变频电路 16

实验一锯齿波同步移相触发电路实验 一.实验目的 1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 2.掌握锯齿波同步触发电路的调试方法。 二.实验线路及原理 锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其工作原理可参见“电力电子技术”有关教材。 三.实验设备及仪器 1.MEL—002组件 2.NMCL—31A组件 3.NMCL—05E组件 4.NMEL—03组件 5.双踪示波器 6.万用表 四.实验方法 1.将NMCL-05E面板上左上角的同步电压输入与MEL—002的U、V端相接,触发电路选择锯齿波。 2.合上主电路电源开关,用示波器观察各观察孔的波形,并记录各点波型,示波器的地线接于“7”端。 观察“1”~“6”孔的波形,了解锯齿波脉冲发生器的原理,记录各点波形。 3.调节脉冲移相范围 (1)将NMCL—31A的“G”(给定)接到NMCL-05E的U g 孔,并将输出电压U g 调至0V, 即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U 5 的波形,调节偏移 电压U b (调锯齿波触发电路中RP),使α=180O (即Uct=0时,α=180O),继续调节RP,观察角的变化,直到α=30O,。 (2)在Uct=0时,使α=180O,调节NMCL—31A的给定电位器RP1,增加U ct ,观察脉冲的移动情况,增大Uct直到α=30O,以满足移相范围α=30O~180O的要求,记录α=30O时 U max (Uct)值。 4.调节U ct ,使α=60O,观察输出脉冲电压U G1K1 ,U G6K6 的波形,并标出其幅值与宽度。 用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3 的波形,并标出其幅值 与宽度,记录U G1K1和U G3K3 的相位关系。 五.实验结果分析 1.整理,描绘实验中记录的各点波形。 1)合上主电路电源开关,用示波器观察各孔的波形

相关文档
相关文档 最新文档