文档库 最新最全的文档下载
当前位置:文档库 › (甘志国)二次曲线上的四点共圆问题的完整结论

(甘志国)二次曲线上的四点共圆问题的完整结论

(甘志国)二次曲线上的四点共圆问题的完整结论
(甘志国)二次曲线上的四点共圆问题的完整结论

二次曲线上的四点共圆问题的完整结论

甘志国(该文已发表 数学通讯,2013(7下):40-41)

百年前,著名教材《坐标几何》(Loney 著)中曾提到椭圆上四点共圆的一个必要条件是

这四点的离心角之和为周角的整数倍(椭圆)0,0(122

22>>=+b a b

y a x 上任一点A 的坐标可以表示为∈θθ)(sin cos,(b a R ),角θ就叫做点A 的离心角),证明方法十分巧妙,还要运用高次方程的韦达定理.这一条件是否充分,一直是悬案.在20世纪80年代编写《数学题解辞典(平面解析几何)》时,仍未解决.到20世纪年代初编写《中学数学范例点评》时,才证明了此条件的充分性.[1,2]

2011年高考全国大纲卷理科第21题,2005年高考湖北卷理科第21题(也即文科第22题)及2002年高考江苏、广东卷第20题都是关于二次曲线上四点共圆的问题(见文献[3,4]).笔者曾由2005年的这道高考题得出了二次曲线上四点共圆的一个简洁充要条件(其证明也很简洁但有技巧):

若两条直线)2,1)((:00=-=-i x x k y y l i i 与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是021=+k k .

文献[2]还用此结论证得了“椭圆上的四点共圆的充要条件是这四点的离心角之和为周角的整数倍”.

文献[5]用较长的篇幅得出了下面的两个结论(即原文末的命题7、8):

结论1 抛物线2

2y px =的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补.

结论 2 圆锥曲线221(0,)mx ny mn m n +=≠≠的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补.

请注意,文献[5]中所涉及的直线的斜率均存在,所以这两个结论均正确.但不够完整,本文将给出二次曲线上的四点共圆问题的完整结论,即文末的推论4.

定理1 若两条二次曲线22220()0ax by cx dy e a b a x b y c x d y e '''''++++=≠++++=,有四个交点,则这四个交点共圆.

证明 过这四个交点的二次曲线一定能表示成以下形式μλ,(不同时为0): 2222()()0ax by cx dy e a x b y c x d y e λμ'''''+++++++++= ① 式①左边的展开式中不含xy 的项,选1=μ时,再令式①左边的展开式中含2

2,y x 项

的系数相等,得a b b a

λ''-=-,此时曲线①即 220x y c x d y e '''++++= ②

的形式,这种形式表示的曲线有且仅有三种情形:一个圆、一个点、无轨迹.而题中的四个交点都在曲线②上,所以曲线②表示圆.这就证得了四个交点共圆.

定理 2 若两条直线:0(1,2)i i i i l a x b y c i ++==与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是12210a b a b +=.

证明 由21,l l 组成的曲线即

111222()()0a x b y c a x b y c ++++=

所以经过它与Γ的四个交点的二次曲线一定能表示成以下形式μλ,(不同时为0):

22111222()()()0ax by cx dy e a x b y c a x b y c λμ+++++++++= ③

必要性.若四个交点共圆,则存在μλ,使方程③表示圆,所以式③左边的展开式中含xy 项的系数1221()0a b a b μ+=.而0≠μ(否则③表示曲线Γ,不表示圆),所以12210a b a b +=.

充分性.当12210a b a b +=时,式③左边的展开式中不含xy 的项,选1=μ时,再令式③左边的展开式中含22,y x 项的系数相等,即1212a a a b b b λλ+=+,得1212a a b b b a

λ-=

-. 此时曲线③即 220x y c x d y e '''++++= ④

的形式,这种形式表示的曲线有且仅有三种情形:一个圆、一个点、无轨迹.而题中的四个交点都在曲线④上,所以曲线④表示圆.这就证得了四个交点共圆.

推论 1 若两条直线与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是这两条直线的斜率均不存在或这两条直线的斜率均存在且互为相反数.

证明 设两条直线为:0(1,2)i i i i l a x b y c i ++==,由定理2得,四个交点共圆的充要条件是12210a b a b +=.

(1)当12//l l 即1221a b a b =时,得四个交点共圆的充要条件即12210a b a b ==也即120a a ==或120b b ==.

(2)当1l 与2l 不平行即1221a b a b ≠时,由12210a b a b +=得12210,0a b a b ≠≠,所以四个交点共圆的充要条件即12120a a b b ????-

+-= ? ?????

也即直线12,l l 的斜率均存在且均不为0且互为相反数.

由此可得欲证成立.

推论 2 设二次曲线22:0()ax by cx dy e a b Γ++++=≠上的四个点连成的四边形是圆内接四边形,在该四边形的的两组对边、两条对角线所在的三对直线中:若有一对直线的斜率均不存在,则另两对直线的斜率均存在且均互为相反数;若有一对直线的斜率均存在且均互为相反数,则另两对直线的斜率也均存在且均互为相反数,或另两对直线的斜率中有一对均不存在另一对均存在且互为相反数.

证明 设圆内接四边形是四边形ABCD ,其两组对边AB 与CD 、AD 与BC 及对角线AC 与BD 所中的直线分别是 1111:0(1,2)i i i i l a x b y c i ++==

2222:0(1,2)i i i i l a x b y c i ++==

3333:0(1,2)i i i i l a x b y c i ++==

由定理中的充分性知,若四个交点共圆,则以下等式之一成立:

1112121121222221313232310,0,0a b a b a b a b a b a b +=+=+=

再运用定理2中的必要性知,若四个交点共圆,则以上等式均成立.再由推论1的证明,可得欲证成立.

推论2的极限情形是

推论3 设点A 是定圆锥曲线(包括圆、椭圆、双曲线和抛物线)C 上的定点但不是顶点,F E 、是C 上的两个动点,直线AF AE 、的斜率互为相反数,则直线EF 的斜率为曲线C 过点A 的切线斜率的相反数(定值).

由推论3可立得以下三道高考题中关于定值的答案:

高考题1 (2009·辽宁·理·20(2)) 已知??

? ??23,1A 是椭圆134:22=+y x C 上的定点,F E 、是C 上的两个动点,

直线AF AE 、的斜率互为相反数,证明EF 直线的斜率为定值,并求出这个定值.(答案:2

1.) 高考题 2 (2004·北京·理·17(2))如图1,过抛物线)0(22>=p px y 上一定点)0)(,(000>y y x P 作两条直线分别交抛物线于),(),,(2211y x B y x A .当PA 与PB 的斜率存在且倾斜角互补时,求0

21y y y +的值,并证明直线AB 的斜率是非零常数.(答案:

0212y p k y y y AB -=-=+;.)

图1

高考题3 (2004·北京·文·17(2))如图1,抛物线关于x 轴对称,它的顶点在坐标原点,点),(),,(),2,1(2211y x B y x A P 均在抛物线上.当PA 与PB 的斜率存在且倾斜角互补时,求21y y +的值及直线AB 的斜率.(答案:1421-=-=+AB k y y ;.)

推论 4 设二次曲线22:0()ax by cx dy e a b Γ++++=≠上的四个点连成的四边形是圆内接四边形,则该四边形只能是以下三种情形之一:

(1)两组对边分别与坐标轴平行的矩形;

(2)底边与坐标轴平行的等腰梯形;

(3)两组对边均不平行的四边形,但在其两组对边、两条对角线所在的三对直线中,每对直线的斜率均存在且均不为0且均互为相反数.

证明 推论2中的圆内接四边形,只能是以下三种情形之一:

(1)是平行四边形.由推论2知,该平行四边形只能是两组对边分别与坐标轴平行的矩形.

(2)是梯形.由推论2知,该梯形的底边与坐标轴平行,两腰所在直线的斜率及两条对角线所在直线的斜率均存在且均不为0且均互为相反数,可得该梯形是底边与坐标轴平行的等腰梯形.

(3)两组对边均不平行的四边形.由推论2知,该四边形的两组对边、两条对角线所在的三对直线中,每对直线的斜率均存在且均不为0且均互为相反数.

参考文献

1 陈振宣.圆锥曲线上四点共圆的充要条件[J].数学教学,2007(2):33

2 甘志国著.初等数学研究(II)下[M ] .哈尔滨:哈尔滨工业大学出版社,2009.62-6

3 3 甘志国.对一道高考题的研究[J].数学通讯,2005(22):21

4 甘志国.2011年数学大纲全国卷压轴题研究[J].考试(高考·理科),2011(8):36-38

5 张乃贵.圆锥曲线上四点共圆充要条件的探究[J].数学教学,2012(7):8-10

圆锥曲线常用结论

圆锥曲线常用结论 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆锥曲线常用结论(自己选择) 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是 以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、 P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一 点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点, 连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

课题名称非圆二次曲线的车削加工

浙江工业职业技术学院 日期年月日 熟练掌握各种常见非圆二次曲线地车削加工方法,学会各种常见非圆二次曲线地车削加工编程、控制尺寸精度及形位公差地方法,并能合理安排加工工艺. 课时安排<30学时) 1、工艺分析 2、学生编程 3、下料及准备工作 4、数控加工 5、检测评分 检测手段 1、游标卡尺 2、千分尺 4、深度千分尺 5、螺纹塞规、环规 6、半径规 7、曲线样板 安全及注意事项 1、遵守实训场地安全文明生产制度 2、遵守数控车床地安全操作规程 课后分析

其氽玖 图4-1实训图纸一 2、工艺分析 该零件主要地加工内容包括外圆粗、精加工、切槽及螺纹地加工 .加工工艺如 下: <1 )零件左端加工 左端加工时从 M20X1.5 —直加工到° 40纭mi 外圆.装夹时也应考虑工件长度 应以一夹一顶地装夹方式加工 教案过程: 课题四非圆二次曲线地车削加工 一、 新课导入: 本模块 < 共3个课题)学习非圆二次曲线地车削加工方法 尺寸精度、形状位置公差和表面粗糙度地控制方法和确保方法 地编制方法. 二、 新课讲授: 1、零件图纸 .需要同学们熟练掌握 ,理解数控加工宏程序 7t±0.03

<2 )零件右端加工 右端加工较简单,只需夹住■- 24 ±^9外圆,粗精加工椭圆即可? 3、刀具选择 <1 )选用3地中心钻钻削中心孔? <2 )粗、精车外轮廓及平端面时选用93 °硬质合金偏刀< 刀尖角35 °、刀尖 圆弧半径0.4mm ). <3 )螺纹退刀槽采用4mm切槽刀加工. <4 )车削螺纹选用60。硬质合金外螺纹车刀. 具体刀具参数见下表 4、切削用量选择 (1)背吃刀量地选择.粗车轮廓时选用ap=2mm,精车轮廓时选用ap=0.5mm ; 螺纹车削选用ap=0.5. (2)主轴转速地选择.主轴转速地选择主要根据工件材料、工件直径地大小及加 工地精度要求等都有联系,根据图2-1要求,选择外轮廓粗加工转速800r/min,精车为 1500r/min.车螺纹时,主轴转速n=400r/min. 切槽时主轴转速n=400r/min. (3)进给速度地选择.根据背吃刀量和主轴转速选择进给速度,分别选择外轮廓粗精车地进给速度为130mm/mi n 和120mm/mi n ;切槽地进给速度为 30mm/mi n. 具体工步顺序、工作内容、各工步所用地刀具及切削用量等详见下表切削用量表

圆锥曲线常用结论(无需记忆-会推导即可)

椭圆与双曲线--经典结论 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为 直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+.

圆锥曲线经典结论总结(教师版)

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+.

高中高考数学所有二级结论

高中数学二级结论 1.任意的简单n 面体内切球半径为 表 S V 3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C 推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形 3.斜二测画法直观图面积为原图形面积的 4 2 倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点 5.导数题常用放缩1+≥x e x 、1ln 11-≤≤-<- x x x x x 、)1(>>x ex e x 6.椭圆)0,0(122 22>>=+b a b y a x 的面积S 为πab S = 7.圆锥曲线的切线方程求法:隐函数求导 推论:①过圆2 22)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+-- ②过椭圆)0,0(122 22>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx ③过双曲线)0,0(122 22>>=-b a b y a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx 8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆02 2 =++++F Ey Dx y x 的切点弦方程为02 20000=+++++ +F E y y D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+b y y a x x ③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-b y y a x x

圆锥曲线二级结论(1)

一、焦点三角形周长 【知识讲解】 1、椭圆焦点三角形 直线l 过左焦点1F 与椭圆交于A 、B 两点,则2ABF ?的周长为a 4。 2、双曲线焦点三角形 直线l 过左焦点1F 与双曲线左支交于A 、B 两点,则a AB B F A F 422=-+。 【典型例题】 1.设椭圆19 252 2=+y x 的左、右焦点分别为1F 、2F ,P 是椭圆上任意一点,则21F PF ?的周长为()。 2.过双曲线19 162 2=-y x 的左焦点1F 的弦AB 长为6,则2ABF ?的周长是()。【变式训练】 1.已知1F 、2F 是椭圆112 162 2=+y x 的左右焦点,直线l 过点2F 与椭圆交于A 、B 两点,且7||=AB ,则1ABF ?的周长是( )。2.若1F 、2F 是双曲线18 2 2=-y x 的两个焦点,点P 在该双曲线上,且21F PF ?是等腰三角形,则21F PF ?的周长为( )。 二、通径公式 【知识讲解】

1、椭圆通径:过焦点且与长轴垂直的弦,通径长为a b 2 2。2、双曲线通径:过焦点且与实轴垂直的弦,通径长为a b 22。【典型例题】 1.设椭圆)0(122 22>>=+b a b y a x 的左右焦点分别是21,F F ,P 是椭圆上的点,且满足212F F PF ⊥,?=∠3021F PF ,则椭圆的离心率为( )。2.过双曲线18 2 2=-y x 的右焦点作x 轴的垂线交双曲线于A ,B 两点,则|AB|=()。【变式训练】 1.已知21,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若2ABF ?为等边三角形,则这个椭圆的离心率是( )。2.过双曲线18 2 2=-y x 的右焦点作x 轴的垂线交双曲线于A ,B 两点,若|AB|=16,则这样的直线有()条。 三、焦半径公式 1、椭圆焦半径公式(1) 0201,ex a PF ex a PF -=+=,其中e 为离心率,0x 为P 点横坐标。 2、双曲线焦半径公式(1) |||,|0201ex a PF ex a PF -=+=,其中e 为离心率,0x 为P 点横坐标。 【典型例题】 1.已知椭圆)0(122 22>>=+b a b y a x 的左右焦点分别是21,F F ,若椭圆上存在一点P 使得||23||21PF e PF =,则该椭圆离心率的取值范围是()。 2.已知双曲线112 42 2=-y x 上一点M ,其横坐标为3,则M 到右焦点的距离是()。 【变式训练】

圆锥曲线常用结论整理

圆 锥 曲 线 常 用 结 论 整 理 椭圆问题小结论: 1.与椭圆22 221x y a b +=共焦点的椭圆的方程可设为()222221,0x y b a b λλλ+=+>++ 2.与椭圆22 221x y a b +=有相同的离心率的椭圆可设为()2222,0x y a b λλ+=> 或()22 22,0x y b a λλ+=> 3.(中点弦结论)直线l 与椭圆22 221x y a b +=相交与()()1122,y ,,A x B x y 两点,其中点 (),P x y 为线段AB的中点,则有:2 2AB OP b K K a ?=-;若000(,)P x y 在椭圆 22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+ 若椭圆方程为22221y x a b +=时,2 2AB OP a K K b ?=-; 4.(切线结论)若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是 00221x x y y a b +=.以000(,)P x y 为切点的切线斜率为20 20 b x k a y =-; 5.(切点弦结论)若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为 P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 6. 椭圆的方程为22 221x y a b +=(a >b >0),过原点的直线交椭圆于,A B 两点,P 点是椭圆 上异于,A B 两点的任一点,则有2 2PA PB b K K a =-

最新学习情境10非圆二次曲线类零件的车削加工描述

学习情境10非圆二次曲线类零件的车削 加工描述

学习情境10——非圆二次曲线类零件的车削加工描述 第一部分:学习情境4——行动过程及学习内容描述 1. 学习情境4——教学准备与输出材料总体设计 2. 学习情境10——行动过程与教学内容设计描述 2.1资讯、决策、计划 ①分析零件信息:教师布置项目工作任务,引导学生理解零件加工技术要求,学生资讯问题,教师解惑,学生分组讨论,学生填写相应卡片。

②拟定加工顺序,确定工艺装备,选择切削用量:学生在教师引导下学习搜集相关资料,教师听取学生的决策意见,学生填写相应卡片。 ③制定工艺规程:学生制定工艺规程及操作加工方案计划,教师审定并关注预期成果。 2.2实施 ①编写程序清单,在仿真软件上进行虚拟操作加工 ②将程序输入数控车床,校验程序 ③检查加工准备 ④实际操作加工 2.3检查 学生与教师共同对加工完成的零件质量逐项进行检测,学生在教师的关注指导下填写相应卡片,教师提供规范化技术文档范例供学生参考。 2.4学习评价 学生分析超差原因,评估任务完成质量,填写小组总结报告,举行小组成果报告会,教师关注团队合作效果。 3. 学习情境10——行动过程与教学内容总体设计

4. 学习情境10学习环节设计描述 通过对以上六个行动过程分析,来设计学习情境10的学习环节。针对学习情境10的具体学习内容,共设计了五个学习环节。 ①制定工艺方案

②编制程序、仿真操作加工 ③实际操作加工 ④零件检测 ⑤学习评价 第二部分:学习情境10——数控车削加工工艺知识准备轴类零件是机械加工中经常遇到的典型零件之一。在机器中,它主要用来支承传动零件、传递运动和扭矩。轴类零件其长度大于直径。 一般阶梯轴类零件在机械加工中的主要工艺问题是保证台阶轴的相互位置精度(即保证外圆表面的同轴度及轴线与端面垂直度要求)。 1.保证位置精度的方法:在一次安装中加工有相互位置精度要求的外圆表面与端面。 2.加工顺序的确定方法:基面先行,先近后远,先粗后精,即先车出基准外圆后,再车出端面,最后再粗精车各外圆表面。 3.刀具的选择:车削阶梯轴类零件时,要注意保证端面二次曲线面与外圆表面的垂直度要求,因此应选主偏角90°或90°以上的外圆车刀。 4.切削用量的选择:在保证加工质量和刀具耐用度的前提下,充分发挥机床性能和刀具切削性能,使切削效率最高,加工成本最低。 粗、精加工时切削用量的选择原则如下: ①粗加工时切削用量的选择原则:首先,在工艺系统刚度和机床功率允许的情况下,尽可能大的选取背吃刀量,以减少进给次数;其次,进给量的选取主要考虑机床工艺系统所能承受的最大进给量,还要考虑刚性等限制条件,如机床进给机构的强度,刀具强度与刚度,工件的装夹刚度等,应尽可能大的选取进给量;最后根据刀具耐用度确定最佳的切削速度。

非圆曲线数学处理的一般方法

非圆曲线非圆曲线数学处理数学处理数学处理的一般的一般的一般方法方法方法 数控系统一般只有直线和圆弧插补的功能,对于非圆曲线轮廓,只有用直线或圆弧去逼近它,“节点”就是逼近线段与非圆曲线的交点。一个已知曲线的节点数主要取决于逼近线段的形状(直线段还是圆弧段),曲线方程的特性以及允许的逼近误差。将这三者利用数学关系求解,即可求得一系列的节点坐标,并按节点划分程序段。以下简介常用的直线逼近及圆弧逼近的数学处理方法。 2.1 常用非圆曲线直线逼近方法常用非圆曲线直线逼近方法 2.1.1 等间距的直线逼近的节点计算 这是一种最简单的算法。如图2.1所示,已知方程)(x f y =,根据给定的x ?求出i x ,求i x 代入)(x f y =即可求得一系列i y ,即为每个线段的终点坐标,并以该坐标值编制直线程序段。 X Y N M M ) (x f 图2.1 等间距逼近方法的原理图 x ?取值的大小取决于曲线的曲率和允许误差δ。一般先取1.0=?x 试算并校验。误差校验方法如图2.1中的右图所示,MN 为试算后的逼近线段,作''N M 平行于MN 且两直线的距离为允δ。根据节点的坐标可求得 MN 方程:0=++c by ax ,则''N M 的方程为22b a c by ax +±=+允δ 求解联立方程: ) (22x f y b a c by ax =+±?+=允δ (2-1) 如果无解,即没有交点,表示逼近误差小于允δ;如果只有一个解,即等间

距与轮廓线相切,表示逼近误差等于允δ;如果有两个或两个以上的解,表示逼近误差大于允δ,这时应缩小等间距坐标的增量值,重新计算节点和验算逼近误差,直至最大的逼近误差小于等于允δ。 等间距法计算简单,但由于取定值x ?应保证曲线曲率最大处的逼近误差允许值,所以程序可能过多。用此种方法进行数学处理,它的逼近曲线与轮廓线的逼近误差参差不齐,程序明显增多,影响机床的加工效率,不适合大批量的加工,成本也比较高。 2.1.2 等弦长直线逼近的节点计算 就是使所有逼近线段的长度相等,如图2.2所示。计算步骤如下: X Y ) (x f y = 允 δ 图2.2 等弦长逼近方法的原理图 (1)确定允许的弦长:由于曲线各处的曲率不等,等弦长逼近后,最大误差max δ必在min R 处(设为图中的CD 段),则l 为 允允)δδmin 2min 2 min 22(2R R R l ≈??= (2)求min R 。曲线)(x f y =任一点的曲率半径为 /y")y'(1R 3/22+= (2-2) 取0/d =dx R ,即 0'")'1("'322=+?y y y y (2-3) 根据)(x f y =求得'""'y y y 、、,并由式(2-3)求得x 值代入式(2-2)即得min R 。

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型 总论:常用的八种方法 1、定义法 2、韦达定理法 3、设而不求点差法 4、弦长公式法 5、数形结合法 6、参数法(点参数、K 参数、角参数) 7、代入法中的顺序 8、充分利用曲线系方程法 七种常规题型 (1)中点弦问题 (2)焦点三角形问题 (3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。(其中K 是直线AB 的斜率) (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率) 4、弦长公式法 弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2 0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·| |12a k △ ·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来

高考中圆锥曲线常见结论

高考中解析几何有用的经典结论 一、椭 圆 1. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 2. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 3. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 4. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 5. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 6. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 7. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 8. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是 22002222x x y y x y a b a b +=+. 二、双曲线 1. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程 是00221x x y y a b -=. 2. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线

圆锥曲线常用结论

圆锥曲线常用结论 1.圆锥曲线的定义: (1)定义中要重视“括号”内的限制条件: 椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹; 双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与<|FF|不可忽视。若=|FF|,则轨迹是以F,F为端点的两条射线,若﹥|FF|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 抛物线定义中,定点和定直线是焦点和准线,要注意定点不在定直线上,否则轨迹为过定点且和定直线垂直的直线. (2)抛物线定义给出了抛物线上的点到焦点距离与此点到准线距离间的关系,要善于运用定义对它们进行相互转化。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。 (2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。 (3)抛物线: 开口向右时,开口向左时,开口向上时,开口向下时。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。 4.圆锥曲线的几何性质: (1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为

圆锥曲线常用结论

圆锥曲线 一椭圆 1椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 2:点00(,)P x y 和椭圆12 2 22=+b y a x (0a b >>)的关系:(1)点00(,)P x y 在椭圆外 ?22 00 221x y a b +>; (2)点00(,)P x y 在椭圆上?220220b y a x +=1;(3)点00(,)P x y 在椭圆内?2200 221x y a b +<。 3:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断)(1)椭圆:由x 2 ,y 2 母的大小决定,焦点在分母大的坐标轴上。如已知方程 1212 2=-+-m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是())2 3,1(1,?-∞-(2)双曲线:由x 2 ,y 2项系数的正负决定,焦点 在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 4;设椭圆()22 2210x y a b a b +=>>的左焦点、右焦点分别为1F 、2F ,点P 在椭圆上, 122F PF θ∠=,求证:θ cos 12221+= b PF PF 且12PF F ?的面积2 tan S b θ=。 解:设1PF m =,2PF n =,则1 sin 22 S mn θ= ,又122F F c =,由余弦定理() 2 2222cos 2c m n mn θ=+-=()2 22cos m n mn mn θ+--=()()2 221cos 2a mn θ-+, 于是()2 2 21cos244mn a c θ+=-=2 4b ,所以221cos 2b mn θ =+,从而有212sin 221cos2b S θθ =??+=2tan b θ。 5:从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上。 6:点P 处的切线PT 平分△PF 1F 2在点P 处的外角。即有 PT F PT F MN PT PM F MPK 212,,∠=∠⊥∠=∠。 7.:PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点。

圆锥曲线二级结论(2)

四、焦点弦 【知识讲解】 1.1椭圆焦半径公式(2) 已知直线l 过左焦点1F 与椭圆交于B A ,两点,设α=∠21F AF ,则焦半径 αcos ||2?-=c a b AF ,αcos ||2?+=c a b BF ,22||1||1b a BF AF =+1.2椭圆焦点弦长公式:α 2222 cos 2||||||?-=+=c a ab BF AF AB ,最长焦点弦为长轴,最短焦点弦为通径。 2.1双曲线焦半径公式(2) 已知直线l 过左焦点1F 与双曲线交于B A ,两点,设α=∠21F AF ,则焦半径 αcos ||2?-=c a b AF ,αcos ||2?+=c a b BF ,22||1||1b a BF AF =+2.2双曲线焦点弦长公式:α 2222 cos 2||||||?-=+=c a ab BF AF AB 3焦点弦定理 已知焦点在x 轴上的椭圆或双曲线,经过其焦点F 的直线交曲线于B A ,两点,直线AB 的倾斜角为θ,FB AF λ=,则曲线的离心率满足等式:|1 1| |cos |+-=λλθe 【典型例题】1.已知椭圆13 42 2=+y x ,直线01:1=-+y x l ,01:2=++y x l 与椭圆分别交于B A ,和

D C ,,则||||CD AB +的值为()。 2.已知椭圆)0(122 22>>=+b a b y a x 的离心率为23,过右焦点F 且斜率为k )0(>k 的直线与椭圆交于B A ,两点。若3=,则k 的值为( )。 【变式训练】1.已知双曲线)0,0(122 22>>=-b a b y a x 的右焦点为F ,过F 且斜率为3的直线交双曲线于B A ,两点,若4=,则双曲线的离心率为()。 2.设椭圆)0(122 22>>=+b a b y a x 的右焦点为F ,过点F 的直线l 与椭圆相交于B A ,两点,直线l 的倾斜角为?60,FB AF 2=。 (1)求椭圆的离心率; (2)如果4 15||=AB ,求椭圆的方程。五、椭圆的第三定义 【知识讲解】 1.B A ,为椭圆)0(122 22>>=+b a b y a x 上关于原点对称的两点,椭圆上任意一点P (不同于B A ,两点)与椭圆上B A ,两点连线的斜率之积为定值:22 a b -。

圆锥曲线经典性质总结证明

圆锥曲线的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质) 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点.(中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直 径的圆内切.(第二定义) 4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求 导) 5. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=.(结合4) 6. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=.(余弦定理+面积公式+ 半角公式) 7. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义) 8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF

9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上 根据第8条,证毕 10. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。(点差法)

非圆曲线的逼近 讲解

课程课程设计任务设计任务设计任务 用计算机高级编程语言(如VB,VC++等)来实现非圆曲线的逼近,可任选直线逼近(等间距法、等弦长法、等误差法等)或圆弧逼近. 要求在满足允许误差的前提下, 使得逼近的直线段或圆弧段数的数量最少(即最优解). 要求如下: (1) 列出一般的直线或圆弧逼近的算法(流程图). (2) 列出改进的直线或圆弧逼近的算法(流程图)—即优化算法. 比 较改进前与改进后的两种算法结果 . (3) 针对任意给定的某一由非圆曲线所构成的平面轮廓, 根据指定 的走刀方向、起刀点 ,自动生成CNC 代码 . (4) 在屏幕上显示该非圆曲线所构成的平面轮廓 . 软件设计过程软件设计过程 非圆曲线的逼近算法及程序设计非圆曲线的逼近算法及程序设计 1.等间距的直线逼近的节点等间距的直线逼近的节点算法算法算法 已知方程y=f(x), 根据给定的△x 求出x i , 将x i 代入y=f(x)即可求得一系列y i . x i 、y i 即为每个线段的终点坐标 ,并以该坐标值编制直线程序段. △x 的大小取决于曲线的曲率和允许误差δ . 一般先取△x=0.1试算并校验 . 误差校验方法如下 : 如图, MN 为试算后的逼近线段, 作MN

平行于MN且两直线距离为δ允. 图1 等间距逼近 根据节点的坐标可求得MN方程: ax+by+c=0 则ax+by=c±δ允√a⌒2+b⌒2 求解联立方程: δ允=(ax+by-c)/ ±√a⌒2+b⌒2 y=f(x) 如果无解,即没有交点,表示逼近误差小于δ允;如果只有一个解, 即等距线与轮廓线相切, 表示逼近误差等于δ允; 如果有两个或两个以上的解, 表示逼近大于δ允, 这时应缩小等间距坐标的增量值, 重新计算节点和验算逼近误差, 直至最大的逼近误差小于或等于δ允.

圆锥曲线的经典结论

有关解析几何的经典结论 一、椭 圆 1. 点P 处的切线PT 平分12PF F ?在点P 处的外角. (椭圆的光学性质) 2. PT 平分12PF F ?在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆, 除去长轴的两个端点. (中位线) 3. 以焦点弦PQ 为直径的圆必与对应准线相离. (第二定义) 4. 以焦点半径1PF 为直径的圆必与以长轴为直径的圆内切. (第二定义) 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.(求导或用联立 方程组法) 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过0P 作椭圆的两条切线切点为12,P P ,则切点弦12P P 的直线方程是00221x x y y a b += 7. 椭圆22 221x y a b += (0a b >>)的左右焦点分别为12,F F ,点P 为椭圆上任意一点12F PF γ∠=, 则椭圆的焦点角形的面积为122 tan 2 F PF S b γ ?=.(余弦定理+面积公式+半角公式) 8. 椭圆22 221x y a b +=(0a b >>)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c ,00(,)M x y ).(第二定义) 9. 设过椭圆焦点F 作直线与椭圆相交,P Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交 相应于焦点F 的椭圆准线于,M N 两点,则MF NF ⊥. 证明:x ky c =+, ()22222222222 22120x y a b k y b cky b c a b a b +=?++++=22222222222 2,P O P O b c a b b cky y y y y a b k a b k --=+=++, 222222222222 2,P O P O a c a b k a c x x x x a b k a b k -=+=++,

第02篇 相关拓展公式、圆锥曲线常用的二级结论

专题十三 相关知识点、公式的拓展 1、立方差(和)公式 ))((2 2 3 3 b ab a b a b a +-+=+; ))((2 2 3 3 b ab a b a b a ++-=-; 2、中线定理(阿波罗尼斯定理):)(22 2 2 2 CD AD AC AB +=+ 3、中垂三角形:两条中线互相垂直的三角形称为“中垂三角形”,如图,△ABC 为中垂三角形,则AB 2+AC 2=5BC 2 4、角平分线性质:△ABC 中,若AD 平分∠BAC ,则 DC BD AC AB = 5、三角形张角定理: 如图,在△ABC 为中,D 为BC 边的一点,连接AD ,设AD =l ,∠BAD =α,∠CAD =β,则一定有 ()c b l β αβαsin sin sin + =+ 推导:∵S △ABC =S △ABD +S △ACD ∴ ()βαβαsin 2 1 sin 21sin 21bl cl bc +=+ 两边同时除以lbc 21,得:()c b l β αβαsin sin sin + =+ 推论1:(角平分线张角定理)当α=β时,?? ? ??+= c b l 1121cos α 推论2:(角平分线面积问题)()ααtan sin 2 1 2l c b AD S ABC ≥+=? 6、角平分线之斯库顿定理: 如图,AD ,是△ABC 的角平分线,则BC BD AC AB AD ..2 -=(就其所处图中的位置关系而言,可记忆为:中方=上积—下积) A D C B A D C B A D C B E A D C B

推导:作△ABC 的外接圆,延长AD 交圆于E ,连接BE ,如图 ∵∠E =∠C 、∠1=∠2 ∴△ABE ∽△ADC ∴ AC AE AD AB = ,即AC AB AE AD ..= ∴AC AB DE AD AD .).(=+ ∴AC AB DE AD AD ..2 =+ 由相交弦定理得:BD ·DC =AD ·DE ∴AD 2+BD ·DC =AB ·AC 注意:角平分线张角定理强调的是角度,斯库顿定理强调的是长度,斯库顿定理可以绕过求张角而直接求出三角形的各边长,通常和内角平分线定理合在一起出考题. 7、倍角三角形: A B c a a b 2)(2=?+= B C a b b c 2)(2=?+= C A b c c a 2)(2=?+= 8.若G 是△ABC 的重心,则GA →+GB →+GC → =0. 9.若直线l 的方程为Ax +By +C =0,则向量(A ,B )与直线l 垂直,向量(-B ,A )与直线l 平行. A D C B A D C B E

相关文档
相关文档 最新文档