文档库 最新最全的文档下载
当前位置:文档库 › 电容式触摸按键的设计原理与指南

电容式触摸按键的设计原理与指南

电容式触摸按键的设计原理与指南
电容式触摸按键的设计原理与指南

Capacitive Touch Sensor

Design Guide

October 16, 2008

Copyright ? 2007-2008 Yured International Co., Ltd.1YU-TECH-0002-012-1

(3)

(3)

(5)

(9)

(11)

(11)

(17)

(20)

Copyright ? 2007-2008 Yured International Co., Ltd.2YU-TECH-0002-012-1

Copyright ? 2007-2008 Yured International Co., Ltd.3

YU-TECH-0002-012-1

1.

2.

( ) 3M 468MP NITTO 500 818

Copyright ? 2007-2008 Yured International Co., Ltd.4

YU-TECH-0002-012-1

3.

4.

Front Panel

Sensor Pad

Sensor Pad

Electroplating

Or

Spray Paint

Nothing

Copyright ? 2007-2008 Yured International Co., Ltd.5

YU-TECH-0002-012-1

1.

(FPC) ITO (Membrane) ITO ITO ( 10K )

FPC ITO MEMBRANE

PCB

Copyright ? 2007-2008 Yured International Co., Ltd.6

YU-TECH-0002-012-1

2.ITO LCD ITO ( 10K )

3. 1mm 8mm ( 8mm X 8mm )

1mm 8mm X 8mm 2mm 10mm X 10mm 3mm 12mm X 12mm 4mm 15mm X 15mm 5mm

18mm X 18mm

( ) 196.85 mil (5mm)

0.254mm(10mil)

2mm 5mm

2mm

Copyright ? 2007-2008 Yured International Co., Ltd.7

YU-TECH-0002-012-1

4.

5. 20mil (0.508mm) IC 20mil (0.508mm) 10mil (0.254mm) 78.74 mil (2mm)

Copyright ? 2007-2008 Yured International Co., Ltd.8

YU-TECH-0002-012-1

6. IC 30cm 20cm IC

7. LED( )

Copyright ? 2007-2008 Yured International Co., Ltd.9

YU-TECH-0002-012-1

1.

LCD ( ) 2mm

2.

RF 6mm ( )

Copyright ? 2007-2008 Yured International Co., Ltd.10

YU-TECH-0002-012-1

3.

( 10mm) ( )

4.

1 2mm

IC IC IC

1. IC

2. 10M ±10%

±10% (1uF) (22pF) ±20%

3. ±500mV(VDD=5V) ±300mV(VDD=3V) ±100mV/1V(VDD)

IC 2.5V

4. 8MHz RC OSCI (C =22pF)

RC OSCI IC IC

Copyright ? 2007-2008 Yured International Co., Ltd.11YU-TECH-0002-012-1

Copyright ? 2007-2008 Yured International Co., Ltd.12

YU-TECH-0002-012-1

5.

CHIP OP VDD VSS OP+R VDD VSS (R 47K 100K )

6. Button (GPIO) 1 (Active-High) 0

(Active-Low) Button 1 0 1 0 1 0

7. Open-Drain GPIO 0 (Vss) 1

Wire AND ( )

IC Open-Drain

8. Toggle Toggle (ON)

(OFF) ON 0 1 OFF 0 1 (Mode)

OUTn Active

INPn T T

Active

T T

Copyright ? 2007-2008 Yured International Co., Ltd.13YU-TECH-0002-012-1

9. Inter-Lock Toggle Push-Pull Active-Low OUT1

INP1 OUT2

OUT3 OUT4 OUT3 OUT2 OUT4

10. (INP) 10M (GND) 10M

22pF 256uS IC 30cm 20cm

KEY

INP

10M

Copyright ? 2007-2008 Yured International Co., Ltd.14YU-TECH-0002-012-1

Copyright ? 2007-2008 Yured International Co., Ltd.15

YU-TECH-0002-012-1

11. IC ( IC ) IC

IC SLEEP VDD VSS HOST 0 IC HOST 1 IC IC 256mS 384mS SLEEP 1 IC

Copyright ? 2007-2008 Yured International Co., Ltd.16

YU-TECH-0002-012-1

12. 6.5 IC

Touch INPn OUTn

Active Touch Active 13.

(INP) 3.2

IC 14. IC 16mS 24mS Active-Low

Pull-High Active-High Pull-Low

15. MODE VSS(GND) R=47K

C=0.001uF(102) C=0.01uF(103) IC OSCI 250KHz ( 50%)

MODE

R

Copyright ? 2007-2008 Yured International Co., Ltd.

17

YU-TECH-0002-012-1

1.

INP 10M OSCI RC Bypass IC IC ( ) 2. OSCI RC

3.

ITO ITO 10K

4.

IC ( ) 196.85 mil (5mm)

Layer2

Layer 1Layer 1

0.254mm(10mil)2mm 2mm

5mm

5mm

5. 1mm 8mm ( 8mm X

8mm)

1mm8mm X 8mm

2mm10mm X 10mm

3mm12mm X 12mm

4mm15mm X 15mm

5mm18mm X 18mm

( ) 196.85 mil (5mm)

0.254mm(10mil)

5mm 2mm

5mm

2mm 0.508mm

(20mil)

2mm

5mm

0.254mm(10mil)

2mm

Copyright ? 2007-2008 Yured International Co., Ltd.18YU-TECH-0002-012-1

6. INP 10mil (0.254mm) IC 20mil (0.508mm)

20mil (0.508mm) 78.74 mil (2mm) 196.85 mil (5mm) IC 30cm 20cm

Copyright ? 2007-2008 Yured International Co., Ltd.19YU-TECH-0002-012-1

Copyright ? 2007-2008 Yured International Co., Ltd.20

YU-TECH-0002-012-1

OSCI 8MHz VDD ±100mV/1V (VDD)

单片机实现触摸按键

感应按键电路分析 感应按键电路分析: 感应按键是刚刚在电磁炉上运用的一种新技术,其主要特点是使电磁炉易清洁,防水性能好。目前在电磁炉上用的感应按键主要有天线感应式及电容式,我们目前用的是利用人体电容的电容式感应按键 感应按键原理如下面的图式; 感应按键电路包括信号产生、信号整形2个单元:首先由信号产生单元产生约几百KHz的高电平占空比约50%的信号;然后信号整形单元对所产生的信号进行整形,整形过程类似于开关电源工作过程;最后将信号送至MCU 的AD口。 当有人体靠近感应按键时,将会形成一个对地的电容在信号整形的高电平期间分流一部分电流,致使整形后的信号下降,并在人体离开前一直维持在下降的电位上;而当人体离开后,整流后的信号又会上升到原来的电位水平。 由于存在电路耦合及寄生电容,所以一般用下降沿和上升沿来识别感应按键的响应动作。

*************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** *************************************************************************************************** ************************************************************************************************** 原理图:示意图1,按键AD每个单独检测,不用切换

触摸感应按键设计指南

触摸感应按键设计指南 张伟林 2009-12-09 sales@soujet.com http://www.soujet.com

1. 概述 对触摸屏与触摸按键在手机中的设计与应用进行介绍,对设计的经验数据进行总结。达到设计资料和经验的共享,避免低级错误的重复发生。 2. 触摸按键设计指导 2.1 触摸按键的功能与原理 2.1.1触摸按键的功能 触摸按键起keypad 的作用。与keypad 不同的是,keypad 通过开关或metaldome 的通断发挥作用,触摸按键通过检测电容的变化,经过触摸按键集成芯片处理后,输出开关的通断信号。 2.1.2触摸按键的原理 如下图,是触摸按键的工作原理。在任何两个导电的物体之间都存在电容,电容的大小与介质的导电性质、极板的大小与导电性质、极板周围是否存在导电物质等有关。PCB 板(或者FPC )之间两块露铜区域就是电容的两个极板,等于一个电容器。当人体的手指接近PCB 时,由于人体的导电性,会改变电容的大小。触摸按键芯片检测到电容值大幅升高后,输出开关信号。 在触摸按键PCB 上,存在电容极板、地、走线、隔离区等,组成触摸按键的电容环境,如下图所示。 Finger Time Capacitance C

2.1.3 触摸按键的按键形式 触摸按键可以组成以下几种按键 z单个按键 z条状按键(包括环状按键) z块状按键 单个按键 条状按键块状按键 2.1.4触摸按键的电气原理图如下:

在PCB板上的露铜区域组成电容器,即触摸按键传感器。传感器的信号输入芯片,芯片经过检测并计算后,输出开关信号并控制灯照亮与否。灯构成触摸按键的背光源。 2.2 触摸按键的尺寸设计 按键可以是圆形、矩形、椭圆形或者任何其他的形状。其中以矩形和圆形应用最为普遍,如图所示: 通常在按键的中间挖空,使PCB下方的光线可以通过挖空导到PCB上方,照亮LENS上的字符。根据ADI公司的推荐,按键大小尺寸如下表: 按键的挖空尺寸与按键的大小相关,如下表

电容式触摸按键PCB布线

`电容式触摸按键 1. 电源 A.优先采用线性电源,因为开关电源有所产生的纹波对于触摸芯片来说影响比较大 B.触摸IC的电源采用开关电源时,尽量控制纹波幅度和噪声。在做电源变化时,如果纹波不好控制, 可采用LDO经行转换 C.触摸芯片的电源要与其他的电源分开,可采用星型接法,同时要进行滤波处理。 如果电源干扰的纹波比较大时可以采用如下的方式: 2.感应按键 A. 材料 根据应用场合可以选择PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等 但在安装时不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。 B. 形状: 原则上可以做成任意形状,中间可留孔或镂空。我们推荐做成边缘圆滑的形状,如圆形或六角形,可以避免尖端放电效应 C. 大小 最小4mmX4mm, 最大30mmX30mm,有的建议不要大于15mmX15mm,太大的话,外界的干扰相应的也会增加 D. 灵敏度 一般的感应按键面积大小和灵敏度成正比。一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。各个感应盘的形状、面积应该相同,以保证灵敏度一致。 灵敏度与外接CIN电容的大小成反比;与面板的厚度成反比;与按键感应盘的大小成正比。 CIN电容的选择: CIN电容可在0PF~50PF选择。电容越小,灵敏度越高,但是抗干扰能力越差。电容越大,灵敏度越低,但是抗干扰能力越强。通常,我们推荐5PF~20PF E. 按键的间距 各个感应盘间的距离要尽可能的大一些(大于5mm),以减少它们形成的电场之间的相互干扰。当用PCB铜箔做感应盘时,若感应盘间距离较近(5MM~10MM),感应盘周围必须用铺地隔离。 如图:各个按键距离比较远,周围空白的都用地线隔开了。但注意地线要与按键保持一定的距离

触摸屏结构原理

触摸屏种类与原理、结构 一、 触摸屏的几个概念: 所谓触摸屏,从市场概念来讲,就是一种人人都会使用的计算机输入设备,或者说是人人都会使用的与计算机沟通的设备。不用学习,人人都会使用,是触摸屏最大的魔力,这一点无论是键盘还是鼠标,都无法与其相比。人人都会使用,也就标志着计算机应用普及时代的真正到来。这也是我们发展触摸屏,发展KIOSK,发展KIOSK网络,努力形成中国触摸产业的原因。 从技术原理角度来讲,触摸屏是一套透明的绝对定位系统,首先它必须保证是透明的,因此它必须通过材料科技来解决透明问题,像数字化仪、写字板、电梯开关,它们都不是触摸屏;其次它是绝对坐标,手指摸哪就是哪,不需要第二个动作,不像鼠标,是相对定位的一套系统,我们可以注意到,触摸屏软件都不需要光标,有光标反倒影响用户的注意力,因为光标是给相对定位的设备用的,相对定位的设备要移动到一个地方首先要知道现在在何处,往哪个方向去,每时每刻还需要不停的给用户反馈当前的位置才不至于出现偏差。这些对采取绝对坐标定位的触摸屏来说都不需要;再其次就是能检测手指的触摸动作并且判断手指位置,各类触摸屏技术就是围绕“检测手指触摸”而八仙过海各显神通的。 二、 触摸屏分类 (一)红外线式触摸屏

红外线式触摸屏在显示器的前面安装一个电路板外框,电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。用户在触摸屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置。任何触摸物体都可改变触点上的红外线而实现触摸屏操作。红外触摸屏不受电流、电压和静电干扰,适宜某些恶劣的环境条件。其主要优点是价格低廉、安装方便、不需要卡或其它任何控制器,可以在各档次的计算机上应用。 (二)电阻式触摸屏 电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,在强化玻璃表面分别涂上两层OTI透明氧化金属导电层。利用压力感应进行控制。当手指触摸屏幕时。两层导电层在触摸点位置就有了接触,电阻发生变化。在X和Y两个方向上产生信号,然后传送到触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。电阻式触摸屏不怕尘埃、水及污垢影响,能在恶劣环境下工作。但由于复合薄膜的外层采用塑胶材料,抗爆性较差,使用寿命受到一定影响。 (三)表面声波式触摸屏 表素影响,分辨率极高,有极好的防刮性,寿命长,透光率高,能保持清晰透亮的图像质量,最适合公共场所使用。但尘埃、水及污垢会严重影响其性能,需要经常维护,保持屏面的光洁。

电容式触摸按键解决方案模板

电容式触摸按键解 决方案

电容式触摸按键解决方案 一、方案简介 在便携式媒体播放器和移动手持终端等大容量、高可视性产品的应用中,触摸按键已被广泛采用。由于其具有方便易用,时尚和低成本的优势,越来越多的电子产品开始从传统机械按键转向触摸式按键。 触摸按键方案优点: 1、没有任何机械部件,不会磨损,无限寿命,减少后期维护成本。 2、其感测部分能够放置到任何绝缘层(一般为玻璃或塑料材料)的后面,很容易制成与周围环境相密封的键盘。以起到防潮防水的作用。 3、面板图案随心所欲,按键大小、形状任意设计,字符、商标、透视窗等任意搭配,外型美观、时尚,不褪色、不变形、经久耐用。从根本上解决了各种金属面板以及各种机械面板无法达到的效果。其可靠性和美观设计随意性,能够直接取代现有普通面板(金属键盘、薄膜键盘、导电胶键盘),而且给您的产品倍增活力! 4、触摸按键板可提供UART、IIC、SPI等多种接口,满足各种产品接口需求。 二、原理概述 如图1所示在PCB上构建的电容器,电容式触摸感应按键实际上只是PCB上的一小块“覆铜焊盘”,触摸按键与周围的“地信号”构成一个感

应电容,当手指靠近电容上方区域时,它会干扰电场,从而引起电容相应变化。根据这个电容量的变化,能够检测是否有人体接近或接触该触摸按键。 接地板一般放置在按键板的下方,用于屏蔽其它电子产品产生的干扰。此类设计受PCB上的寄生电容和温度以及湿度等环境因素的影响,检测系统需持续监控和跟踪此变化并作出基准值调整。 基准电容值由特定结构的PCB产生,介质变化时,电容大小亦发生变化。 图1 PCB上构建开放式电容器示意图 三、方案实现 该系列电容式触摸按键方案,充分利用触摸按键芯片内的比较器特性,结合外部一个电容传感器,构造一个简单的振荡器,针对传感器上电容的变化,频率对应发生变化,然后利用内部的计时器来测量出该变化,

电容式触摸按键设计指南

Capacitive Touch Sensor Design Guide October 16, 2008 Copyright ? 2007-2008 Yured International Co., Ltd.1YU-TECH-0002-012-1

(3) (3) (5) (9) (11) (11) (17) (20) Copyright ? 2007-2008 Yured International Co., Ltd.2YU-TECH-0002-012-1

Copyright ? 2007-2008 Yured International Co., Ltd.3 YU-TECH-0002-012-1 1. 2. ( ) 3M 468MP NITTO 500 818

Copyright ? 2007-2008 Yured International Co., Ltd.4 YU-TECH-0002-012-1 3. 4. Front Panel Sensor Pad Sensor Pad Electroplating Or Spray Paint Nothing

Copyright ? 2007-2008 Yured International Co., Ltd.5 YU-TECH-0002-012-1 1. (FPC) ITO (Membrane) ITO ITO ( 10K ) FPC ITO MEMBRANE PCB

Copyright ? 2007-2008 Yured International Co., Ltd.6 YU-TECH-0002-012-1 2.ITO LCD ITO ( 10K ) 3. 1mm 8mm ( 8mm X 8mm ) 1mm 8mm X 8mm 2mm 10mm X 10mm 3mm 12mm X 12mm 4mm 15mm X 15mm 5mm 18mm X 18mm ( ) 196.85 mil (5mm) 0.254mm(10mil) 2mm 5mm 2mm

感应按键原理

电容式触摸感应按键的基本原理 ◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法 电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。所以,我们测量周期的变化,就可以侦测触摸动作。 具体测量的方式有二种: (一)可以测量频率,计算固定时间内张弛振荡器的周期数。如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。 (二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。 Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。

◆以Silicon Labs的MCU实现触摸感应按键 利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N) 电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。C8051F93x-F92x 之外,Silicon Labs其它MCU系列可直接连接12个开关,或者通过外部模拟多路复用器连接更多开关。 设计触摸感应按键开关 因为我们要侦测电容值的变化,所以希望变化幅度越大越好。现在,有三个主要因素会影响开关电容及变化幅度。 ?PCB上开关的大小、形状和配置 ?PCB走线和使用者手指间的材料种类 ?连接开关和MCU的走线特性 我们测试了下图中这12种不同开关。目的是为了发现开关的形状尺寸会如何影响开关的空闲和被接触的状态,还可以发现哪一种开关的空闲电容最大,就不容易被PCB上的寄生电容而影响。测试结果表明,在特定区域中的开关越大且走线越多,则此开关的闲置电容便越高。图中的环状开关具有最低的电容,所以当开关动作时,可显现最大的电容相对变化。

触摸按键设计要求教案资料

触摸按键设计要求

触摸按键画板法 (以下所提到的芯片为HT45R34) ●Sensor pad形状: Sensor pad形状可以为圆形,方形,三角形(实心型),抑可以线条构成此类圆形(镂空型),前者用于覆盖板较厚的情况。后者则用于覆盖板较薄的情况下。推荐用圆形,感应效果更佳。 ●Sensor pad尺寸: Sensor pad面积越大灵敏度越大,但超过手指按压范围的部分对增加灵敏度没有作用。以圆形为例,一般设计为10m m~15mm的直径,符合成人手指的大小。 ●Sensor pad与ground plane之间的间隔: 间隔越大,touch swith的基础电容越小,RC震荡的频率越大,灵敏度也越大,但间隔太大,地对电场的约束越小,干扰越大;间隔太小,基础电容太大,灵敏度太小,且地对电场的约束太大,不利于电场穿透覆盖板,使得覆盖板只能较薄。推荐的间隔为0.5m m~ 1.0mm,例如10mm直径的sensor pad配合0.5mm的间隔。 ●布局要求: Sensor pad 要靠近MCU,每一个Sensor Pad到MCU的距离要尽量一致。IN,RREF,CREF引出脚要短,该RC模块要靠近MCU。另外,复位电路,晶振电路要靠近MCU。 布线要求:

由MCU的RC1~RC16PIN到touch swith的连线,要尽量的短,尽量远离其他走线或元件,线宽尽量窄(7~10mil).要避免touch swith的连线临近高频的通信线(例如I2C SPI通信线),在没有办法避免的情况下,请让两者直交布线。尽量将到touch swith的连线布在与S ensor Pad不同的Layer (采用双面板时),使其受到人体的影响降低,且这些线与线之间的也要尽量互相远离,线周围也要铺上地,以保证其尽量少受到其他信号的干扰。 ●覆盖板的材料: 覆盖板为一些坚固,易安装的绝缘材料,介电常数在2.5~10之间,Demo Board 上采用的是压克力板材,还有很多可采用的板材,例如:普通玻璃,徽晶板等,覆盖板的介电常数越小,Sensor Padde的感应范围越小。安装要求覆盖板紧贴Sensor Pad的表面,用粘胶将其贴在Sensor Pad的表面(排掉它们之间的空气)则效果更佳。 ●覆盖板的厚度: 覆盖板的厚度一般为1mm~5mm,厚度越大touch swith的灵敏度越小,信噪比也越低。Sensor Pad的面积越小,覆盖板要越薄。

电容式触摸按键布线

电容式触摸按键布线分享 1):电容式触摸按键特点及应用 与传统的机械按键相比,电容式触摸感应按键不仅美观时尚而且寿命长,功耗小,成本低,体积小,持久耐用。它颠覆了传统意义上的机械按键控制,只要轻轻触碰,他就可以实现对按键的开关控制,量化调节甚至方向控制,现在电容式触摸感应按键已经广泛用于手机,DVD,电视,洗衣机等一系列消费类电子产品中! 2):电容式触摸按工作基本原理 所谓感应式触摸按键,并不是要多大的力量去按,相反,力量大和小的效果是一样的,因为外层一般是一块硬邦邦的塑料壳。具体就电容式而言,是利用人手接触改变电容大小来实现的,通俗点,你手触摸到哪个位置,那里的电容就会发生变化,检测电路就会检测到,并将由于电容改变而带来的模拟信号的改变转化为数字信号的变化,进行处理! 3): 电容式触摸按电容构成及判断 PCB材料构成基本电容,PCB上大面积的焊盘(触摸按键)与附近的地构成的分布电容,由于人体电容的存在,当手指按上按键后,改变了分布电容的容量(原来的电容并上了人体电容),通过对PAD构成的分布电容充放电或构成振荡电路,再检测充放电的时间,或者振荡频率,脉冲宽度等方式可以检测电容容量的变化,继而可判断按键是否被按下。 电容式触摸按键布板要求 1): PCB板的电容构成因素: PCB板中电容构成因素如右图: 其中代表PCB板最终生成电容

代表空气中的介质常数 代表两板电介质常数 代表两极板面面积 代表两板距离 2): PCB板的布局 电容式感应触摸按键实际只是PCB上的一小块覆铜焊盘,当没有手指触摸时,焊盘和低型号产生约5—10PF的电容值,我们称之为“基准电容”故为了PCB设计尽量达到这值,PCB需要进行更好设计!如下图:

触摸按键设计规范

cx电压从0开始充电,一直到v1 上图右边是一个最基本的触摸按键,中间圆形绿色的为铜(我们可以称之为按键),在这些按键中会引出一根导线与MAU相连,MAU通过这些导线来检测是否有按键按下,外围的绿色也是铜不过这些铜与GND大地相连,在按键和外围铜直接是空隙(空隙d)上图右边是左图的截面图,当没有手指接触时只有一个电容cp,,当有手指接触时,按键通过手指就形成了电容cf 二。硬件连接 电容式触摸按键原理 现阶段,随着电容式触摸按键在外形美观和使用寿命等方面都优于传统的机械按键,电容式触摸按键的应用领域也日益广泛,包括家电、消费电子、工业控制和移动设备等。本文就一种具体的电容式触摸开关芯片SJT5104介绍一下电容式触摸按键的基本工作原理和材料选择。 一工作原理 任何两个导电的物体之间都存在着感应电容,一个按键即一个焊盘与大地也可构成一个感应电容,在周围环境不变的情况下,该感应电容值是固定不变的微小值。当有人体手指靠近触摸按键时,人体手

指与大地构成的感应电容并联焊盘与大地构成的感应电容,会使总感应电容值增加。电容式触摸按键IC在检测到某个按键的感应电容值发生改变后,将输出某个按键被按下的确定信号。电容式触摸按键因为没有机械构造,所有的检测都是电量的微小变化,所以对各种干扰会更加敏感,因此触摸按键设计、触摸面板的设计以及触摸IC的选择都十分关键。 二触摸PAD设计 1. 触摸PAD材料 触摸PAD可以用PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等。不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。当用平顶圆柱弹簧时,触摸线和弹簧连接处的PCB,镂空铺地的直径应该稍大于弹簧的直径,保证弹簧即使被压缩到PCB板上,也不会接触到铺地。 2. 触摸PAD形状 原则上可以做成任意形状,中间可留孔或镂空。作者推荐做成边缘圆滑的形状,可以避免尖端放电效应。一般应用圆形和正方形较常见。 3. 触摸PAD面积大小 按键感应盘面积大小:最小4mm×4mm,最大30mm×30mm。实际面积大小根据灵敏度的需求而定,面积大小和灵敏度成正比。一般来说,

电容式触摸屏原理和技术的特点

电容式触摸屏原理和技术的特点 电容式触摸屏是通过在基材上镀上一层或者多层导电材料(比如铟锡氧化物ITO)而制成,之后与保护盖板密封贴合以保护电极。当其它的导电体,比如裸露的手指或者导电笔触摸到它的表面,一个电子回路就在那里形成,感应器嵌入在玻璃里面以检测电流的位置,就这样完成了一个触摸操作。 这种工作方式跟电阻TP依靠物理点击是完全不一样的。 电容式触摸屏可以分为以下两大类: Surface Capacitive-表面电容式 在玻璃基板上镀上透明导电涂层,然后在导电涂层上增加一层保护涂层。电极被放置在玻璃的四个角上,四个角都被施加上相同的相位电压,在玻璃表面形成一个匀强电场。当手指触摸到玻璃表面,电流将从玻璃的四个角上流经手指,从四个角上流经的电流比例将被测量以判断触摸点的具体位置。测量出来的电流值跟触摸点到四个角的距离是成反比的。 技术特点: ◆更适合大尺寸的显示器 ◆对很轻的触摸都有反应,而且不需要感应实际的物理压力

◆由于只有一层玻璃,产品的透过率很高 ◆结构坚固,因为它只由一层玻璃组成 ◆潮湿、灰尘和油污对触摸效果不会产生影响 ◆视差小 ◆高分辨率和高响应速度 ◆不支持裸露手指与带手套组合操作,不支持裸露手指与手写笔组合操作 ◆不支持多点触摸 ◆有可能被噪声干扰 Projected Capacitive-投射电容式 相比表面电容式,投射电容式触摸屏通常用在较小的屏幕尺寸上,内部结构上包括一个集成了IC芯片用于处理数据的线路板,拥有指定图案的许多透明电极层,表面上覆盖一层绝缘的玻璃或者塑料盖板。当手指接近触摸屏表面,静电电容在多个电极间同时变化,通过测量这些电流之间的比例,可以精确地判断出接触的位置。 投射电容式技术有两种感应方式:栅格式和线感式。人体能够导电是因为含有大量的水份,当手指靠近X和Y电极的图案,在手指和电极间将产生一个耦合电容,耦合电容会使

电容触摸按键设计

在目前市场上可提供的PCB(印刷电路板)基材中,FR4是最常用的一种。FR4是一种玻璃纤维增强型环氧树脂层压板,PCB可以是单层或多层。 在触摸模块的尺寸受限的情况下,使用单层PCB不是总能行得通的,通常使用四层或两层PCB。在本文中,我们将以最常用的两层PCB为例来介绍PCB布局,意在为S-Touch TM电容触摸感应设计所用的各种PCB (如FR4、柔性PCB或ITO面板)的结构和布局提供设计布局指导。 PCB设计与布局 在结构为两层的PCB中,S-Touch TM触摸控制器和其他部件被布设在PCB的底层,传感器电极被布设在PCB的顶层。 每个传感器通道所需的调谐匹配电容器可以直接布设在该传感器电极的底层。需要指出的是,S-Touch TM触摸控制器布设在底层,应该保证其对应的顶层没有布设有任何传感器电极。顶层和底层的空白区域可填充网状接地铜箔。 图 2.1 两层 PCB 板的顶层

图 2.2 两层 PCB 板的底层 设计规则第1 层(顶层) ?传感器电极位于PCB的顶层(PCB的上端与覆层板固定在一起)。为提高灵敏度,建议使用尺寸为10 x 10 毫米的感应电极。可以使用更小尺寸的感应电极,但会降低灵敏度。同时,建议感应电极的尺寸不超过15 x 15 毫米。如果感应电极超过这一尺寸,不但会降低灵敏度,而且会增加对噪声的易感性。 ?空白区域可填充接地铜箔(迹线宽度为6 密耳,网格尺寸为30 密耳)。 ?顶层可用来布设普通信号迹线(不包括传感器信号迹线)。应当尽可能多地把传感器信号迹线布设在底层。 ?感应电极与接地铜箔的间距至少应为0.75 毫米。 第2 层(底层) ?S -Touch TM控制器和其它无源部件应该设计布局在底层。 ?传感器信号迹线将被布设在底层。不要把一个通道的传感器信号迹线布设在其他传感通道的感应电极的下面。 ?空白区域可填充接地铜箔(迹线宽度为6 密耳,网格尺寸为30密耳)。 ?传感器信号迹线与接地铜箔的间距应当至少是传感器信号迹线宽度的两倍。

触摸类开关知识

触摸开关原理 现在市场上有不少的MP3都采用了触摸式的按键,带给消费者“飞”同寻常的操作体验,例如苹果公司的iPod系列,魅族公司的mini系列,台电的C280、新品T39以及微星的8890T。这些触摸式操作的MP3在按键上的最大的区别是有些是只有轻轻点触就有反应并伴着或红或蓝的背光点触式触摸键,有些是要在按键上滑动才可以选择菜单而且没有背光的滑动式触摸键。 这些差别的原因是它们的工作原理不同,触摸式按键可分为两大类:电阻式触摸按键与电容式感应按键,即滑动式按键和点触式按键。 ●电阻式按键 电阻式的触摸按键原理非常类似于触摸屏技术,需要由多块导电薄膜上面按照按键的位置印制成的,因此这种按键需要在设备表面贴一张触摸薄膜。电阻式触摸屏一直由于其低廉的价格而深受厂商的喜爱,但是由于导电薄膜的耐用性较低,并且也会降低透光性,因此已经被越来越多的厂家所抛弃。 ●电容式按键 电容式触摸按键主要是为了克服电阻屏的耐用性所提出的,电容式触摸按键的结构与电阻式的相似,但是其采用电容量为判断标准。简单来说,就是一个IC控制的电路,该电路包括一个能放置在任何介质面板后的简单阻性环形电极组件,因此,按键的操作界面可以是一整块普通绝缘体(如有机玻璃一般材料都可),不需要在界面上挖孔,按键在介质下面,人手接近界面和下面的电极片形成电容,靠侦测电容量的变化来感应。温度,静电,水,灰尘等外界因素一般不会影响,界面没有太多要求,可以加上背光,音效等,靠人手感应,整个界面没有按键的存在,便于清洁,让产品在外观上更加高档美观,由于按键没有接点,使用寿命也是非常的长久,一般来说是半永久性。 根据其原理,该按键对外观工艺方面有一些特别的要求: 1、因为按键和lens是一个整体,而按键又必须透光,所以整个Lens必须是透 明件,所以一般就是用PMMA或PC; 2、Lens上不能有金属件或者带有金属效果的喷漆,以免影响按键的灵敏度; 3、按键必须做的足够的宽大,做小了很容易产生误操作。因为它不像机械式的按键,只要避免联动就可以了,它只要感应到了就产生动作。另外还要考虑到打电话的时候,按键正好贴在人脸上,也会有感应动作,需要相应的方案解决; 4、因为是一大片Lens,所以必须考虑Lens的工艺,一般为正面IML,因为背面 肯定有结构。这就限制了Lens上的一些开孔的大小和Lens的厚度要求。 另外,在按键的结构上还要考虑感应PCB的贴装方式对感应效果、整机装配的影响以及按键符号的透光的解决方案。

电容式触摸感应按键技术原理及应用

电容式触摸感应按键技术原理及应用 2010-05-26 12:45:02| 分类:维修 | 标签: |字号大中小订阅 市场上的消费电子产品已经开始逐步采用触摸感应按键,以取代传统的机械式按键。针对此趋势,Silicon Labs公司推出了内置微控制器(MCU)功能的电容式触摸感应按键(Capacitive Touch Sense)方案。电容式触摸感应按键开关,内部是一个以电容器为基础的开关。以传导性物体(例如手指)触摸电容器可改变电容,此改变会被內置于微控制器内的电路所侦测。 电容式触摸感应按键的基本原理 ◆Silicon Labs 现提供一种可侦测因触摸而改变的电容的方法 电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。所以,我们测量周期的变化,就可以侦测触摸动作。 具体测量的方式有二种: (一)可以测量频率,计算固定时间内张弛振荡器的周期数。如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。 (二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。 Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。 ◆以Silicon Labs的MCU实现触摸感应按键 利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N)电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。C8051F93x-F92x之外,Silicon Labs其它MCU系列可直接连接12个开关,或者通过外部模拟多路复用器连接更多开关。 设计触摸感应按键开关 因为我们要侦测电容值的变化,所以希望变化幅度越大越好。现在,有三个主要因素会影响开关电容及变化幅度。 PCB上开关的大小、形状和配置

触摸屏的原理与应用

触摸屏的原理与应用 触摸屏又称为“触控屏”、“触控面板”,是一种可接收触头等输入讯号的感应式液晶显示装置,当接触了屏幕上的图形按钮时,屏幕上的触觉反馈系统可根据预先编程的程式驱动各种连结装置,可用以取代机械式的按钮面板,并借由液晶显示画面制造出生动的影音效果。 触摸屏原理:主要由其二大特性决定。第一:绝对坐标系统,第二:传感器。 首先先来区别下,鼠标与触摸屏的工作原理有何区别?借此来认识绝对坐标系统和相对坐标系统的区别。 鼠标的工作原理是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的鼠标箭头的移动,属于相对坐标定位系统。而绝对坐标系统要选哪就直接点那,与鼠标这类相对定位系统的本质区别是一次到位的直观性。绝对坐标系的特点是每一次定位坐标与上一次定位坐标没有关系,触摸屏在物理上是一套独立的坐标定位系统,每次触摸的数据通过校准数据转为屏幕上的坐标。 第二:定位传感器 检测触摸并定位,各种触摸屏技术都是依靠各自的传感器来工作的,甚至有的触摸屏本身就是一套传感器。各自的定位原理和各自所用的传感器决定了触摸屏的反应速度、可靠

性、稳定性和寿命。 通过以上两个特性,触摸屏工作时,首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置(即绝对坐标系统)来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器(即传感器);而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。触摸屏传感器技术 从触摸屏传感器技术原理来划分:有可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。 其中矢量压力传感技术触摸屏已退出历史舞台;红外线技术触摸屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容技术触摸屏设计构思合理,但其图像失真问题很难得到根本解决;电阻技术触摸屏的定位准确,但其价格颇高,且怕刮易损;表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不容易被损坏,适于各种场合,缺点是屏幕表面如果有水滴和尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质,把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声

四大触摸屏技术工作原理及特点分析

四大触摸屏技术工作原理及特点分析 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1.电阻式触摸屏 电阻式触摸屏的工作原理 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X 和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:(1)ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。

设计揭秘 电容感应式触摸按键方案在电磁炉中的应用

设计揭秘电容感应式触摸按键方案在电磁炉中的应用 —创新网小编 作者:于洁,张建新,张醒 本文介绍意法半导体的8位STM8微控制器实现的电容感应 式触摸按键原理,以及在电磁炉应用中的触摸按键解决方案。 该方案具有低成本,环境自适应,防水及防电磁干扰等特点, 在低品质电网环境中也能可靠工作。 相较于机械式按键和电阻式触摸按键,电容式触摸按键不仅耐用,造价低廉,机构简单易于安装,防水防污,而且还能提供如滚轮、滑动条的功能。但是电容式触摸按键也存在很多的问题,因为没有机械构造,所有的检测都是电量的微小变化,所以对各种干扰敏感得多。ST针对家电应用特别是电磁炉应用,推出了一个基于STM8系列8位通用微控制器平台的电容式触摸感应方案,无需增加专用触摸芯片,仅用简单的外围电路即可实现电容式触摸感应功能,方便客户二次开发。 方案介绍 ST的电容式触摸按键方案通过一个电阻和感应电极的电容CX构成的阻容网络的充电/放电时间来检测人体触摸所带来的电容变化。如图1所示,当人手按下时相当于感应电极上并联了一个电容CT,增加了感应电极上的电容,感应电极进行充放电的时间会增加,从而检测到按键的状态。而感应电极可以直接在PCB板上绘制成按键、滚轮或滑动条的应用样式,也可以做成弹簧件插在PCB板上,即使隔着绝缘层(玻璃、树脂)也不会对其检测性能有所影响。

图1 STM8S电容式触摸按键的工作原理 电磁炉是采用磁场感应电流的加热原理对食物进行加热。加热时,通过面板下方的线圈产生强磁场,磁力线穿过导磁体做的锅的底部时,锅具切割交变磁力线而在锅具底部产生涡流使锅底迅速发热,达到加热食物的目的。在本解决方案中采用44pin的STM8S105S4做按键显示板的主控芯片,控制13个按键的扫描、24个LED及一个4位数码管的显示、I2C与主板的通讯,并留有一个SWIM接口方便工程师调试之用(如图2)。

电容式触摸屏的原理(Robot360[1].cn)

电容式触控技术原理简介 触控面板依构造和感测形式的不同可分为电阻式、电容式、音波式以及光学式等种类,一般在市售产品中较常见的为电阻式与电容式之触控面板。 电阻式触控面板主要由上下两组ITO Film和ITO Glass导电层迭合而成,中间由DOT所隔开,在两导电层之间通入5V的电压,使用时利用压力使上下电极导通,经由控制器测知面板电压变化而计算出接触点(X,Y)轴位置,达到定位的目的。电阻式又可分为四线式、五线式,其四线式电阻线路XY轴分别配置于ITO Film和ITO Glass,当ITO Film被严重刮伤时将会形成断路,使得触控面板无法动作,而五线式原理虽然可以将面板刮伤断路的情况控制在刮伤区域内(其他部分依然可以动作),但其不耐刮的缺点依然存在。 电阻式触控面板技术门坎较低,成本低廉,一般常应用于消费性电子产品如PDA、电子字典、手机、点餐系统、信用卡POS签名机等。 图一、电阻式触控面板结构 电容式触控技术于20多年前诞生,早期由美商3M公司独占整个国际市场,在基本专利到期后全球触控面板的生产业者才得以开发电容式触控面板,电容式触控面板的应用可由触控面板、控制器及软件驱动程序等三部份说明。 n触控面板 电容式触控面板基本上是为了改良电阻式不耐刮的特性而来的,在结构上最外层为一薄薄的二氧化硅硬化处理层,硬度达到7H,第二层为ITO,在玻璃表面建立一均匀电场,最下层的ITO 作用为遮蔽功能,以维持Touch Panel能在良好无干扰的环境下工作。

图二、电容式触控面板结构 图三为两种安装电极的方式,电流分别是从四边或者四个角输入。当使用者与触控面板没有接触时,各种电极是同电位的,触控面板没有上没有电流通过,反之与触控面板接触时,人体内的静电流入而产生微弱电流通过,传感器透过电流值的变化来定位目前接触的坐标,形成一个电容场,当手指移动改变电流时,四边(or四个角)的电流也会跟着变动,传感器就能利用这个变化来算出行走的路径,并送出精确的坐标讯号给计算机。从四条边上输入时,根据上下、左右电流比计算就可以得出,检测方法较为简单。从四个角输入时,检测方法要求出与四条边的距离比,位置计算也较为复杂。 图三、电容式触控面板电极安装方式 电容式触控产品具备防尘、防刮、强固耐用及具有高分辨率等优点,但因制程步骤较多,且驱动IC与电路较复杂,因此在成本及技术进展上不利应用于中小尺寸产品,多用于10.4吋以上高单价市场,如图书馆、车站等公共场所的信息导览系统、银行自动柜员机、博物馆导览型机器人等。 n控制器 由于不平衡的透明导电模厚度会造成工作位置精度的偏差,且触控面板做的愈大此情形愈加明显,因此为了得到正确位置精度,需藉由控制器作线性分析及补偿。控制器经由多点线性补偿功能(Multi-point Linearity Compensation Function),将补偿数据纪录于EEPROM中,以对通过不平衡的透明导电膜而引起的偏差进行补偿,通常此对策能将现性偏差控制在1%以下。

触摸工作原理

电容触摸感应MCU工作原理与基本特征 现在的电子产品中,触摸感应技术日益受到更多关注和应用,并不断有新的技术和IC 面世。与此同时,高灵敏度的电容触摸技术也在快速地发展起来,其主要应用在电容触摸屏和电容触摸按键,但由于电容会受温度、湿度或接地情况的不同而变化,故稳定性较差,因而要求IC的抗噪性能要好,这样才能保证稳定正确的触摸感应。 针对市场的需求,来自美国的高效能模拟与混合信号IC创新厂商Silicon Laboratories (简称:Silicon Labs)公司特别推出了C8051F7XX和C8051F8XX系列的MCU(单片机),专门针对电容触摸感应而设计,在抗噪性能和运算速度上表现的非常突出。 一、Silicon Labs公司的电容触摸系列MCU 目前Silicon Labs公司推出的C8051F7xx和C8051F8xx等电容触摸系列MCU,以高信噪比高速度的特点在业界表现尤为出色。同时,灵活的I/O配置,给设计带来更多的方便。另外,由于该系列MCU内部集成了特殊的电容数字转换器(CDC),所以能够进行高精度的电容数字转换实现电容触摸功能。 CDC的具体工作原理: 如图1所示,IREF是一个内部参考电流源,CREF是内部集成的充电电容,ISENSOR 属于内部集成的受控电流源,CSENSOR为外部电容传感器的充电电容,由于人体的触摸引起CSENSOR的变化,通过内部调整过的ISENSOR对CSENSOR进行瞬间的充电,在CSENSOR上产生一个电压VSENSOR,然后相对内部参考电压经过一个共模差分放大器进行放大;同理IC内部的IREF对CREF充电后也产生一个参考电压并相对同样的VREF 经过差分放大,最后将2个放大后的信号通过SAR(逐次逼近模数转换器)式的ADC采样算出ISENSOR的值。 图1 Silicon Labs SAR式的ADC采样可选择12-16位的分辨率,如图2所示,采用16位的分辨率进行逐位比较采样:首先从确定最高位第16位(IREF=0x8000)开始,最高位的

电容触摸按键设计

在目前市场上可提供的PCB(印刷电路板)基材中,FR4是最常用的一种。FR4是一种玻璃纤维增强型环氧树脂层压板,PCB可以是单层或多层。 在触摸模块的尺寸受限的情况下,使用单层PCB不是总能行得通的,通常使用四层或两层PCB。在本文中,我们将以最常用的两层PCB为例来介绍PCB布局,意在为S-Touch TM电容触摸感应设计所用的各种PCB (如FR4、柔性PCB或ITO面板)的结构和布局提供设计布局指导。 PCB设计与布局 在结构为两层的PCB中,S-Touch TM触摸控制器和其他部件被布设在PCB的底层,传感器电极被布设在PCB的顶层。 图1 基于两层板的电容式触摸模组的结构 每个传感器通道所需的调谐匹配电容器可以直接布设在该传感器电极的底层。需要指出的是,S-Touch TM触摸控制器布设在底层,应该保证其对应的顶层没有布设有任何传感器电极。顶层和底层的空白区域可填充网状接地铜箔。 图2.1 两层PCB板的顶层

图2.2 两层PCB板的底层 设计规则 第1层(顶层) ● 传感器电极位于PCB的顶层(PCB的上端与覆层板固定在一起)。为提高灵敏度,建议使用尺寸为10 x 10 毫米的感应电极。可以使用更小尺寸的感应电极,但会降低灵敏度。同时,建议感应电极的尺寸不超过15 x 15毫米。如果感应电极超过这一尺寸,不但会降低灵敏度,而且会增加对噪声的易感性。 ● 空白区域可填充接地铜箔(迹线宽度为6密耳,网格尺寸为30密耳)。 ● 顶层可用来布设普通信号迹线(不包括传感器信号迹线)。应当尽可能多地把传感器信号迹线布设在底层。 ● 感应电极与接地铜箔的间距至少应为0.75毫米。 第2层(底层) ● S-Touch TM控制器和其它无源部件应该设计布局在底层。 ● 传感器信号迹线将被布设在底层。不要把一个通道的传感器信号迹线布设在其他传感通道的感应电极的下面。

相关文档
相关文档 最新文档