文档库 最新最全的文档下载
当前位置:文档库 › 真空发生器原理

真空发生器原理

真空发生器原理
真空发生器原理

真空发生器原理

真空元件以真空压力为动力源,作为实现自动化的一种手段,已在电子、半导体元件组装、汽车组装、自动搬运机械、轻工机械、食品机械、医疗机械、印刷机械、塑料制品机械、包装机械、锻压机械、机器人等许多方面得到广泛的应用.

真空发生装置有真空泵和真空发生器两种。真空泵是吸入口形成负压,排气口直接通大气,两端压力比很大的抽除气体的机械。真空发生器是利用压缩空气的流动而形成一定真空度的气动元件,与真空泵相比,它的结构简单、体积小、质量轻、价格低、安装方便,与配套件复合化容易,真空的产生和解除快,宜从事流量不大的间歇工作,适合分散使用。

随着自动化生产中,精密控制的要求日趋严格,需要比较精确地知道真空发生器动作后吸

盘处的吸附响应时间,而以往对真空系统中吸附响应时间的预估,是由经验公式T=V×60/Q 得到的,其中V为吸管容积(L); Q 为平均吸入流量(NL/ min) ,由经验方法确定。该经验公式有三大不足之处:一是没有考虑真空发生器本身的吸附响应时间;二是稀疏波在配管中的

传播;三是没有考虑供气压力对流量的影响。因此使用该经验公式常常会与实际情况有很大的出入。本文的目的是建立更为精确的真空发生器及其配管在各种运行工况下的吸附响应时间的计算模型,为自动化中的精密控制奠定理论基础。

典型的真空发生器的结构原理及其图形符号如图1 所示,它是由先收缩后扩张的拉瓦尔

喷管1、压腔2 和接收管3 等组成。有供气口、排气口和真空口。当供气口的供气压力高于一定值后,喷管射出超声速射流。

图1 真空发生器的结构原理图

由于气体的粘性,高速射流卷吸走负腔内的气体,使该腔形成很低的真空度。在真空口处接上配管和真空吸盘,靠真空压力便可吸起吸吊物。图2 为真空系统的示意图,该系统由气源1,调压阀2,电磁阀3,真空发生器4,消声器5,配管6和吸盘7组成。

(a)

(b)

图2 真空发生器系统示意图

2、真空发生器的主要性能参数

由原理图可以看出真空发生器的性能主要由真空度—吸入流量特性与排气特性两部分组成。真空度—吸入流量特性是指供给压力为0.5MPa的条件下,真空口处于变化的不封闭状态下,吸入流量与真空度之间的关系。排气特性则表示最大真空度、空气耗气量和最大吸入流量(真空流量)与供给压力之间的关系。如图3所示。

其中最大真空度是指真空口被完全封闭时,真空口的真空度。空气消耗量是指喷管流出的流量(标准状态下)。最大吸入流量是指真空口向大气敞开时,从真空口吸入的流量(标准状态下)。

图3 真空发生器的排气特性和真空度-吸入流量特性曲线示意图

真空发生器的工作原理

真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便。真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域.真空发生器的传统用途是真空吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体.在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作。笔者认为对真空发生器的抽吸机理和影响其工作性能因素的分析研究,对正负压气路的设计和选用有着不可忽视的实际意义。 1、真空发生器的工作原理 真空发生器的工作原理是利用喷管高速喷射压缩空气,在喷管出口形成射流,产生卷吸流动.在卷吸作用下,使得喷管出口周围的空气不断地被抽吸走,使吸附腔内的压力降至大气压以下,形成一定真空度。如图1所示。 图1 真空发生器工作原理示意图 由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大。 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2。当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力。

真空发生器原理

真空发生器 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便.真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域.真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体. 在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作.笔者认为对真空发生器的抽吸机理和影响其工作性能因素的分析研究,对正负压气路的设计和选用有着不可忽视的实际意义. 1 真空发生器的工作原理 真空发生器的工作原理是利用喷管高速喷射压缩空气,在喷管出口形成射流,产生卷吸流动.在卷吸作用下,使得喷管出口周围的空气不断地被抽吸走,使吸附腔内的压力降至大气压以下,形成一定真空度.如图1所示. 由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大. 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2.当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力. 按喷管出口马赫数M1(出口流速与当地声速之比)分类,真空发生器可分为亚声速器管型(M1<1),声速喷管型(M1=1)和超声速喷管型(M1>1).亚声速喷管和声速喷管都是收缩喷管,而超声速喷管型必须是先收缩后扩张形喷管(即Laval喷嘴).为了得到最大吸入流量或最高吸入口处压力,真空发生器都设计成超声速喷管型.

真空发生器原理介绍

真空发生器原理介绍 真空发生器原理介绍 真空发生器的工作原理是利用喷管高速喷射压缩空气,在喷管出口形成射流,产生卷吸流动.在卷吸作用下,使得喷管出口周围的空气不断地被抽吸走,使吸附腔内的压力降至大气压以下,形成一定真空度. 由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大. 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2.当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力. 按喷管出口马赫数M1(出口流速与当地声速之比)分类,真空发生器可分为亚声速器管型(M11).亚声速喷管和声速喷管都是收缩喷管,而超声速喷管型必须是先收缩后扩张形喷管(即Laval喷嘴).为了得到最大吸入流量或最高吸入口处压力,真空发生器都设计成超声速喷管型. 真空发生装置即文丘里管的原理 文氏管是文丘里管的简称,文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。文氏管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体在文氏管出口的后侧形成一个“真空”区。当这个真空区靠近工件时会对工件产生一定的吸附作用。如图所示 压缩空气从文丘里管的入口A进入,少部分通过截面很小的喷管B排出。随之截面逐渐减小,压缩空气的压强增大,流速也随之变大。`这时就在D吸附腔的进口内产生一个

真空发生器的工作原理与演示

真空发生器的工作原理与演示 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便.真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域.真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体.在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作.笔者认为对真空发生器的抽吸机理和影响其工作性能因素的分析研究,对正负压气路的设计和选用有着不可忽视的实际意义. 1 真空发生器的工作原理 真空发生器的工作原理是利用喷管高速喷射压缩空气,在喷管出口形成射流,产生卷吸流动.在卷吸作用下,使得喷管出口周围的空气不断地被抽吸走,使吸附腔内的压力降至大气压以下,形成一定真空度.如图1所示. 图1 真空发生器工作原理示意图 由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续 性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大. 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2.当v2增加到一定值,P2将小于一个大气

真空发生器原理

真空发生器原理 真空元件以真空压力为动力源,作为实现自动化的一种手段,已在电子、半导体元件组装、汽车组装、自动搬运机械、轻工机械、食品机械、医疗机械、印刷机械、塑料制品机械、包装机械、锻压机械、机器人等许多方面得到广泛的应用、 真空发生装置有真空泵与真空发生器两种。真空泵就是吸入口形成负压,排气口直接通大气,两端压力比很大的抽除气体的机械。真空发生器就是利用压缩空气的流动而形成一定真空度的气动元件,与真空泵相比,它的结构简单、体积小、质量轻、价格低、安装方便,与配套件复合化容易,真空的产生与解除快,宜从事流量不大的间歇工作,适合分散使用。 随着自动化生产中,精密控制的要求日趋严格,需要比较精确地知道真空发生器动作后吸 盘处的吸附响应时间,而以往对真空系统中吸附响应时间的预估,就是由经验公式 T=V×60/Q得到的,其中V为吸管容积(L); Q 为平均吸入流量(NL/ min) ,由经验方法确定。该经验公式有三大不足之处:一就是没有考虑真空发生器本身的吸附响应时间;二就是稀疏波在配管中的传播;三就是没有考虑供气压力对流量的影响。因此使用该经验公式常常会与实际情况有很大的出入。本文的目的就是建立更为精确的真空发生器及其配管在各种运行工况下的吸附响应时间的计算模型,为自动化中的精密控制奠定理论基础。 典型的真空发生器的结构原理及其图形符号如图1 所示,它就是由先收缩后扩张的拉瓦 尔喷管1、压腔2 与接收管3 等组成。有供气口、排气口与真空口。当供气口的供气压力高于一定值后,喷管射出超声速射流。 图1 真空发生器的结构原理图 由于气体的粘性,高速射流卷吸走负腔内的气体,使该腔形成很低的真空度。在真空口处接上配管与真空吸盘,靠真空压力便可吸起吸吊物。图2 为真空系统的示意图,该系统由气源1,调压阀2,电磁阀3,真空发生器4,消声器5,配管6与吸盘7组成。

真空发生器气路连接原理

真空发生器气路连接原理 在自动化行业应用的真空发生器有很多种,很多品牌,但最常用也就归于三类:一类、最简易的真空发生器(既没供给阀也没破坏阀);二类、有破坏阀没供给阀;三类、供给阀、破坏阀都有(以SMC的ZL112-K15LUD-DAL为例)。下面要讲述的是最简易的真空发生器的气路连接原理(以SMC的ZH05BS-06-06为例来介绍)。一.简易真空发生器气路连接所用器件: 1.真空发生器:型号为SMC的ZH05BS-06-06(特性是自带吸音材 料压,将压缩空气经消音器排入大气中)。 2.双电控两位五通电磁阀:型号为SMC的VF3230-5D1-01(特性 是有两个控制线圈控制阀芯在两个位置 通气状态)。 3.真空吸盘:用来作为抓取机械手的吸嘴。 4.管接头附件:包过三通管接头,堵头等附件。

二.简易真空发生器气路连接原理图: 2.1、下图是简易真空发生器应用的气路原理图:图中仅示意气路元 件的连接方式 2.2、气路原理介绍: 真空发生器的产生原理就利用压缩空气的射流特点将真空进气口的气压抽掉,直至到最大限度的真空。下面介绍产生真空和破坏真空的原理

产生真空:当两位五通电磁阀阀芯在左位置P-A接通,压缩空气由 真空发生器的入口进去并使得真空发生器产生真空,接到真空口的吸 盘就能把要抓取的工件吸起。 破坏真空:当需要把工件掉落时只需让两位五通电磁阀右线圈得电,电磁阀的阀芯就会移到右位置(P-B接通),压缩空气就可以由B口 进入三通管接头破坏吸盘接口处的真空,从而达到释放真空的目的。 三、简易真空发生器气路连接需注意的问题: 3.1、电磁阀安装位置:控制真空发生器的电磁阀安装位置不宜离真空发生器太远。原因是电磁阀与真空发生器的连接管路不能太长, 尤其是连破坏真空的管路不能太长(太长会储存的压缩空气会影响 真空产生的效果和及时性) 3.2、电磁的EA、EB口:该场合的电磁阀不同控制执行元件(控制 执行元件的压缩空气终将从电磁阀的EA、EB口经消音器释放到大气中)。此情况下电磁阀EA、EB均需要用堵头将其接口堵住。 3.3、电磁阀的线圈个数:电磁阀控制真空发生器同控制执行元件一样根据具体需要选择单电控还是双电控,不能随便定义控制线圈个数。 3.4、气路连接的气密性:在真空发生器的气路连接中也应注意气路各接口的气密性以免产生不好的效果。

真空发生器的工作原理

真空发生器的工作原理 【气动元件】2009-12-15 19:01:50 阅读763 评论0 字号:大中小订阅 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便.真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域.真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体.在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作.笔者认为对真空发生器的抽吸机理和影响其工作性能因素的分析研究,对正负压气路的设计和选用有着不可忽视的实际意义. 上图所示为真空发生器的工作原理图,它由喷嘴、接收室、混合室和扩散室组成。压缩空气通过收缩的喷射后,从喷嘴内喷射出来的一束流体的流动称为射流。射流能卷吸周围的静止流体和它一起向前流动,这称为射流的卷吸作用。而自由射流在接收室内的流动,将限制了射流与外界的接触,但从喷嘴流出的主射流还是要卷吸一部分周围的流体向前运动,于是在射流的周围形成一个低压区,接收室内的流体便被吸进来,与主射流混合后,经接收室另一端流出。这种利用一束高速流体将另一束流体(静止或低速流)吸进来,想互混合后一超流出的现象称为引射现象。若在喷嘴两端的压差达到一定值时,气流达声速或亚声速流动,于是在喷嘴出口处,即接收室内可获得一定的负压。

由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大. 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2.当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力.

真空发生器

1、真空发生器的工作原理 真空发生器的工作原理是利用喷管高速喷射压缩空气,在喷管出口形成射流,产生卷吸流动.在卷吸作用下,使得喷管出口周围的空气不断地被抽吸走,使吸附腔内的压力降至大气压以下,形成一定真空度。如图1所示。 图1 真空发生器工作原理示意图 由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大。 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2。当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力。

按喷管出口马赫数M1(出口流速与当地声速之比)分类,真空发生器可分为亚声速器管型(M1<1),声速喷管型(M1=1)和超声速喷管型(M1>1).亚声速喷管和声速喷管都是收缩喷管,而超声速喷管型必须是先收缩后扩张形喷管(即Laval喷嘴).为了得到最大吸入流量或最高吸入口处压力,真空发生器都设计成超声速喷管型。 2、真空发生器的抽吸性能分析 2.1、真空发生器的主要性能参数 ①空气消耗量:指从喷管流出的流量qv1。 ②吸入流量:指从吸口吸入的空气流量qv2.当吸入口向大气敞开时,其吸入流量最大,称为最大吸入流量qv2max。 ③吸入口处压力:记为Pv.当吸入口被完全封闭(如吸盘吸着工件),即吸入流量为零时,吸入口内的压力最低,记作Pvmin。 ④吸着响应时间:吸着响应时间是表明真空发生器工作性能的一个重要参数,它是指从换向阀打开到系统回路中达到一个必要的真空度的时间。 2.2、影响真空发生器性能的主要因素 真空发生器的性能与喷管的最小直径,收缩和扩散管的形状,通径及其相应位置和气源压力大小等诸多因素有关。图2为某真空发生器的吸入口处压力,吸入流量,空气消耗量与供给压力之间的关系曲线.图中表明,供给压力达到一定值时,吸入口处压力较低,这时吸入流量达到最大,当供给压力继续增加时,吸入口处压力增加,这时吸入流量减小。 ①最大吸入流量qv2max的特性分析:较为理想的真空发生器的qv2max特性,要求在常用供给压力范围内(P01=0.4---0.5MPa),qv2max处于最大值,且随着P01的变化平缓。 ②吸入口处压力Pv的特性分析:较为理想的真空发生器的Pv特性,要求在常用供给压力范围内(P01=0.4---0.5MPa),Pv处于最小值,且随着Pv1的变化平缓。

真空发生器的工作原理

1 -=k k α图1 真空发生器工作原理图 真空发生器的工作原理 真空发生器主要由喷嘴和扩张管组合而成(见图1所示)。气体一元定常等熵流动的能 收稿日期:2004-10-20 作者简介:郑欣荣(1948-),男,浙江杭州人,高级工程师,从事真空与自动化技术的科研与教学。 量方程即可压缩流体的伯努里方程[1]如 下: const v p k k =+*-2 12 ρ (1) 式中p 为压力;ρ为密度;v 为流速; v p c c k = ,其中C p 为定压比热,C v 为定容比热; const 为常数。 将0点的状态参数代入式(1),由于流出喷管时的流速v 0为超音速,可知该点的绝对压力p 0值很小,因而可得到所需的真空度。在低压部S 处如果导入二次气流(G ″、P S 、T S 、v s ),高速的一次气流(G ’、P n 、Tn )将与之混合,并交换动能,二次气流被加速,高速的混合气体通过扩张管减速,动能再次转化为压力能。这样,若在S 处接入欲抽真空的系统,则可达到抽真空之目的。 该过程的热力学分析[2]如下:压缩空气G ′通过喷管在0处变成超音速气流,由于气流 的速度很快,而喷管的尺寸很小,故气体在喷管中流动时,来不及与外界发生热交换,可近似地看作绝热过程。在流动过程中,气体的各种参数一般是连续变化的,摩擦的影响较小,可以忽略,因而可近似地看作是可逆过程,故该过程可近似地看作是等熵过程。整个热力学过程可用焓—熵状态变化图表示(图2)。图2中各点符号与图1相对应。N 点为喷管进口状态点;O ′为假想等熵过程喷管出口点;O 为实际喷管出口状态点;3′为扩张管假想等熵过程出口状态点;3为扩张管实际出口状态点。如一次流体从进口压力P n 经绝热膨胀后在喷管出口处压力为P 0,则出口流速v 0可由式(2)求出 (2) 式中ηn 为速度系数,一般取0.94~0.96; R 为气体常数; 图2中喷管两端的焓差为: 20 )2/(v g A i n =? (3) 式中A 为热功当量。 假设真空口吸入压力P S 与喷管出口压力P 0相等,则混合后的流速v 1为: ?????????????? ??-=ααη10012n n n P P gRT v 图2 状态变化图 O

真空发生装置即文丘里管的原理

真空发生装置即文丘里管的原理 文氏管是文丘里管的简称,文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。文氏管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体在文氏管出口的后侧形成一个“真空”区。当这个真空区靠近工件时会对工件产生一定的吸附作用。如图所示 A-压缩空气入口B-喷嘴C-消音器 D-吸附腔入口 压缩空气从文丘里管的入口A进入,少部分通过截面很小的喷管B排出。随之截面逐渐减小,压缩空气的压强增大,流速也随之变大。`这时就在D吸附腔的进口内产生一个真空度,致使周围空气被吸入文氏管内,随着压缩空气一起流进扩散腔内增加气体的流速,之后通过消音装置减少气流震荡。 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便。真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域。真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体。在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作。 真空发生器的主要性能参数 ①空气消耗量:指从喷管流出的流量qv1。 ②吸入流量:指从吸口吸入的空气流量qv2。当吸入口向大气敞开时,其吸入流量最大,称为最大吸入流量qv2max. ③吸入口处压力:记为Pv.当吸入口被完全封闭(如吸盘吸着工件),即吸入流量为零时,吸入口内的压力最低,记作Pvmin.

真空发生器的工作原理与演示

真空发生器的工作原理与演示 利用高速旋转的动叶轮将动量传给气体分子,使气体产生定向流动而抽气的真空泵。涡轮分子泵的优点是启动快,能抗各种射线的照射,耐大气冲击,无气体存储和解吸效应,无油蒸气污染或污染很少,能获得清洁的超高真空。涡轮分子泵广泛用于高能加速器、可控热核反应装置、重粒子加速器和高级电子器件制造等方面。结构和工作原理1958年,联邦德国的W.贝克首次提出有实用价值的涡轮分子泵,以后相继出现了各种不同结构的分子泵,主要有立式和卧式两种,图1为立式涡轮分子泵的结构图。涡轮分子泵主要由泵体、带叶片的转子(即动叶轮)、静叶轮和驱动系统等组成。动叶轮外缘的线速度高达气体分子热运动的速度(一般为150~400米/秒)。单个叶轮的压缩比很小,涡轮分子泵要由十多个动叶轮和静叶轮组成。动叶轮和静叶轮交替排列。动、静叶轮几何尺寸基本相同,但叶片倾斜角相反。图2为20个动叶轮组成的整体式转子。每两个动叶轮之间装一个静叶轮。静叶轮外缘用环固定并使动、静叶轮间保持1毫米左右的间隙,动叶轮可在静叶轮间自由旋转。

图:涡轮分子泵的动、静叶片图 图1:立式涡轮分子泵的结构图

图3:动叶片的工作示意图 图3为一个动叶片的工作示意图。在运动叶片两侧的气体分子呈漫散射。在叶轮左侧(图3a),当气体分子到达A点附近时,在角度α1内反射的气体分子回到左侧;在角度β1内反射的气体分子一部分回到左侧,另一部分穿过叶片到达右侧;在角度γ 1内反射的气体分子将直接穿过叶片到达右侧。同理,在叶轮右侧(图3b),当气体分子入射到B点附近时,在α2角度内反射的气体分子将返回右侧;在β2角度内反射的气体分子一部分到达左侧,另一部分返回右侧;在γ2角度内反射的气体分子穿过叶片到达左侧。倾斜叶片的运动使气体分子从左侧穿过叶片到达右侧,比从右侧穿过叶片到达左侧的几率大得多。叶轮连续旋转,气体分子便不断地由左侧流向右侧,从而产生抽气作用。 性能和特点泵的排气压力与进气压力之比称为压缩比。压缩比除与泵的级数和转速有关外,还与气体种类有关。分子量大的气体有高的压缩比。对氮(或空气)的压缩比为108~109;对氢为102~104;对分子量大的气体如油蒸气则大于1010。泵的极限压力为10-9帕,工作压力范围为10-1~10-8帕,抽气速率为

真空发生器原理介绍.

真空发生器原理介绍 真空发生器的工作原理是利用喷管高速喷射压缩空气,在喷管出口形成射流,产生卷吸流动.在卷吸作用下,使得喷管出口周围的空气不断地被抽吸走,使吸附腔内的压力降至大气压以下,形成一定真空度. 由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大. 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2.当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力. 按喷管出口马赫数M1(出口流速与当地声速之比)分类,真空发生器可分为亚声速器管型(M1<1),声速喷管型(M1=1)和超声速喷管型(M1>1).亚声速喷管和声速喷管都是收缩喷管,而超声速喷管型必须是先收缩后扩张形喷管(即Laval喷嘴).为了得到最大吸入流量或最高吸入口处压力,真空发生器都设计成超声速喷管型. 真空发生装置即文丘里管的原理 文氏管是文丘里管的简称,文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。文氏管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体在文氏管出口的后侧形成一个“真空”区。当这个真空区靠近工件时会对工件产生一定的吸附作用。如图所示 压缩空气从文丘里管的入口A进入,少部分通过截面很小的喷管B排出。随之截面逐渐减小,压缩空气的压强增大,流速也随之变大。`这时就在D吸附腔的进口内产生一个真空度,致使周围空气被吸入文氏管内,随着压缩空气一起流进扩散腔内增加气体的流速,之后通过消音装置减少气流震荡。 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便。真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域。真空发生器的传统用途是吸盘配合,进行各种物料

真空发生器的工作原理与演示

真空发生器的工作原理与演示真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便。真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域.真空发生器的传统用途是真空吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体.在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作。笔者认为对真空发生器的抽吸机理和影响其工作性能因素的分析研究,对正负压气路的设计和选用有着不可忽视的实际意义。 1、真空发生器的工作原理 真空发生器的工作原理是利用喷管高速喷射压缩空气,在喷管出口形成射流,产生卷吸流动.在卷吸作用下,使得喷管出口周围的空气不断地被抽吸走,使吸附腔内的压力降至大气压以下,形成一定真空度。如图1所示。 图1真空发生器工作原理示意图

由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1=A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大。 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2。当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力。 按喷管出口马赫数M1(出口流速与当地声速之比)分类,真空发生器可分为亚声速器管型(M1<1),声速喷管型(M1=1)和超声速喷管型(M1>1).亚声速喷管和声速喷管都是收缩喷管,而超声速喷管型必须

真空发生器

1、概述 真空发生器是利用压缩气源产生负压的一种新型、高效、清洁、经济的真空元器件。真空发生器具有体积小、真空度高、安装维修方便、可靠性好等优点,广泛应用在工业自动化机械、电子以及机器人等各个领域。在工业自动化机械中,装盒机械的上盒和上盖、装箱机械的箱板成型取送、贴标机中标签的供给和传送等场合都使用了真空吸附装置。在这一类机械中,一个共同的特点是所需的真空流量小、真空度要求不高且多为间歇工作。使用传统真空泵提供真空源,不仅机械结构复杂而且由于真空响应时间长而影响机器的可靠性和工作效率。而真空发生器与吸盘配合,可进行各种物料的吸附,搬运,尤其适合于吸附易碎、柔软、薄的非铁非金属材料或球型物体,有着无可比拟的优势,在自动化生产中起着越来越重要的作用。 2、真空发生器的结构和性能分析 2.1、真空发生器的结构 真空发生器由喷管、吸附腔、扩散腔3 部分组成。真空发生器的工作原理是利用喷管高速喷射压缩空气,在喷管出口形成射流,产生卷吸流动。在卷吸作用下,使得喷管出口周围的空气不断地被吸走,使吸附腔内的压力降至大气压以下,形成一定真空度。如图1 所示。 由流体力学可知,对于不可压缩空气气体的连续性方程为: A1v1=A2v2 式中A1、A2-管道的截面面积,m2;v1、v2-气流流速,m/s。 由上式可知,截面增大,流速减小;截面减小,流速增大。 对于水平管路,按不可压缩空气的伯努里方程为 P1+1/2ρv12=P2+1/2ρv22

式中P1、P2-截面A1、A2处相应的压力,Pa;v1、v2-截面A1、A2处相应的流速,m/s;ρ-空气的密度,kg/m2。由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2。当v2 增加到一定值,P2 将小于一个大气压,即产生负压。故可用增大流速来获得负压,产生吸力。 2.2、真空发生器的性能分析 (1)真空发生器的主要性能参数 空气消耗量:指从喷管流出的流量; 真空流量:指从吸附口吸入的空气流量; 真空度:指大气压力与真空腔内的绝对压力之差。当吸入口被完全封闭,即排气量为零时,真空腔的真空度称为最大真空度; 吸附响应时间:吸附响应时间是表明真空发生器工作性能的一个重要参数,它是指从换向阀打开到系统回路中达到一个必要的真空度的时间。 (2)影响真空发生器性能的主要因素 真空发生器的性能与喷管的最小通径、喷管出口直径、接收管入口形状和通径、扩散腔的容积、喷管与接收管之间的相对位置及气源压力大小等诸多因素有关。图2 为真空发生器的真空度、真空流量、空气消耗量与供给压力之间的关系曲线。 图中表明,供给压力达到一定值时,真空度较高,这时吸入流量达到最大,当供给压力继续增加时,真空度降低,这时吸入流量减小。

文丘里管原理

真空发生装置(文丘里管)原理 真空发生装置即文丘里管的原理 文氏管是文丘里管的简称,文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。文氏管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体在文氏管出口的后侧形成一个“真空”区。当这个真空区靠近工件时会对工件产生一定的吸附作用。如图所示 A-压缩空气入口B-喷嘴C-消音器 D-吸附腔入口 压缩空气从文丘里管的入口A进入,少部分通过截面很小的喷管B排出。随之截面逐渐减小,压缩空气的压强增大,流速也随之变大。`这时就在D吸附腔的进口内产生一个真空度,致使周围空气被吸入

文氏管内,随着压缩空气一起流进扩散腔内增加气体的流速,之后通过消音装置减少气流震荡。 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便。真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域。真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体。在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作。 真空发生器的主要性能参数 ①空气消耗量:指从喷管流出的流量qv1。 ②吸入流量:指从吸口吸入的空气流量qv2。当吸入口向大气敞开时,其吸入流量最大,称为最大吸入流量qv2max. ③吸入口处压力:记为Pv.当吸入口被完全封闭(如吸盘吸着工件),即吸入流量为零时,吸入口内的压力最低,记作Pvmin. ④吸着响应时间:吸着响应时间是表明真空发生器工作性能的一个重要参数,它是指从换向阀打开到系统回路中达到一个必要的真空度的时间。

真空发生器原理

真空发生器原理

真空发生器的原理 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便。真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域。真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体。在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作。 真空发生器的工作原理是利用喷管高速喷射压缩空气,在喷管出口形成射流,产生卷吸流动.在卷吸作用下,使得喷管出口周围的空气不断地被抽吸走,使吸附腔内的压力降至大气压以下,形成一定真空度.

压缩空气与真空度的关系

?真空定义:是指在给定的空间内,压强低于101325帕斯卡(也即一个标准大气压强约101KPa)的气体状态。 ?对于真空度的标识通常有两种方法: ?1)“绝对压力”、“绝对真空度”(即比“理论真空”高多少压力)标识; ?在实际情况中,真空的绝对压力值介于0~101.325KPa之间。绝对压力值需要用绝对压力仪表测量,在20℃、海 拔高度=0的地方,用于测量真空度的仪表(绝对真空表)的初始值为101.325KPa(即一个标准大气压)。 ?2)“相对压力”、“相对真空度”(即比“大气压”低多少压力)来标识。 ?"相对真空度"是指被测对象的压力与测量地点大气压的差值。用普通真空表测量。在没有真空的状态下(即常压时), 表的初始值为0。当测量真空时,它的值介于0到-101.325KPa(一般用负数表示)之间。 ?比如,一款真空发生器测量值为-75KPa,则表示真空发生器可以抽到比测量地点的大气压低75KPa的真空状态 ? ?本公司真空压力开关以相对真空度来表示数值 ?单位换算: ?常用的真空度单位有Pa、Kpa、Mpa、大气压、公斤(Kg/cm2)、mmHg、mbar、bar、PSI,atm等。近似换算 关系如下: ?1MPa=1000KPa ?1KPa=1000Pa ?1标准大气压=1bar=1000mbar=100KPa=0.1MPa(近似值,在要求不高的场合近似计算,用于粗略计算) ?1标准大气压=1公斤(Kg/cm2)(近似值,用于粗略计算)=760mmHg ?1标准大气压=1bar=14.5PSI(近似值,用于粗略计算) ?1KPa=10mbar ?1atm=101325Pa (atm表示一个标准大气压作为参考量) ?一个标准大气压定义:把温度为0℃、纬度45度海平面上的气压称为1个大气压,水银气压表上的数值为760毫米水银 柱高。 ?PSI英文全称为Pounds per square inch。P是磅pound,S是平方square,I是英寸inch。把所有的单位换成公制单 位就可以算出:1bar≈14.5psi 1psi=6.895kPa=0.06895bar 欧美等国家习惯使用psi作单位

真空发生器的工作原理

真空发生器的工作原理 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空 气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便.真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域.真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体.在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作.笔者认为对真空发生器的抽吸机理和影响其工作性能因素的分析研究,对正负压气路的设计和选用有着不可忽视的实际意义. 上图所示为真空发生器的工作原理图,它由喷嘴、接收室、混合室和扩散室组成。压缩空气通过收缩的喷射后,从喷嘴内喷射出来的一束流体的流动称为射流。射流能卷吸周围的静止流体和它一起向前流动,这称为射流的卷吸作用。而自由射流在接收室内的流动,将限制了射流与外界的接触,但从喷嘴流出的主射流还是要卷吸一部分周围的流体向前运动,于是在射流的周围形成一个低压区,接收室内的流体便被吸进来,与主射流混合后,经接收室另一端流出。这种利用一束高速流体将另一束流体(静止或低速流)吸进来,想互混合后一超流出的现象称为引射现象。若在喷嘴两端的压差达到一定值时,气流达声速或亚声速流动,于是在喷嘴出口处,即接收室内可获得一定的负压。

由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大. 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2.当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力.

真空发生器的工作原理与演示

真空发生器的工作原理与演示(1) 时间:2008-09-02 来源:网络编辑:真空技术网 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便.真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域.真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体.在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作.笔者认为对真空发生器的抽吸机理和影响其工作性能因素的分析研究,对正负压气路的设计和选用有着不可忽视的实际意义. 1 真空发生器的工作原理 真空发生器的工作原理是利用喷管高速喷射压缩空气,在喷管出口形成射流,产生卷吸流动.在卷吸作用下,使得喷管出口周围的空气不断地被抽吸走,使吸附腔内的压力降至大气压以下,形成一定真空度.如图1所示. 图1 真空发生器工作原理示意图 由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大. 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2

由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2.当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力. 按喷管出口马赫数M1(出口流速与当地声速之比)分类,真空发生器可分为亚声速器管型 (M1<1),声速喷管型(M1=1)和超声速喷管型(M1>1).亚声速喷管和声速喷管都是收缩喷管,而超声速喷管型必须是先收缩后扩张形喷管(即Laval喷嘴).为了得到最大吸入流量或最高吸入口 处压力,真空发生器都设计成超声速喷管型.双活塞缸式气动真 空发生器工作原理 时间:2008-12-03 来源:南京理工大学机械学院SMC技术中心编辑:潘孝斌 在工业自动化发展过程中, 气动真空吸取技术已越来越广泛地应用于各种生产线上, 主要用于吸取易碎、柔软、薄的非铁、非金属材料, 以完成搬运、夹紧或包装等作业。目前, 在生产线上广泛应用的真空发生装置主要为射流式真空发生器, 压缩气体通过喷嘴的高速流动从而产生一定的真空度。根据其工作原理决定了它只能在较高的供给压力下才能达到极限真空度, 并且耗气量大, 不利于气动系统节能。 真空技术网曾经提到过一种新型的真空发生器PVSCTC- 1( Pneumatic Vacuum System Consisting of Two Cylinders- 1) , 工作原理如图1 所示, 它可在相对较低的供给压力下达到较高的极限真空度, 这就有可能直接或间接利用气缸排气的能量进行工作, 产生真空, 达到气动系统节能的目的, 在工程应用中具有较高的应用价值。 1. 动力腔Ⅰ 2. 动力腔Ⅱ 3. 真空腔Ⅰ 4. 真空腔Ⅱ 5. 连接管道等效容器 6. 真空吸盘 7. 换 向阀 图1 双活塞缸式气动真空发生器工作原理 这种新型的真空发生器作为一种节能的气动真空发生装置, 在满足基本性能要求的基础上, 本身应具有较高的能量使用效率, 否则研究意义不大。通过前期的研究发现, 其响应时间和

相关文档