文档库 最新最全的文档下载
当前位置:文档库 › 1-溴正丁烷的合成方案

1-溴正丁烷的合成方案

1-溴正丁烷的合成方案
1-溴正丁烷的合成方案

1-溴正丁烷的合成方案

小组成员:组长:

1.名称:溴正丁烷; 溴丁烷; 溴化正丁基; 正溴丁烷; 丁基溴; 溴代丁烷; 溴代正丁烷

英文别名:n-Butyl bromide; Bromobutane; BUTYL BROMIDE; 1-Brombutan; 1-bromo-butan; 1-butylbromide; bromo butane; Butane,1-bromo-; N-Bromobutane; (4-bromobutoxy)benzene

2. 分子式:C4H9Br;CH3CH2CH2CH2Br

3. 分子量:137.01946

4. CAS RN:109-65-9

5. 外观:无色或乳白色液体

6. MP/BP:熔点:-112.4℃沸点:100~104℃

7. 分子结构:H3 C

8. 主要物化性质

1-溴正丁烷:吸入本品蒸气可引起咳嗽、胸痛和呼吸困难。高浓度时有麻醉作用,引起神志障碍。眼和皮肤接触可致灼伤。

HBr的性质:标准情况下,HBr是不可燃气体,带有酸味,在潮湿空气中发烟。HBr可溶于水生成氢溴酸,室温下饱和溶液的浓度为68.85%(质量比),恒沸混合物中含47.38%质量HBr,沸点126°C。氢溴酸几乎完全离解为H+和Br?。NaHSO4的化学性质:

健康危害:本品对眼睛、皮肤、粘膜和上呼吸道具强烈刺激作用和腐蚀性。

环境危害:燃爆危险:本品不燃,具腐蚀性、强刺激性,可致人体灼伤。

9.合成路线:

制备卤代烃的方法有多种,但实验室制备饱和一元卤代烃最常用的方法为醇与氢卤酸的反应:

例如以此法制备1-溴丁烷,醇用正丁醇,氢卤酸可用市售浓度为7.5%的浓氢溴

酸,也可用NaBr与H

2SO

4

的反应来完成:

或:

醇与氢溴酸的反应是一个可逆反应。为了促使平衡向右移动(即生成1-溴丁烷的方向移动),可采取:①增加其中一种反应物浓度的方法;②设法使反应产物

离开反应体系的方法;③增收加反应的浓度和减少产物的两种方法并用。在本实验中,我们采取溴化钠与硫酸过量的方法来促使平衡向生成1-溴丁烷的方向移动。

因反应中用到浓硫酸,故可能的副反应有:

10. 实验部分

(1)反应方程式

或:

投料量:

实验操作:

1、无水溴化钠研钵研细后,称取8.3g于50mL圆底烧瓶中,然后加6.2mL正丁醇和2粒沸石。

2、稀释浓硫酸:取10mL水于100mL三角瓶中,冷水浴冷却,一边摇荡,一边沿瓶壁缓慢加入10mL浓硫酸,将浓硫酸稀释。

3、将稀释后的硫酸分批从冷凝管上端加入盛放有NaBr、正丁醇的烧瓶中。加硫酸时,应充分振荡烧瓶,使反应物混合均匀。

4、按照图2连接好气体吸收装置,用酒精灯、石棉网小火加热到沸腾,回流30分钟。

5、将上述反应体系冷却5分钟,御下回流冷凝管,重新补加1~2粒沸石,用75°弯管连接冷凝管(见图3)进行蒸馏,直到无油滴蒸出为止。

6、分离、洗涤:

⑴ 将含有水的粗1-溴丁烷移入分液漏斗中,加入15mL水洗涤,静置分层(上层水相,下层油相?1-溴丁烷)。打开活塞,将下层1-溴丁烷放入一干燥的三角瓶内,进行下步操作。

⑵ 浓硫酸洗:

分去水后的粗1-溴丁烷,振荡下分2~3批缓慢加入总量为3mL的浓硫酸进行洗涤。因此过程体系入热,故可置于冷水浴中进行。

将冷却后的1-溴丁烷、硫酸混合物再小心地移入分液漏斗中,待静置分层后(1

溴丁烷d20

41.275, H

2

SO

4

d20

4

1.84, 所以1-溴丁烷处于上层,浓硫酸为下层),分

出下层的废酸,倒入指定的废液回收瓶中,交实验室统一处理。

⑶水洗与Na

2CO

3

溶液洗:

分去硫酸后的粗1-溴丁烷层,依次分别用10mLH

2O、5mL10%Na

2

CO

3

、10mL水进行

洗涤。

注意:每次洗涤后,应先将该步骤中的废液分去后,才能进行下步洗涤。

7、干燥:粗1-溴丁烷放入干燥的三角瓶中,加入1~2g块状无水氯化钙,加盖瓶塞后放置20~30min,放置过程中可间歇振荡三角瓶。(若一次实验课不能完成此实验,可在此处停下来。)

8、常压蒸馏:

干燥后的1-溴丁烷,通过长颈漏斗(可在漏斗口处放少许脱脂棉)倒入50mL圆底烧瓶中,再加1~2粒沸石,按常压蒸馏装置装好仪器,在石棉网上用小火加热蒸馏,待馏分温度恒定后,开始收集主馏分,得无色透明液体。馏分纯净情况下沸点范围为99~102°。

10.注意事项

1、将浓硫酸缓慢加入水中,不能将水加入浓硫酸中,否则将会使硫酸溅出,造成人身伤害。稀释硫酸的过程为放热过程,因而稀释后应继续冷却硫酸至室温,然后才能进行下步反应。

2、稀硫酸冷至室温后加入NaBr、正丁醇体系中,需摇匀,正常现象为:上部为无色透明清液,下部为白色粉末。因反应,体系中有少许气泡产生。若加入的硫酸较热,且加入后未摇匀,则放置几分钟后,体系中不断有气泡产生,上部清液由无色透明变为浅棕红色。其原因为:

利奈唑胺的药理分析综述

龙源期刊网 https://www.wendangku.net/doc/8314526026.html, 利奈唑胺的药理分析综述 作者:曲小艺 来源:《中国科技博览》2016年第01期 中图分类号:R9 文献标识码:A 文章编号:1009-914X(2016)01-0346-01 利奈唑胺(linezolid)是一种人工合成的噁唑烷酮类抗菌药,对大多数革兰阳性致病菌都有良好的抗菌活性,与其他抗菌药多无交叉耐药现象,加之组织、体液分布广泛以及给药方法便捷,使得其治疗多重耐药革兰阳性菌感染的有效性和安全性均很好,在临床上受到广泛的关注。 1 作用机制和抗菌活性 作为一种新型抗菌药,利奈唑胺作用于细菌的50S核糖体亚单位。但与其他抗菌药不同,利奈唑胺不影响肽基转移酶活性而只是作用于翻译系统的起始阶段,通过抑制mRNA与核糖体连接、阻止70S起始复合物的形成,最终产生抑制细菌蛋白质合成的作用。由于作用部位及方式独特,利奈唑胺与其他抗菌药多无交叉耐药现象。在耐药菌日益流行的今天,利奈唑胺的这一特性具有重要临床意义。体外药敏试验结果显示,利奈唑胺对几乎所有的致病性革兰阳性菌、非典型病原体、各种分枝杆菌、诺卡菌以及革兰阳性的厌氧菌都有较好的抗菌活性,但对革兰阴性杆菌不敏感,可能与革兰阴性杆菌的外排机制有关。体外药敏试验还显示,包括耐甲氧西林的金黄色葡萄球菌、耐甲氧西林的凝固酶阴性的葡萄球菌在内的葡萄球菌和耐万古霉素的肠球菌在内的肠球菌对利奈唑胺都100%敏感。10多年的临床应用经验表明,利奈唑胺对多种革兰阳性致病菌、包括耐药菌所致感染均有很好的疗效。此外,利奈唑胺对日益常见的耐多药结核杆菌和泛耐药结核杆菌也有明显的抗菌活性和治疗疗效,但因利奈唑胺不是常规抗结核药,故目前尚无相应的体外药敏试验数据。 2 药动学特点 利奈唑胺为时间依赖性抗菌药,口服后吸收完全、生物利用度近100%,可以经静脉给药-口服方法进行序贯治疗。利奈唑胺的血浆蛋白结合率为31%,分布容积为40~50 L,每12小时口服给药600 mg后0.5~2 h达到血药峰浓度(15~27 mg/L),血药消除半衰期(3.4~7.4 h)较长,且对敏感菌有一定的抗生素后效应,可一日2次给药。利奈唑胺在体内被代谢为两种无活性的代谢产物氨基乙氧乙酸和羟乙基乙酸,给药量的65%经非肾途径清除(可能会有部分药物在肾小管被重吸收),30%以原药形式随尿液排出体外。利奈唑胺的组织、体液穿透性好,在肺、皮肤、肌肉和脂肪组织以及脑脊液中均有较高的药物浓度,故适应证也较广,临床地位重要。 3 临床应用

利奈唑胺抗结核作用的研究及其最新进展

?综述?利奈唑胺抗结核作用的研究及其最新进展 唐神结 肖和平 近年来,耐药结核病尤其是耐多药结核病(multi唱drugresistanttuberculosis,MDR唱TB)和广泛耐药结核病(extensivelydrugresistanttuberculosis,XDR唱TB)的流行与传播引起了全球学者的极大关注[1]。然而,由于缺乏有效的药物,耐药结核病的治疗问题一直困扰着广大结核病防治工作者[2]。利奈唑胺(linezolid)为恶唑烷酮类抗菌药物,是继磺胺类和喹诺酮类后上市的又一类全新合成抗菌药物,该药以其独特的作用机制、良好的抗菌活性而备受关注。该药主要用于控制耐万古霉素革兰阳性球菌所引起的感染,最近研究显示,利奈唑胺具有良好的抗结核分枝杆菌(mycobacteriumtuberculosis,MTB)作用,对耐药菌株也显示了强大的抗菌活性,不少医师采用利奈唑胺治疗MDR唱TB和XDR唱TB取得了一定的临床效果,现总结介绍如下。 一、作用机制 利奈唑胺抗MTB的作用机制为与核糖体50S亚基结合,抑制mRNA与核糖体连接,阻止70S起始复合物的形成,从而在翻译的早期阶段抑制细菌蛋白质合成。利奈唑胺作用的靶位点为23SrRNA、核糖体L4和 L22、Erm唱37甲基转移酶以及whiB7调节蛋白等。由于该药独特的作用特点,故与其他的蛋白合成抑制剂间无交叉耐药发生。在体外也不易诱导细菌耐药性的产生[2唱5]。 二、体外抗菌作用 最新的研究结果表明,利奈唑胺具有较强的抗分枝杆菌作用,其抗MTB的最低抑菌浓度(MIC)值为0畅125~1mg/L,对敏感菌株和耐药菌株具有同等的抗菌活性,对快速增殖期和静止期菌群均有抗菌作用[6唱8]。Alcalá等[6]采用比例法和E唱test法测定了117株敏感和耐药MTB菌株对利奈唑胺的敏感性,结果发现,其抗敏感和耐药MTB菌株的MIC值为0畅125~1mg/L,MIC50为0畅5mg/L,MIC90为0畅5~1mg/L,显示了强大的杀菌活性。一些学者研究发现,利奈唑胺抗MDR菌株的MIC值为0畅125~8mg/L,MIC50为4mg/L,MIC90为8mg/L,推荐以MIC值≤8mg/L作为其敏感性的分界点,286株MDR唱TB菌株和9株XDR唱TB菌株中仅2株(0畅7%)显示对利奈唑胺耐药[7,9]。Huang等[10]最近研究结果显示,利奈唑胺抗敏感菌株和MDR菌株的MIC值为0畅125~4mg/L,MIC50和MIC90均为0畅5mg/L,MDR菌株中有些耐喹诺酮类和利福布汀。Tato等[11]也证实其利奈唑胺抗耐药(包括MDR唱TB)菌株的MIC值很低(0畅12~0畅5mg/L)。以上研究表明利奈唑胺在体外具有极强的杀灭MTB作用。防突变浓度(mutantpreventionconcentration,MPC)是一种新的微生物学评价参数,是指在抗菌药物治疗过程中严格限制选择出耐药突变菌株的能力,MIC检测的是优势菌群对药物的敏感性,而MPC则检测的是突变菌群对药物的敏感性,在选择药物时其血清和组织内的药物浓度应尽可能长时间地高于MTB的MPC。有研究显示,该药对MTB菌株的MPC50、MPC90分别为0畅6、1畅2mg/L,而其药时曲线下面积(AUC)很大,为140畅3mg?h-1?L-1,表明该药选择出耐药突变菌株的可能性很小,即产生耐药的机会也很少[12]。 三、体内抗菌作用 早期杀菌活性(EBA)是指抗结核治疗最初几天患者痰液中MTB浓度的下降速度以每天痰液中log10菌落形成单位(cfu)/ml的下降表示。Dietze等[13]研究结果显示,利奈唑胺的EBA(即治疗0~2d)(0畅18~0畅26log10cfu?ml-1?d-1)低于异烟肼(0畅67log10cfu?ml-1?d-1),延迟EBA(治疗第2~7天)也较弱(0畅04~0畅09log10cfu?ml-1?d-1)。目前缺乏系统性利奈唑胺体内抗菌作用的研究资料。 基金项目:上海市传染病公共卫生重点学科建设(08GWZX0104) 作者单位:200433 同济大学附属上海市肺科医院上海市结核(肺)重点实验室 通讯作者:肖和平,Email:xiaoheping_sars@163.com

利奈唑胺合成新进展

第28卷第1期 2019年3月 淮海工学院学报(自然科学版) Journal of Huaihai Institute of Technology(Natural Science Edition) Vol.28 No.1 Mar.2019 DOI:10.3969/j.issn.1672-6685.2019.01.015 利奈唑胺合成新进展*? 吴煜然1a,任抒婷1a,刘书豪1a,王有宪1a,王 蕾1a,刘玮炜1a,b,2 (1.淮海工学院a.药学院;b.江苏省海洋药物活性分子筛选重点实验室,江苏连云港 222005; 2.江苏省海洋资源开发研究院,江苏连云港 222005) 摘 要:利奈唑胺是第一个人工合成的噁唑烷酮类抗生素,主要用于治疗革兰氏阳性球菌引起的感染.利奈唑胺独特的作用部位和作用方式使其不易与其他抗菌药发生交叉耐药,具有良好的治疗效果,在临床上得到广泛应用.综述了近5年利奈唑胺的合成方法,并对各种方法进行了分析比较.关键词:利奈唑胺;合成方法;噁唑烷酮 中图分类号:TQ465 文献标识码:A 文章编号:1672-6685(2019)01-0064-04 New Progress in Synthesis of LinezolidWU Yuran1a,REN Shuting1a,LIU Shuhao1a,WANG Youxian1a,WANG Lei 1a,LIU Weiwei 1a,b,2(1.a.School of Pharmacy;b.Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology,Lianyungang 222005,China; 2.Jiangsu Marine Resources Development Research Institute,Lianyungang 222005,China) Abstract:Linezolid is the first synthetic oxazolidinone antibiotic,which is mainly used to treat in-fection caused by Gram-positive bacteria.Linezolid is not easy to cross-resistance with other anti-biotics because of its unique site and mode of action.It has good therapeutic effect and has beenwidely used in clinic.In this paper,the synthesis methods of linezolid in recent five years werereviewed,and the various methods were analyzed and compared. Key words:linezolid;synthesis methods;oxazolidinone 利奈唑胺(linezolid),化学名为(S)-N-[[3-[3-氟-4-(4-吗啉基)苯基]-2-氧代-5-噁唑烷基]甲基]-乙酰胺,2000年获得美国FDA批准上市,是第一个化学全合成的应用于临床的新型噁唑烷酮类抗菌药,主要用于治疗由耐甲氧西林金黄色葡萄球菌(MRSA)以及耐万古霉素肠球菌(VRE)引起的感染[1-2].与其他药物不同,利奈唑胺具有独特的作用机制,它不影响肽基转移酶活性,只作用于翻译系统的起始阶段,抑制mRNA与核糖体连接,阻止70S起始复合物的形成,从而抑制细菌蛋白质的合成[3-4].因其独特的作用位点和作用方式,利奈唑胺不易与其他抑制蛋白合成的抗菌药发生交叉耐药,同时在体外也不易诱导细菌耐药性的产生,对革兰氏阳性球菌有着很好的抑菌活性,是一种极具临床应用价值的新型抗菌药[5-6].噁唑烷酮母核的构建是利奈唑胺(结构式见图1)合成中的关键步骤,可通过异氰酸酯与环氧乙烷反应,或酰胺与卤代醇的取代成环反应合成,也可直接引入该噁唑酮结构[7-8].本文介绍了近5年利奈唑胺合成的进展,并比较了各种合成方法,以便为利奈唑胺的制备寻找一条更适合工业化生产的合成路线. *收稿日期:2019-02-04;修订日期:2019-02-27 基金项目:江苏省高校优势学科建设工程资助项目;江苏省研究生科研与实践创新计划项目(KYCX18-2580,KYCX18-2588);江苏省海洋生物技术重点实验室开放课题(HS2014007);国家海洋公益性行业科研专项(201505023);连云港市“521工程”资助项目 (LYG52105-2018023) 作者简介:吴煜然(1996-),女,江苏泰州人,淮海工学院药学院硕士研究生,主要从事有机合成方面的研究,(E-mail)2541973560@qq.com.通讯作者:刘玮炜(1965-),女,江苏滨海人,淮海工学院药学院教授,博士,主要从事有机合成方面的研究,(E-mail)liuweiwei255@163.com.

相关文档