文档库 最新最全的文档下载
当前位置:文档库 › 北航-现代控制理论-第一次作业

北航-现代控制理论-第一次作业

北航-现代控制理论-第一次作业
北航-现代控制理论-第一次作业

现代控制理论第一次作业2015.10.19

1、 试在Matlab 中计算下面矩阵A 的矩阵指数e At ,并求在t=0.3时e At 的值。

A=0123???

?--??

>> syms t;

>> A=[0 1;-2 -3];

>> eAt=expm(A*t)

结果:eAt =

[ 2*exp(-t) - exp(-2*t), exp(-t) - exp(-2*t)]

[ 2*exp(-2*t) - 2*exp(-t), 2*exp(-2*t) - exp(-t)]

>> syms t;

>> A=[0 1;-2 -3];

>> t=0.3;

>> eAt=expm(A*t)

结果:eAt =

0.9328 0.1920

-0.3840 0.3568

2、 试在Matlab 中计算如下系统在[0,5s]的初始状态响应,并画出其状态响应曲线。

0011,232x x x ????==????--????

>> syms t;

>> A=[0 1;-2 -3];

>> x0=[1;2];

>> xt=expm(A*t)*x0

结果:xt =

4*exp(-t) - 3*exp(-2*t)

6*exp(-2*t) - 4*exp(-t)

>> B=[];C=[];D=[];

>> sys=ss(A,B,C,D);

>> [y,t,x]=initial(sys,x0,0:0.01:5);

>> plot(t,x)

>> title('状态响应曲线图'),xlabel('t')

结果

3、试在Matlab 中计算如下系统在输入u (t )=e -2t 下的输出响应表达式。

00101,231210x

x u x y x ??????=+=??????--????????=??

>> A=[0 1;-2 -3];

>> B=[0;1];C=[1 0];D=0;

>> x0=[1;2];

>> syms t tau;

>> ut=exp(-2*t);

>> xt=expm(A*t)*x0+int(expm(A*(t-tau))*B*ut,tau,0,t);

>> yt=C*xt+D*ut

结果:yt =

4*exp(-t) - 3*exp(-2*t) + (exp(-4*t)*(exp(t) - 1)^2)/2

北航931 自动控制原理综合1

欲索取更多考研资料,请上北京天问教育网站官网! 自动控制原理综合 自动化科学与电气工程学院 2007年11月

931自动控制原理综合考试大纲(2008版) 一、考试组成 自动控制原理占90分; 理论力学占60分; 二、自动控制原理部分的考试大纲 (一)复习内容及基本要求 1.自动控制的一般概念 主要内容:自动控制的任务;基本控制方式:开环、闭环(反馈)控制;自动控制的性能要求:稳、快、准。 基本要求:反馈控制原理与动态过程的概念;由给定物理系统建原理方块图。 2.数学模型 主要内容:传递函数及动态结构图;典型环节的传递函数;结构图的等效变换、梅逊公式。 基本要求:典型环节的传递函数;闭环系统动态结构图的绘制;结构图的等效变换。 3.时域分析法 主要内容:典型响应及性能指标、一、二阶系统的分析与计算。系统稳定性的分析与计算:劳斯、古尔维茨判据。稳态误差的计算及一般规律。 基本要求:典型响应(以一、二系统的阶跃响应为主)及性能指标计算;系统参数对响应的影响;劳斯、古尔维茨判据的应用;系统稳态误差、终值定理的使用条件。 4.根轨迹法 主要内容:根轨迹的概念与根轨迹方程;根轨迹的绘制法则;广义根轨迹;零、极点分布与阶跃响应性能的关系;主导极点与偶极子。 基本要求:根轨迹法则(法则证明只需一般了解)及根轨迹的绘制;主导极点、偶极子等的概念;利用根轨迹估算阶跃响应的性能指标。 5.频率响应法 主要内容:线性系统的频率响应;典型环节的频率响应及开环频率响应;Nyquist稳定判据和对数频率稳定判据;稳定裕度及计算;闭环幅频与阶跃响应的关系,峰值及频宽的概念;开环频率响应与阶跃响应的关系,三频段(低频段,中频段和高频段)的分析方法。 基本要求:典型环节和开环系统频率响应曲线(Nyquist曲线和对数幅频、相频曲线)的绘制;系统稳定性判据(Nyquist判据和对数判据);等M、等N圆图,尼柯尔斯图仅作一般了解;相稳定裕度和模稳定裕度的计算;明确最小相位和非最小相位系统的差别,明确截止频率和带宽的概念。 6.线性系统的校正方法 主要内容:系统设计问题概述;串联校正特性及作用:超前、滞后及PID;校正设计的频率法及根轨迹法;反馈校正的作用及计算要点;复合校正原理及其实现。 基本要求:校正装置的作用及频率法的应用;以串联校正为主,反馈校正为辅;以频率法为主,根轨迹法为辅;复合校正的应用。 7.线性连续系统的状态空间分析方法

惯性导航作业

惯性导航作业

一、数据说明: 1:惯导系统为指北方位的捷连系统。初始经度为116.344695283度、纬度为39.975172度,高度h为30米。初速度 v0=[-9.993908270;0.000000000;0.348994967]。 2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。 3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw.mat中保存的为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列顺序为一~三行分别为X、Y、Z向信息. 4: 航向角以逆时针为正。 5:地球椭球长半径re=6378245;地球自转角速度wie=7.292115147e-5;重力加速度g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1-gk2*c33^2); g0=9.7803267714;gk1=0.00193185138639;gk2=0.00669437999013;c33=sin(lat纬度); 二、作业要求: 1:可使用MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据:load D:\...文件路径...\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增量法。 2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图; (2) 做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s); (3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s); 以上结果均要附在作业报告中。 3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。

自动控制原理实验报告

第一章Matlab 基本运算 [范例1-2] 建立矩阵A={7 8 9},B={7 8 9} >> A=[7,8,9] A = 7 8 9 >> B=A' B = 7 8 9 (2) >> B=[1 1 2 ; 3 5 8 ; 10 12 15] B= 1 1 2 3 5 8 10 12 15 (3) >> a=1:1:10 a = 1 2 3 4 5 6 7 8 9 10 >> t=10:-1:1

t = 10 9 8 7 6 5 4 3 2 1 [范例1-3]求多项式D(S)=(5S^2+3)(S+1)(S-1)的展开式 >> D=conv([5 0 3],conv([1 1],[1 -2])) D = 5 -5 -7 -3 -6 [范例1-4]求多项式P(X)=2X^4-5X^3-X+9 (1) >> P=[2 -5 6 -1 9] P = 2 -5 6 -1 9 >> x=roots(P) x = 1.6024 + 1.2709i 1.6024 - 1.2709i -0.3524 + 0.9755i -0.3524 - 0.9755i 第二章控制系统的数学模型 [范例2-1]已知系统传递函数G(S)= s + 3/ s^3 + 2 s^2 + 2 s + 1 >> num=[0 1 3]; >> den=[1 2 2 1]; >> printsys(num,den) num/den = s + 3 --------------------- s^3 + 2 s^2 + 2 s + 1 [范例2-2]已知系统传递函数G(S)=【5*(S+2)^2(S^2+6S+7)】/S(S+1)^3(S^3+2S+1)],试

机械原理大作业

机械原理大作业 This model paper was revised by the Standardization Office on December 10, 2020

机械原理大作业三 课程名称:机械原理 设计题目:齿轮传动设计 院系: 班级: 设计者: 学号: 指导教师: 设计时间: 1、设计题目 机构运动简图 机械传动系统原始参数

2、传动比的分配计算 电动机转速min /745r n =,输出转速m in /1201r n =,min /1702r n =, min /2303r n ,带传动的最大传动比5.2max =p i ,滑移齿轮传动的最大传动比4m ax =v i ,定轴齿轮传动的最大传动比4m ax =d i 。 根据传动系统的原始参数可知,传动系统的总传动比为: 传动系统的总传动比由带传动、滑移齿轮传动和定轴齿轮传动三部分实现。设带传动的传动比为5.2max =p i ,滑移齿轮的传动比为321v v v i i i 、、,定轴齿轮传动的传动比为f i ,则总传动比 令 4max 1==v v i i 则可得定轴齿轮传动部分的传动比为 滑移齿轮传动的传动比为 设定轴齿轮传动由3对齿轮传动组成,则每对齿轮的传动比为 3、齿轮齿数的确定 根据滑移齿轮变速传动系统中对齿轮齿数的要求,可大致选择齿轮5、6、7、8、9和10为角度变位齿轮,其齿数: 35,18,39,14,43,111098765======z z z z z z ;它们的齿顶高系数1=* a h ,径向间 隙系数25.0=*c ,分度圆压力角020=α,实际中心距mm a 51'=。

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

北航惯性导航综合实验五实验报告

惯性导航技术综合实验 实验五惯性基组合导航及应用技术实验

惯性/卫星组合导航系统车载实验 一、实验目的 ①掌握捷联惯导/GPS组合导航系统的构成和基本工作原理; ②掌握采用卡尔曼滤波方法进行捷联惯导/GPS组合的基本原理; ③掌握捷联惯导 /GPS组合导航系统静态性能; ④掌握动态情况下捷联惯导 /GPS组合导航系统的性能。 二、实验内容 ①复习卡尔曼滤波的基本原理(参考《卡尔曼滤波与组合导航原理》第二、五章); ②复习捷联惯导/GPS组合导航系统的基本工作原理(参考以光衢编著的《惯性导航原理》第七章); 三、实验系统组成 ①捷联惯导/GPS组合导航实验系统一套; ②监控计算机一台。 ③差分 GPS接收机一套; ④实验车一辆; ⑤车载大理石平台; ⑥车载电源系统。 四、实验内容 1)实验准备 ①将IMU紧固在车载大理石减振平台上,确认IMU的安装基准面紧靠实验平台; ②将IMU与导航计算机、导航计算机与车载电源、导航计算机与监控计算

机、GPS 接收机与导航计算机、GPS 天线与GPS 接收机、GPS 接收机与GPS 电池之间的连接线正确连接; ③ 打开GPS 接收机电源,确认可以接收到4颗以上卫星; ④ 打开电源,启动实验系统。 2) 捷联惯导/GPS 组合导航实验 ① 进入捷联惯导初始对准状态,记录IMU 的原始输出,注意5分钟内严禁移动实验车和IMU ; ② 实验系统经过5分钟初始对准之后,进入导航状态; ③ 移动实验车,按设计实验路线行驶; ④ 利用监控计算机中的导航软件进行导航解算,并显示导航结果。 五、 实验结果及分析 (一) 理论推导捷联惯导短时段(1分钟)位置误差,并用1分钟惯导实验数据验证。 1、一分钟惯导位置误差理论推导: 短时段内(t<5min ),忽略地球自转0ie ω=,运动轨迹近似为平面1/0R =,此时的位置误差分析可简化为: (1) 加速度计零偏?引起的位置误差:2 10.88022t x δ?==m (2) 失准角0φ引起的误差:2 02 0.92182g t x φδ==m (3) 陀螺漂移ε引起的误差:3 30.01376 g t x εδ==m 可得1min 后的位置误差值123 1.8157m x x x x δδδδ=++= 2、一分钟惯导实验数据验证结果: (1)纯惯导解算1min 的位置及位置误差图:

专业点题北航机械原理

一、齿轮传动的基本概念 渐开线齿轮的啮合特点:(1)渐开线齿廓能够保证定传动比;(2)渐开线齿廓之间的正压力方向不变;(3)渐开线齿廓传动具有可分性。 齿轮机构的特点是:传动平稳、适用范围广、效率高、结构紧凑、工作可靠、寿命长。但制造和安装精度高、制造费用大,且不适合于距离较远的两轴之间的传动。齿轮传动可以用来传递任意轴间的运动和动力。 齿轮传动按照一对齿轮传递的相对运动分为平面齿轮传动和空间齿轮传动,平面齿轮传动又分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动和人字齿轮传动;按照工作条件可以分为开式传动、半开式传动和闭式传动。 齿轮传动的基本要求是:传动准确、平稳;承载能力强。 二、齿轮传动的设计与计算 齿廓曲线与齿廓啮合基本定律:在啮合传动的任一瞬时,两轮齿廓曲线在相应接触点的功法线必须通过按给定传动比确定的该瞬时的节点。 渐开线齿轮啮合的正确条件:啮合轮齿的工作侧齿廓的啮合点必须总是在啮合线上,即两齿轮的模数和压力角应该分别相等。 齿轮传动的无侧隙啮合及标准齿轮的安装:一个齿轮节圆上的齿厚等于另一个齿轮节圆上的齿槽宽是无侧隙啮合的条件;外啮合齿轮的标准中心距为,内啮合是标准中心距为。

齿轮及其变位的相关计算:相关参数为齿数、模数、分度圆压力角、齿顶高系数和顶隙系数及标准直齿轮的几何尺寸计算,包括分度圆直径、齿顶高、齿根高、齿全高、齿顶圆直径、齿根圆直径、基圆直径、齿距、齿厚、齿槽宽、中心距、顶隙以及变位齿轮的变位系数等。 渐开线齿轮的根切现象:用展成法加工齿轮式,若刀具的齿顶线或齿顶圆与啮合线的焦点超过被切齿轮的极限点,则刀具的齿顶会将被切齿轮的齿根的渐开线齿廓切去了一部 分。避免根切的最小齿数,用标准齿条刀具切制标准齿轮时,因为 ,最少齿数为17。 三、机构的组成 构件指独立的运动单元,两个构件直接接触组成仍能产生某些相对运动的连接叫运动副。运动副按照相对运动的范围可以分为平面运动副和空间运动副;按运动副元素分为:低副-面接触、应力低;高副-点接触或线接触,应力高。其中运动副元素是只形成运动副的组建之间直接接触的部分。 四、机构自由度的计算 机构相对于机架所具有的独立运动的数目,叫机构的自由度。设一个平面机构由N个构件组成,其中必定有一个构件为机架,其活动构件数为n=N-1.设机构共有个低副、 个高副,因为在平面机构中每个低副和高副分别限制两个自由度和一个自由度,故平面机构的自由度为。在计算平面机构的自由度时,应该注意三种特殊情况:(1)复合铰链:三个或更多的构件在同一处联接成同轴线的两个或更多个转动副,就构成了复合铰链,计算自由度时应该按照两个或更多个运动副计算。(2)局部自由度:在有些机构中,为了其他一些非运动的原因,设置了附加机构,这种附加机构的运动是完全独立的,对整个

2012年北航三系305(即导航方向)复试试题(回忆版)

2012年北航三系305(即导航方向)复试试题(回忆版) 先补充说明一下,“北航三系305(即导航方向)”的完整信息如下: 学校:北京航空航天大学 院系:自动化科学与电气工程学院 专业:控制科学与工程 方向:导航、制导与控制 北航三系305(即导航方向)复试总分500分,包括两部分:200分的笔试和300分的面试。 I、笔试 笔试总分200分,其中英语部分50分,专业课部分150分,考试时间2小时。 下面的试题是根据我自己的回忆,按题型分类总结的。 一、英语部分50分,题型为英汉互译。 1、英译汉,共3题,每题10分。 (1)一篇论文的摘要,介绍一种控制方法,约300个单词。 (2)关于通信方面的科普知识,约200个单词。 (3)概念介绍,关于经典控制理论与现代控制理论的对比,约100个单词。 2、汉译英,共2题,每题10分。 (1)“时变系统”与“时不变系统”的概念介绍,约100个汉字。 (2)“计算机仿真”的概念介绍,约100个汉字。 二、专业课部分150分,题型有判断题、选择题、填空题、问答题、计算题等。 1、判断题:关于电路原理,共10道小题。 2、选择题:关于自控原理,有6-7道小题。 3、填空题:在微分方程、传递函数、状态空间方程三种形式下,二阶系统的固有频率分别由什么量给出。 从第4题开始,以下题目均为大题形式: 4、给了一个弹簧振子的图,根据条件写出微分方程。 5、给了一个系统的电路图,让你补全负反馈部分的电路,并且画出系统的框图。

6、PID控制的特点是什么?比例、积分、微分对系统分别有什么影响? 7、保持器的作用是什么? 8、离散系统的稳定条件是什么? 9、连续系统的稳定条件是什么? 10、在阶跃输入下,为了研究被控对象,应记录响应的“过渡过程曲线”还是“稳定之后的曲线”?如果是正弦输入呢? 11、画出一阶系统的阶跃响应曲线和脉冲响应曲线,说明一阶系统的特点。 12、机器语言、汇编语言、高级语言分别有什么特点?哪种语言执行速度最快? 13、如果系统的时间常数为T,那么计算机控制系统的采样周期应该为多少? 14、采样频率如何确定?它与计算机硬件有怎样的关系? II、面试 面试总分300分,其中英语口试50分,专业综合面试250分。 面试的题目因人而异,随机性很强。 下面的面试题目是根据我自己的面试经历,按顺序记录下来的。 由于面试时头脑高度紧张,所以回忆得没有笔试题目那么完整,请谅解。 一、英语口试50分,所有的问答全部是英语。 1、进行1分钟左右的自我介绍 2、从若干张纸条中抽取一张,朗 读上面的英文,并翻译,约200个单词。 3、问答: (1)你为什么要考研? (2)你为什么选择北航读研? (3)你认为,线性系统与非线性系统的主要区别是什么? 二、专业综合面试250分,又包括两部分:专业知识问答和其他问答,这两部分没有具体的分值比例和数量比例,我想主要根据面试老师的喜好以及你现场的表现。 1、专业知识问答: (1)什么是最小相位系统? (2)什么是放大器的频率响应? (3)在饱和状态下,三极管的极电结是什么状态? (4)什么是组合逻辑电路?什么是时序逻辑电路? (5)什么是竞争冒险现象? 2、其他问答: (1)你在大学期间参加过科技、竞赛等活动吗?

北航惯性导航综合实验四实验报告

基于运动规划的惯性导航系统动态实验 二零一三年六月十日

实验4.1 惯性导航系统运动轨迹规划与设计实验 一、实验目的 为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。 二、实验内容 学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。 三、实验系统组成 USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。 四、实验原理 IMU安装误差系数的计算方法 USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。 USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由 USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。

图4-1-1USB_PCL6045B 评估板原理框图 如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。 USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。 五、实验内容 1、操作步骤 1)检查电机驱动电源(24V) 2)检查USB_PCL6045B 控制板与上位机及电机驱动器间的连接电缆 3)启动USB_PCL6045B 控制板评估测试系统检查系统是否正常工作。 4)运行编写的定长运动程序,并比较实际位移与设定位移。

哈工大机械原理大作业凸轮机构第四题

Harbin Institute of Technology 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 姓名:李清蔚 学号:1140810304 班级:1408103 指导教师:林琳

一.设计题目 设计直动从动件盘形凸轮机构,其原始参数见表 1 表一:凸轮机构原始参数 升程(mm ) 升程 运动 角(o) 升程 运动 规律 升程 许用 压力 角(o) 回程 运动 角(o) 回程 运动 规律 回程 许用 压力 角(o) 远休 止角 (o) 近休 止角 (o) 40 90 等加 等减 速30 50 4-5-6- 7多 项式 60 100 120

二.凸轮推杆运动规律 (1)推程运动规律(等加速等减速运动) 推程F0=90° ①位移方程如下: ②速度方程如下: ③加速度方程如下: (2)回程运动规律(4-5-6-7多项式) 回程,F0=90°,F s=100°,F0’=50°其中回程过程的位移方程,速度方程,加速度方程如下:

三.运动线图及凸轮线图 本题目采用Matlab编程,写出凸轮每一段的运动方程,运用Matlab模拟将凸轮的运动曲线以及凸轮形状表现出来。代码见报告的结尾。 1、程序流程框图 开始 输入凸轮推程回 程的运动方程 输入凸轮基圆偏 距等基本参数 输出ds,dv,da图像 输出压力角、曲率半径图像 输出凸轮的构件形状 结束

2、运动规律ds图像如下: 速度规律dv图像如下: 加速度da规律如下图:

3.凸轮的基圆半径和偏距 以ds/dfψ-s图为基础,可分别作出三条限制线(推程许用压力角的切界限D t d t,回程许用压力角的限制线D t'd t',起始点压力角许用线B0d''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。 得图如下:得最小基圆对应的坐标位置O点坐标大约为(13,-50)经计算取偏距e=13mm,r0=51.67mm.

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

北航自动控制原理实验报告- 一、二阶系统的电子模拟及时域响应的动态测试

成绩 北京航空航天大学 自动控制原理实验报告 学院机械工程及自动化学院 专业方向机械工程及自动化 班级 学号 学生姓名刘帆 自动控制与测试教学实验中心

实验一 一、二阶系统的电子模拟及时域响应的动态测试 实验时间2014年11月15日 实验编号 同组同学 一、实验目的 1、 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2、 学习在电子模拟机上建立典型环节系统模型的方法。 3、 学习阶跃响应的测试方法。 二、实验内容 1、 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的跃响应曲线,并测定其过渡过程时间T s 。 2、 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间T s 。 三、实验原理 1、一阶系统阶跃响应性能指标的测试 系统的传递函数为:()s ()1 C s K R s Ts φ=+()= 模拟运算电路如下图 : 其中2 1 R K R = ,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.2,0.51,1.0。记录实验数据,测量过度过程的性能指标,其中取正负5%误差带,按照经验公式取3s t T =

2、二阶系统阶跃响应性能指标的测试 系 统 传递函数为: 令ωn=1弧度/秒,则系统结构如下图: 二阶系统的 模拟电路图如下: 在实验过程中,取22321,1R C R C ==,则 442312R R C R ζ==,即42 12R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,0.707,1;记录所测得的实验数据以及其性能指标,取正负5%误差 带,其中当ζ<1时经验公式为2 1 3.5 %100%,s n e t ζσζω- -=?= ,当ζ=1时经验公式 为n 4.75 ts ω= 四、试验设备: 1、HHMN-1型电子模拟机一台。 2、PC 机一台。 3、数字万用表一块。 4、导线若干。

北航_现代控制理论结课大作业

1. 控制系统任务的物理描述 为了满足飞机品质的要求,飞机的纵向运动和横侧向运动都需要有能够连续工作的阻尼器,以用来调整飞机的飞行姿态,避免其出现不必要的俯仰和倾斜。维持飞机纵向运动的阻尼器称为俯仰阻尼器,维持飞机横侧向运动的阻尼器称为偏航阻尼器。本次课程大作业旨在通过运用Matlab 的经典控制系统设计工具对某型飞机偏航阻尼器进行控制系统的设计。 2. 控制系统对象的数学模型 巡航状态下,某型飞机侧向运动的状态空间模型为: 111 12131411122212223242122131 3233343132234142434441424()1()()()()2()()()3()()4t x t a a a a b b t x t a a a a b b u t a a a a b b u t x t t a a a a b b x t t x x x x ??????????????????????????????????=+???????????????????????? ?????????? 111121314122122 2324234()()()()()()x t c c c c y t x t c c c c y t x t x t ??????????=?????????????? 式中: 1()x t :侧滑角(单位为rad ) 2()x t :偏航角速度(单位为/rad s ) 3()x t :滚转角速度(单位为/rad s ) 4()x t :倾斜角(单位为rad ) 输入向量及输出向量分别为: 1()u t :方向舵偏角(单位为rad ) 2()u t :副翼偏角(单位为rad )

北航惯性导航综合实验四实验报告

基于运动规划的惯性导航系统动态实验 GAGGAGAGGAFFFFAFAF

二零一三年六月十日 实验4.1 惯性导航系统运动轨迹规划与设计实验一、实验目的 为进行动态下简化惯性导航算法的实验研究,进行路径和运动状态规划,以验证不同运动状态下惯导系统的性能。通过实验掌握步进电机控制方法,并产生不同运动路径和运动状态。 二、实验内容 学习利用6045B 控制板对步进电机进行控制的方法,并控制电机使运动滑轨产生定长运动和不同加速度下的定长运动。 三、实验系统组成 USB_PCL6045B 控制板(评估板)、运动滑轨和控制计算机组成。 四、实验原理 IMU安装误差系数的计算方法 GAGGAGAGGAFFFFAFAF

USB_PCL6045B 控制板采用了USB 串行总线接口通信方式,不必拆卸计算机箱就可以在台式机或笔记本电脑上进行运动控制芯片PCL6045B 的学习和评估。 USB_PCL6045B 评估板采用USB 串行总线方式实现评估板同计算机的数据交换,由评估板的FIFO 控制回路完成步进电机以及伺服电机的高速脉冲控制,任意 2 轴的圆弧插补,2-4 轴的直线插补等运动控制功能。USB_PCL6045B 评估板上配置了全部PCL6045B 芯片的外部信号接口和增量编码器信号输入接口。由 USB_PCL6045B 评估测试软件可以进行PCL6045B 芯片的主要功能的评估测试。 GAGGAGAGGAFFFFAFAF

图4-1-1USB_PCL6045B 评估板原理框图如图4-1-1 所示,CN11 接口主要用于外部电源连接,可以选择DC5V 单一电源或DC5V/24V 电源。CN12 接口是USB 信号接口,用于USB_PCL6045B 评估板同计算机的数据交换。 USB_PCL6045B 评估板已经完成对PCL6045B 芯片的底层程序开发和硬件资源与端口的驱动,并封装成156 个API 接口函数。用户可直接在VC 环境下利用API 接口函数进行编程。 五、实验内容 GAGGAGAGGAFFFFAFAF

北航惯性导航综合实验一实验报告

实 验一 陀螺仪关键参数测试与分析实验 加速度计关键参数测试与分析实验 二零一三年五月十二日 实验一陀螺仪关键参数测试与分析实验 一、实验目得 通过在速率转台上得测试实验,增强动手能力与对惯性测试设备得感性认识;通过对陀螺仪测试数据得分析,对陀螺漂移等参数得物理意义有清晰得认识,同时为在实际工程中应用陀螺仪与对陀螺仪进行误差建模与补偿奠定基础。 二、实验内容 利用单轴速率转台,进行陀螺仪标度因数测试、零偏测试、零偏重复性测试、零漂测试实验与陀螺仪标度因数与零偏建模、误差补偿实验。 三、实验系统组成 单轴速率转台、MEMS 陀螺仪(或光纤陀螺仪)、稳压电源、数据采集系统与分析系统。

四、实验原理 1.陀螺仪原理 陀螺仪就是角速率传感器,用来测量载体相对惯性空间得角速度,通常输出与角速率对应得电压信号。也有得陀螺输出频率信号(如激光陀螺)与数字信号(把模拟电压数字化)。以电压表示得陀螺输出信号可表示为: (1-1)式中就是与比力有关得陀螺输出误差项,反映了陀螺输出受比力得影响,本实验不考虑此项误差。因此,式(1-1)简化为 (1-2)由(1-2)式得陀螺输出值所对应得角速度测量值: (1-3) 对于数字输出得陀螺仪,传感器内部已经利用标度因数对陀螺仪模拟输出进行了量化,直接输出角速度值,即: (1-4)就是就是陀螺仪得零偏,物理意义就是输入角速度为零时,陀螺仪输出值所对应得角速度。且 (1-5) 精度受陀螺仪标度因数、随机漂移、陀螺输出信号得检测精度与得影响。通常与表现为有规律性,可通过建模与补偿方法消除,表现为随机特性,可通过信号滤波方法抵制。因此,准确标定与就是实现角速度准确测量得基础。 五、陀螺仪测试实验步骤 1)标度因数与零偏测试实验 a、接通电源,预热一定时间; b、陀螺工作稳定后,测量静止情况下陀螺输出并保存数据;

自动控制原理实验报告

自动控制原理 实验报告

实验一一、二阶系统的电子模拟及时域响应的动态测试 实验目的 1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2.学习在电子模拟机上建立典型环节系统模型的方法。 3.学习阶跃响应的测试方法。 二、实验内容 1.立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线, 并测定其过渡过程时间TS。 2.立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线, 并测定其超调量σ%及过渡过程时间TS。 三、实验原理 1.一阶系统: 系统传递函数为:错误!未找到引用源。 模拟运算电路如图1-1所示: 图1-1 由图得: 在实验当中始终取错误!未找到引用源。, 则错误!未找到引用源。, 错误!未找到引用源。 取不同的时间常数T分别为: 0.25、 0.5、1。 记录不同时间常数下阶跃响应曲线,测量纪录其过渡过程时 ts。(取错误! 未找到引用源。误差带) 2.二阶系统: 其传递函数为: 错误!未找到引用源。 令错误!未找到引用源。,则系统结构如图1-2所示:

图1-2 根据结构图,建立的二阶系统模拟线路如图1-3所示: 图1-3 取错误!未找到引用源。,错误!未找到引用源。,则错误!未找到引用源。及错误!未找到引用源。 错误!未找到引用源。取不同的值错误!未找到引用源。 , 错误!未找到引用源。, ,观察并记录阶跃响应曲线,测量超调量σ%(取错误!未找到引用源。误差带),计算过渡过程时间Ts。 四、实验设备 1.HHMN-1型电子模拟机一台。 2.PC 机一台。 3.数字式万用表一块。 4.导线若干。 五、实验步骤 1.熟悉HHMN-1型电子模拟机的使用方法,将各运算放大器接成比例器,通电调零。 2.断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。 3.将D/A1与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。线路接好后,经教师检查后再通电。 4.在Windows XP桌面用鼠标双击MATLAB图标后进入,在命令行处键入autolab 进入实验软件系统。 5.在系统菜单中选择实验项目,选择实验一,在窗口左侧选择实验模型,其它步骤察看概述3.2节内容。 6.观测实验结果,记录实验数据,绘制实验结果图形,填写实验数据表格,完成实验报告。 7.研究性实验方法。实验者可自行确定典型环节传递函数,并建立系统的SIMULINK模型,验证自动控制理论相关的理论知识。实现步骤可察看概述3.3节内容。

北航七系机械学院机械原理大作业

机械原理课程机构设计 实验报告 题目:建筑垃圾破碎机的设计与分析小组成员与学号: 班级: 第1页

建筑垃圾破碎机的设计与分析 摘要 本文简单介绍了建筑垃圾回收再利用的重要性,与工艺性,并自主设计了将颚式破碎机与反击式破碎机相结合的建筑垃圾破碎机。通过solidworks软件对设计机构进行建模,用adams进行仿真分析,验证所设计的机构均达到设计需要与可行性。 关键词:建筑垃圾破碎机、连杆机构、凸轮廓线设计 第2页

目录 1.机构的引出 (4) 1.1 建筑垃圾及其回收利用价值 (4) 1.2颚式破碎机和反击式破碎机各自的利弊分析 (4) 1.3设计新的建筑垃圾破碎机 (6) 2.机构的结构、功能介绍及建模 (7) 2.1 机构设计简图及各部分功能 (7) 2.2尺寸设计及建模 (8) 2.2.1主动轮和各从动轮的传动比 (8) 2.2.2凸轮廓线设计与挡板行程 ................................... 错误!未定义书签。 3.机构的仿真分析 (12) 3.1颚式破碎机的急回特性 (12) 3.2颚式破碎机的传动角验证 (14) 3.3停歇运动导杆机构所带动的下挡板往复运动的间歇性 (14) 4.总结 (17) 第3页

第4页 1. 机构的引出 1.1 建筑垃圾及其回收利用价值 二十一世纪是一个飞速发展的时代,随着城市人口的增加、新农村建设以及城市地铁的大规模扩建,建筑行业的新陈代谢全面加速,建筑垃圾的排放量也随之增加。然而,传统的方法处理建筑垃圾是将建筑垃圾运往乡村或郊外,露天堆放或掩埋。这样不仅破坏植被,降低土壤的生产能力,而且会让建筑垃圾中的有害物质渗入地下水层,污染环境,给人们的生活带来困扰。因此,如何实现建筑垃圾的高效、环保循环利用成为当今人们所面临的一个难题。 建筑垃圾的主要组成部分是废弃混凝土和砖块,而它们都是由水泥和天然砂石拌合而成的,这些都是砖块等建筑材料的重要组成部分。为了最大程度的利用建筑垃圾,首先应该解决的问题就是对其中的大块物料进行破碎,只有这样,破碎后的小快物料才能很好的还原天然砂石的性能,实现建筑垃圾的循环利用。 1.2颚式破碎机和反击式破碎机各自的利弊分析 目前应用较广的破碎机有颚式破碎机与反击式破碎机两种。 颚式破碎机的主体构造如图 1 图 1 颚式破碎机的主体构造 其工作原理为:轮①通过皮带和电机上的主动轮相连,①的转动带动杆②进而带动构件③的摆动(构件③的上端和机架铰接)。构件③通过摆动将体积较大

自动控制原理第二版 冯巧玲 北航第一章习题及答案

《自动控制原理》习题解答 郑州轻工业学院 电气信息工程学院

第一章习题及答案 1-1 根据题1-1图所示的电动机速度控制系统工作原理图 (1) 将a ,b 与c ,d 用线连接成负反馈状态; (2) 画出系统方框图。 解 (1)负反馈连接方式为:d a ?,c b ?; (2)系统方框图如图解1-1 所示。 1-2 题1-2图是仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理,并画出系统方框图。 题1-2图 仓库大门自动开闭控制系统 解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大

门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如图解1-2所示。 1-3 题1-3图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。 题1-3图 炉温自动控制系统原理图 解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压f u 。f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。 在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程,控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。

(完整)北航惯性导航作业二.

(完整)北航惯性导航作业二. 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)北航惯性导航作业二.)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)北航惯性导航作业二.的全部内容。

惯性导航作业

一、数据说明: 1:惯导系统为指北方位的捷连系统.初始经度为116。344695283度、纬度为 39.975172度,高度h为30米。初速度v0=[—9。993908270;0.000000000; 0.348994967]。 2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。 3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw。mat中保存的 为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列 顺序为一~三行分别为X、Y、Z向信息. 4:航向角以逆时针为正. 5:地球椭球长半径re=6378245;地球自转角速度wie=7。292115147e-5;重力加速度 g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1—gk2*c33^2);g0=9.7803267714; gk1=0。00193185138639;gk2=0。00669437999013;c33=sin(lat纬度); 二、作业要求: 1:可使用 MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据: load D:\..。文件路径。。.\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增 量法。 2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图; (2)做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s); (3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s); 以上结果均要附在作业报告中. 3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。 (注意程序流程图不是课本上的惯导解算流程,而是你程序分为哪几个模块、是 怎样一步步执行的,什么位置循环等,让别人根据该流程图能够编出相应程序)

相关文档
相关文档 最新文档