文档库 最新最全的文档下载
当前位置:文档库 › 非线性挤压油膜阻尼器转子系统的非协调运动分析

非线性挤压油膜阻尼器转子系统的非协调运动分析

基于Poincare变换的滑动轴承非线性油膜力数据库方法

第21卷 第3期摩擦学学报V o l21, N o3 2001年5月TRIBOLOGY M ay,2001基于Poincare变换的滑动轴承非线性 油膜力数据库方法 孟志强,徐 华,朱 均 (西安交通大学润滑理论及轴承研究所,陕西西安 710049) 摘要:运用状态空间P oincar e变换使径向滑动轴承动力系统的部分状态变量由无限区间变换到有限区间.在经过变换的状态空间中求解Rey no lds方程,建立了径向滑动轴承非线性油膜力数据库及相应的插值拟合程序,实现了非线性油膜力的快速准确获得.通过滑动轴承-转子系统运动瞬态分析和P oincar e映射方法验证了数据库及拟合程序的精度. 关键词:滑动轴承;非线性油膜力;P oincar e变换;数据库 中图分类号:T H133.3文章标识码:A文章编号:1004-0595(2001)03-0223-05 滑动轴承-转子系统的线性化理论已成熟并广泛应用[1,2],然而滑动轴承油膜力往往呈现很强的非线性,因此滑动轴承-转子系统非线性分析越来越受到重视.滑动轴承非线性油膜力的计算是非线性分析的重要问题.目前计算的方法主要有两类,一类是采用有限元及差分法等数值计算方法直接求解Reynolds方程[3,4],另一类是解析法[5,6],采用无限长或无限短轴承模型.前一类方法精度高,但计算速度较慢;而后一类方法计算及分析方便但精度低.王文等[7]运用对Rey no lds方程进行量纲分析的方法建立了油叶型径向滑动轴承非线性油膜力数据库,为高效准确地计算非线性油膜力开辟了新途径.预先通过计算得到同一类轴承在不同轴心位置及速度下的非线性油膜力,按一定顺序存储在数表文件中形成油膜力数据库,这样在计算非线性油膜力时只需在数据库中检索插值,速度快且精度高.本文作者运用状态空间Po incare变换,建立了固定瓦径向滑动轴承的非线性油膜力数据库以及相应的插值计算程序,并通过实际算例进行了验证,从而从理论和实际应用上拓展了非线性油膜力数据库方法. 1 理论与方法 以有限宽圆弧瓦轴承为对象,在等温情况下,油膜压力分布由Reyno lds方程决定.其无量纲形式为: (G H 3 P )+( D L )2 (G H 3 P )= -3 (1-2 )sin +6 cos .(1)边界条件为: P( 1, )=0;  P( 2, ) =0; P( ,1)=0;  P( ,0) =0. (2)式(1)中:G 和G 为紊流系数,可由下式计算得到[8]: G =1 12(1+0.00116R h0.916) , G = 1 12(1+0.00120R h0.854) .(3)其中:R h为局部雷诺数,R h= h R . 用 表示平均温度下的粘度,令 =(1-2 ), = 2 ,则式(1)可变为: (G H3 P )+( D L )2 (G H3 P )= -3 sin +3 co s .(4)式中: 和 表示轴心速度扰动项,是轴心运动状态空间的独立坐标,非线性油膜力是 、 、 和 的非线性函数,定义域内离散 、 、 和 并计算出各离散点上的油膜力,存储到数表文件中可形成油膜力数据库.但在理论上 , ∈(-∞,∞),很难确定其范围,进行合理的离散,并通过较少的计算得到有限数据的 基金项目:国家自然科学基金重大项目资助(19990510). 收稿日期:2000-05-08;修回日期:2000-08-07/联系人孟志强. 作者简介:孟志强,男,1970年生,博士研究生,主要从事摩擦学和润滑理论及转子动力学研究.

车辆最佳匹配减振器阻尼_图文(精)

第8卷第3期 2008年6月 交通运输工程学JournalOfTrafficandTransportatio报 一 ● ● n Lngmeerlng V01.8 Jun.NO.3 2008 文章编号:1671—1637I2008)03—0015—05 0 车辆悬架最佳阻尼匹配减振器设计 周长城1’2,孟婕 (1.山东理工大学交通与车辆工程学院,山东淄博255049; 2.北京理工大学机械与车辆工程学院,北京 100081)

摘 要:为了使设计减振器对车辆具有最佳减振效果,利用悬架最佳阻尼比,对减振器最佳阻尼系 数进行了研究,建立了减振器最佳速度特性数学模型,提出了减振器阀系参数设计优化方法,对设计减振器进行了特性试验和整车振动试验,并与原车载减振器性能进行了对比。计算结果表明:减振器特性试验值与最佳阻尼匹配要求值的最大偏差为9%,而且,在低频范围内,设计减振器的整车振动传递函数幅值明显低于原车载减振器的幅值,有效遏制了簧下质量在13Hz附近的共振,因此,减振器速度特性模型和阀系参数优化设计方法是正确的。关键词:汽车工程;减振器;最佳阻尼;速度特性;设计模型;优化方法中图分类号:U463.335.1 文献标识码:A Designofshockabsorbermatchingtooptimal dampingofvehiclesuspension ZhouChang—chen91”.MengJiel (1.SchoolofTrafficandVehicleEngineering,ShandongUniversityofTechnology,Zibo255049,Shandong,China;2.Schoolof MachineandVehicleEngineering,BeijingInstituteofTechnology,Beijing100081,China) Abstract:Inorderto

非线性数学模型的线性化

非线性数学模型的线性化 假设有一个输入为 )(t x 、输出为 )(t y 、其输入-输出关系为 ()x f y =的系统,如图3.52所示, )(t y 与 )(t x 之间具有非线性关系。 ),(00y x A 为系统的工作点,即 )(00x f y =,在A 点附近,当输入变量 )(t x 作 x ?变化时,对应的输出变量的增量为 y ?。而对于通过 A 点的切线, x 变化 x ?时, y 的增量为 'y ?。显然,当 x 在平衡工作点A 附近只作微小的变化 x ?,则 y ?≈'y ?,故可近似地认为有 y ?≈xtga y ?=?' (3.88) 式中 tga ——函数 ()x f y =在 ),(00y x A 点处的导数。 图3.52 非线性关系线性化 以增量为变量的微分方程,称为增量方程,故式(3.88)为线性增量方程。由此可见,在滑动范围内, y ?可用 'y ?近似而和 x ?有线性关系,即可用切线代替原来的非线性曲线,从而把非线性问题线性化了。这种线性化方法,称为滑动线性化法,或切线法。

滑动线性化的这种近似,对大多数控制系统来说都是可行的。首先,控制系统在通常情况下,都有一个正常的稳定的工作状态,称为平衡工作点。例如,恒温控制系统的正常工作状态是输入、输出为常值(输出为被控温度,输入为期望值)。其次,当系统的输入或输出相对于正常工作状态发生微小偏差时,系统会立即进行控制调节,力图去消除此偏差,因此可以看出,这种偏差是“小偏差”,不会很大。 滑动线性化这种近似,用数学方法来处理,就是将变量的非线性函数展开成泰勒级数,分解成这些变量在某工作状态附近的小增量的表达式,然后略去高于一次小增量的项,就获得近似的线性函数。 对于以一个自变量作为输入量的非线性函数 ()x f y =,在平衡工作点 ),(00y x 附近展开成泰勒级数,则有 ()()()()()()()0002323000023d d d 11()d 2!d 3!d x x x x x x f x f x f x y f x f x x x x x x x x x x =====+-+-+-+ 略去高于一次增量 0x x x -=?的项,便有 ()()()000d d x x f x y f x x x x ==+- (3.89) 或 (3.90) 式中, )(00x f y =称为系统的静态方程; 0d ()d x x f x K x ==。 式(3.89)或式(3.90)就是非线性系统的线性化数学模型。式(3.90)为增量方程式。

建筑用液体粘滞阻尼器设计方法简介

1.阻尼器应用的设计目标和理念 传统建筑,无论木结构,钢筋混凝土,钢结构已经有上百年的抗风,抗震历史,为什么提出在这些建筑中添加阻尼器?精简总结,有以下几点原因: ●对于一些使用要求较高的建筑结构(超高层,大跨结构等),地震,抗风形成动力难题,需 要更合理的解决办法; ●对比其他传统方案,减少结构受力体系的造价; ●科学不断发展,开辟了解决结构工程问题的新思路;可以使结构最大限度的保持在弹性范围 内工作,为结构提升安全保障。 以某抗震加固工程为例,我们对剪力墙(传统方案)和液体粘滞阻尼器两个方案从理念和计算结果作了如下对比如下表: 我国现行抗震设计规范中已经开始有了关于消能减震的有关规定。结合国内外有关阻尼器应用发展情况和我们的应用体会,我们再谈一下在建筑上使用阻尼器的目标和理念。简单的说,我们安置阻尼器可以有以下几个目的。 A 增加抗震、抗风能力 原设计可能已经可以满足所有规范规定的抗震抗风要求,加上液体粘滞阻阻尼器,在振动过程中起到耗能和增加结构阻尼的作用,从而降低结构反应的基底剪力,减少整个结构的受力,也就可以大大提高结构的抗地震能力。同时,只要阻尼器安装的合适,设置到不同的需要方向,还可以预防和减少原设计没有考虑,或考虑不足的振动受力。 对特别重要的结构,高发地震区,花钱不多,设置这一第二防线是很值得的。对于非严重地震区,也可以用阻尼器达到抗风和增加抗震能力的目的。 B.用阻尼器去防范罕遇大地震或大风 按小震不坏大振不倒的原则,我们可以用常规的设计办法使设计满足多遇地震的抗震要求。对于罕遇的大地震可能显得不足、不理想或不经济。用结构的被动保护系统-特别是阻尼器来等待和解决这罕遇大地震的问题,不仅新建结构建议采用这一设计理念,原设计未设防抗震或设防不足的结构加固工程也很适于。 这一理念会带来经济实用和可靠的结果,设计的好,可以为工程节省费用。国外抗震先进国家大都采用这一理念。在所有可能发生地震的地区,我们主要想提出推广的这一设计理念。 国外有的工程,在结构的小振设计中也充分利用施加了阻尼器的优越。他们大胆的用加阻尼器后的修正反应谱作结构的设计。

转子系统存在油膜力与碰摩双重非线性振动分析

转子系统存在油膜力和碰摩双重非线性振动分析 沈松1郑兆昌2应怀樵1 (1东方振动和噪声技术研究所,北京,100085) (2清华大学工程力学系,北京,100084) 摘要:本文针对柔性轴支承的非对称转子-轴承系统,考虑柔性轴和转子的陀螺力矩,使用滑动轴承非线性非稳态油膜力模型,建立了一个比较接近实际的转子模型,并同时考虑由于碰摩产生的非线性振动,然后通过数值方法计算系统在不同转速和转子偏心量等参数下的稳态响应,并使用分叉图、轴心轨迹、Poincarè映像和频谱图等方法分析系统的非线性特性。 关键词:转子轴承系统,非线性振动,碰摩 Abstract: For a flexible unsymmetric rotor supported by two oil film journal bearings, considering the gyroscopic moment, describing the oil-film force of journal bearing with unsteady nonlinear model, a rotor-bearing system modal of 8 DOFs has been established which can describe the actual rotor more truly. At the same time, the rubbing between the rotor and stator has been taken into account. Because of the non-linearity of the rotor system, numerical integrations are used to find the response solutions in different condition. The details of bifurcation diagrams, Poincarè maps and power spectrum are used to analyze the behavior of the nonlinear vibration Key words: rotor-bearing system, nonlinear vibration, rubbing 1引言 在工程实际中,转子-轴承系统由于滑动轴承非线性油膜力的作用而产生的各种非线性振动一直是重要的研究课题。在转子模型方面,目前许多文献中都使用比较简化的Jeffott转子模型得到了许多重要的结果,文[2]则对一个柔性轴支承的对称单盘转子-轴承系统进行了数值计算和分析。对于滑动轴承油膜力模型则一般使用基于半Sommerfeld条件等各种边界假设的稳态油膜力模型,Zhang在文[3]中考虑了非稳态扰动速度对油膜边界位置的影响, 给出了非稳态圆轴承油膜力公式,并对Jeffcott转子进行了非线性分叉特性研究。 此外,引起转子系统产生非线性振动的另一个常见原因就是碰摩。间隙是机械结构设计不可避免的现象,由于间隙很小,当振幅超过间隙值,将出现转子与定子的碰摩,使转子受到径向冲击力和切向摩擦力的作用,系统成为一个带有分段线性刚度的非线性振动系统。 为进一步反映非线性油膜力作用下的转子振动稳定性,本文在柔性轴支承的转子的基础上,又考虑了当转子不在两支承点中间时的陀螺力矩的影响,并使用非稳态非线性油膜力模型,建立8自由度陀螺转子-轴承系统的力学模型,主要考虑在油膜涡动和油膜振荡的同时,转子振幅若增大到超过间隙值而发生碰摩,系统出现的一些非线性振动形式。该系统将具有双重非线性因素。通过Newmark-β法和 Newton-Raphson迭代相结合的数值方法,计算转子在不同转速、外阻尼和偏心量参数下的稳态响应,针对数值结果使用分岔图、Poincarè映像、频谱等方法研究其非线性特性,得到一些很有意义的结果。 2 陀螺转子-轴承系统力学模型 考虑如图1所示, 柔性轴支承的非对称转子具有陀螺力矩的影响,坐标XYS为固定坐标,A、B

阻尼弹簧减振器

ZT型阻尼弹簧减振器(JG/T3024-1995) 产品主要特点与用途: ZT型阻尼弹簧减振器(又称预应力弹簧减振器)具 有钢弹簧减振器的低频率和阻尼大的双重优点,消除钢 弹簧固有的共振振幅现象。该系列产品共20种规格,其 单只荷载10kg-5100kg各类荷载所应对的固有频率 2.0Hz-4.6Hz,阻尼比0.065。该系列减振器荷载范围广, 便于用户选择,固有频率低,隔振效果好,并且结构紧凑,外形尺寸较小,安装更换方便,使用安全可靠,工作寿命长,对工作环境适应性强,并能在-40℃-110℃环境下正常工作。对积极隔振、消极隔振、冲击振动和固体传声的隔离均有明显的效果。是隔离振动降低噪声、治理振动公害、保护环境的理想减振器。 ZT型系列减振器共有三种安装形式,ZT型减振器上下座面有防滑橡胶垫,对于干扰力较小的动力设备,可直接将ZT型减振器置放于设备的机座下,勿需固定,可任意移动调节重心,ZT(I)型上部固定,ZT(Ⅱ)型上下均可固定。 注ZT、ZT(I)、ZT(Ⅱ)型减振器仅在安装固定方式上不同外,技术特性完全相同。

ZTG型阻尼弹簧减振器 产品主要特点与用途: ZTG型阻尼弹簧减振器由弹簧、上橡胶套、下橡胶垫、上下铁件等 组成的减振器,具有结构简单、体积小,减振效果好,安装方便等优 点。 JA型阻尼弹簧减振器 产品主要特点与用途: 1、弹簧采用低频率值设计,并经喷塑处理,耐候性 佳,防振效果高。 2、顶部、底部均采用防滑耐磨橡胶以及固定螺栓设 计,安全性能大大提高。 3、安装简单并可根据实际需要调整高度及水平。 4、能够有效隔离冷水机组、冷却塔、热泵机组、发电机组等大型机械设备振动,并保护及延长其使用寿命。

赛弗粘滞阻尼器技术手册

赛弗 粘滞阻尼器 技术手册赛弗

CONTENT目录 P2 - P4 P5 - P6 P7 P8 - P9 P10 - P17上海赛弗工程减震技术有限公司 1. SF-VFD产品简介 …………… 产品构造及原理 技术参数 产品特点 SF-VFD 2. SF-VFD产品应用策略……… SF-VFD产品应用领域 国外案例 3. SF-VFD产品试验…………… 4. 工程案例 ……………………… 5. SF-VFD黏滞阻尼器参数表…

SF-VFD 支撑式黏滞阻尼器构造如右图所示,主要由高硬度缸筒、高精度活塞、活塞杆、特殊填充材料、关节耳环及大量高性能配件组成,当缸内的活塞进行往复运动时,填充材料从阻尼孔中高速流过从而产生剪切阻抗力。 SF-VFD 黏滞阻尼器阻尼力的大小与活塞运动速度非线性相关,可用下式表达: 1 SF-VFD 产品简介 1.1产品构造及原理 F=Csign(v)|v| α 1.2 技术参数 式中: C — 阻尼系数; v — 活塞与缸筒的相对运动速度; α — 速度指数,根据工程需求选取,选取范围为0.2~1.0。 (α为SF-VFD 的主要性能指标参数) 1)良好的耗能能力 试验表明,在简谐荷载作用下,黏滞阻尼器力-位移曲线如图1.2所示,阻尼器具有良好的耗能能力,且速度指数α越小,滞回曲线越饱满。 1.3 产品特点 图1.1 黏滞阻尼器构造 (a)斜撑型 (b)剪切连接型 (c)支撑型 图1.2 黏滞阻尼器滞回曲线图1.3 拟加速度反应谱图 1.4 拟速度反应谱 2)控制结构在地震中的振动响应 黏滞阻尼器应用于建筑中可改善结构阻尼特性,对结构在地震作用下的振动响应进行控制,有效降低结构层剪力及层间位移。 3)布置灵活安装方式多样性 根据结构特点及建筑需求可灵活布置黏滞阻尼器,同时提供多种阻尼器安装方式,如斜撑型、剪切连接型、墙 型、肘节型等,其中前三种安装方式较为常用。 4)小震作用下即可进入耗能 黏滞阻尼器滞回曲线由于不存在弹性段,因此在外部振动能量输入时能够即时的进入耗能状态。 黏滞阻尼器滞回曲线 SF-VFD

旋转机械常见故障诊断的非线性动力学研究综述

设备管理与维修 !!!!!!" !" !!!!!!" !" 因安装质量不高及长期的振动,转子系统在不平衡力的 作用下,会引起支座的非线性振动,导致系统的刚性变化并伴有冲击效应,因而常常引起机械故障。转子偏心、松动、裂纹、碰摩是旋转机械中常见的故障。 针对转子系统所产生的复杂运动,许多专家学者建立了相应条件下的数学力学模型,并应用数学力学方法和借助数值计算与数值模拟方法,分析了系统的周期、拟周期、混沌运动以及与此相关的现象,对各种故障的机械系统进行动力学分析及特征提取,作为机械故障诊断的基础,找出其中的规律性,从而为不同的故障诊断提供依据,以提高诊断的准确性。本文即对此作个综述。 1 非线性动力学的特点 在旋转机械故障诊断中,其非线性是较难分析的,其理论 机理有待进一步提高。非线性动力学研究的数学和力学基础,是非线性数和非线性振动。在非线性系统中的有些现象,无法用线性理论去解释。非线性动力系统的典型特征列举如下: (1)恢复力为非线性时,系统的固有频率与振幅的大小有关,而线性系统固有频率与振幅无关; (2)非线性系统的强迫振动,会出现跳跃现象和滞后现象;(3)在非线性系统中,由简谐干扰力引起的强迫振动,不仅有与干扰力周期相同的振动,而且有等于干扰力周期整倍数周期的振动; (4)叠加原理不再适用,使求非线性系统的全解变得十分复杂; (5)混沌行为是非线性系统的一个特性;(6)非线性系统可能出现自激振动。 2转子偏心 转子偏心是指旋转机械工作时,转子外圆不在同一圆心上产生的故障。依据不同边界条件和工作特点,建立其数学力学模型,采用适应地方法对问题进行求解,为这类故障诊断提供判别方法。 诸嘉慧等[1~2]对大型水轮发电机采用了多回路分析与有限元相结合的方法,建立了转子偏心下水轮发电机的数学模型,并对偏心下电感参数进行了有限元计算,获取其非线性特征.孙立军等在异步电机转子偏心故障检测与诊断中,开发出一套针对动态响应非线性特征提取的故障诊断系统[3],诊断结果与理论值符合较好。王秀和等对电动机转子偏心磁场非线性特征进行解析运算[4],与有限元计算结果进行了对比,具有较高的准确性。 3转子碰摩 转子碰摩是各种旋转机械的常见故障,即转子和定子间的碰撞和摩擦。转子碰摩通常由其他故障引起的,如转子不平衡,转子及静子部件的弯曲,不对中,热膨胀造成的间隙不足,都可能引起转子碰摩。 对于碰摩转子的动力学分析,多是对简单系统作动力学分析和基于分析结果的故障诊断方法。 参考文献[5]对转子碰摩故障进行了动力分析、特征提取与智能诊断,应用三维谱图分析碰摩诊断依据和确定频段特征,利用仿真数据获取结构最优的神经网络模型,并对试验碰摩故障数据进行诊断,识别率较高。 参考文献[6]、[7]对碰摩故障瞬时频率提出了诊断方法,应用了广义S 变换方法,把碰摩信号变换到相空间中,在相空间检测和提取故障特征。 旋转机械常见故障诊断的非线性动力学研究综述 朱亮1,向家伟1,2,宋宜梅1, 2 (1.桂林电子科技大学机电工程学院,广西桂林541004;2.广西制造系统与先进制造技术重点实验室,广西桂林541004) 摘要:对旋转机械中常见的转子偏心、松动、裂纹、碰摩四种故障诊断的非线性分析方法进行了综述,探讨了这些机械系统中可能出现的复杂运动,比较了各种方法的优缺点并对其发展方向做了展望。关键词:转子故障;非线性动力学;偏心;松动;裂纹;碰摩 中图分类号:TH113 文献标识码:A 文章编号:1672-545X (2010)01-0103-04 收稿日期:2009-10-15基金项目:国家自然科学基金资助项目(50805028);广西科学基金资助项目(桂科青0832082);广西制造系统与先进制造技术重点实验室主任基 金项目(桂科能0842006_023_Z ;07109008_012_Z)。 作者简介:朱亮(1981—),湖南津市人,硕士研究生,研究方向:非线性转子动力学;向家伟(1974—),湖南辰溪人,副教授,研究方向:有限元分 析、机电系统故障诊断。 103

避震器与阻尼

避震器与阻尼 由上图可清处看出避震器对于抑制弹簧谈跳的效果。

避震器的内部就是使用高黏滞系数的流体以及小尺寸的孔径,来进行阻尼的设定。 避震器的功用 从避震器这个名称看来,好像车辆的震动主要是由避震器来吸收,其实不然。车辆在行经不平路面之震动所产生的能量主要是由弹簧来吸收,弹簧在吸收震动后还会产生反弹的震荡,这时候就利用避震器来减缓弹簧引起的震荡。 当避震器失效时,车子在行经不平路面就会因为避震器无法吸收弹簧弹跳的能量,而使车身有余波荡漾的弹跳,影响行车稳定性及舒适性。简单的说,避震器最主要是要抑制弹簧的跳动,迅速弭平车身弹跳。 阻尼 「阻尼」这个词我们可能很常听到,但是究竟何谓阻尼呢?简单的说,阻尼是作用于运动物体的一种阻力,而且阻力通常与运动速度成正比。就拿一般人常见的门弓器来说,当你轻轻开门时,门弓器内的油压缸所产生的阻力很小,很轻松就能把门推开;但是当你用力推门时,反而会因阻力较大而不好推。同样原理应用于汽车避震器,当弹簧受到较大的伸张或压缩力时,避震器会因阻尼效应而给予较大的抑制力。 避震器之所以会产生阻尼效应,是因避震器受力而压缩或拉伸时,内部的活塞在移动时会对液压油或高压气体加压使之通过小孔径的阀门,当液压油或高压气体通过阀门时会产生阻力,此一阻力就产生阻尼;而阀门的孔径大小和液压油的黏度都会改变阻尼的大小。一般阻尼较大的避震器就是所谓较硬的避震器,阻尼越大则避震器越不容易被压缩或拉伸,所以车身的晃动也会越小,并增加行经不平路面时轮胎的循迹性,然而却会降低行驶时的舒适性。 可调式避震器 可调式避震器可分为阻尼大小可调式避震器和弹簧位置高低可调式避震器,以及阻尼大小和弹簧位置高低都可调整的避震器。 阻尼大小可调式: 在避震器的内部使用可以调整孔径大小的阀门,在将阀门的孔径变小之后,避震器的阻尼也会跟着变硬。调整避震器的阻尼大小的方式可分为有段与无段的方式。以电子控制方式改变阻尼大小的避震器,则是采取有段调整的方式。

阻尼减震器的特点及优点【建设施工经典推荐】

阻尼减震器的特点及优点 什么是阻尼减震器 阻尼减震器对阻尼弹簧,橡胶减振垫组合使用,克服其缺点,具有复合隔振降噪,固有频率低,隔振效果好,对隔离固体传声,尤其是对隔离高频冲击的因体传声更为优越。是积极,消极隔振的理想产品。 阻尼减震器的特点 阻尼减震器载荷范围广,工作寿命长,使用安全可靠。上下座外表有防滑橡胶垫,对于扰力小,重点低的设备可直接将减振器放置于设备减振台座下,勿需固定:上座配有螺栓与设备固定。下座分别设有螺栓与地基螺栓孔,可以下固定。用户可根据不同的需要和场合进行选择。 阻尼减震器的优点 1、顶部和底部采用防滑耐磨橡胶和固定螺栓制成,提高了安全性能,安装方便。 2、铸钢外壳由合金钢弹簧制成,并且是注射成型的。耐候性好,使用寿命长,防震效果好。 3、它能有效隔离各种卧式和立式水泵、风机、空调机组、发电机组、柴油机组、管道等动力设备的振动,保护和延长其使用寿命。 阻尼减震器的功能 1、阻尼减震器有助于机械系统在瞬间受到冲击后迅速恢复到稳定状态。 2、阻尼震振器可以减少机械振动引起的声辐射和机械噪声。 3、能提高各种机床和仪器的加工精度、测量精度和工作精度。各种机器,尤其是精密机床,在动态环境中工作时,需要高抗冲击性和动态稳定性。通过各种阻尼处理,其动态性能可以提高。 4、阻尼减震器可以减小机械结构的协同振动幅度,从而避免因动应力极值而造成的结构损伤。 阻尼减震器的技术参数 阻尼减振器适用工作温度为-40℃--110℃,正常工作载荷范围内固有频率2HZ—5HZ,阻尼比00.045—0.065。(减振弹簧经150次疲劳试验无裂缝,无断裂,达到和超过了国家有关标准)。

粘滞阻尼器

工程结构用液体粘滞阻尼器的结构构造和速度指数 摘要:用于增加阻尼、耗能减振的液体粘滞阻尼器已经得到越来越广泛的认同和工程应用。然而,世界上先进的液体粘滞阻尼器内部的结构到底是怎样的?我们可能看到的图片和文字中介绍的外置或内设油库、外置或内设阀门、活塞小孔、单出杆或双出杆都是什么零件?有什么作用?特别是我们结构设计要给出的阻尼器速度指数是怎样实现的?我们想尽我们所知作一个介绍和分析。各种阻尼器产品的速度指数是阻尼器的一个重要标志。希望速度指数能在一定范围内由设计者自由选择,也是设计者优化设计的需要和期望。不幸的是,世界上实际仅有极少数阻尼器生产厂可以满足这一要求,生产出速度指数不同的阻尼器。介绍世界各种液体粘滞阻尼器的构成。其先进厂家和阻尼器的发展过程和设计理念,希望为阻尼器的生产者和使用者提供参考。 关键词:速度指数油库阻尼器阀门活塞小孔双出杆 Abstract: The Fluid Viscous Damper (FVD) get more and more acceptable and application of the structural engineers in the world. However, few structural engineers concern its construction. What is damper's external or internal accumulator, external or internal damper valve? What is damper orifice? What is run through piston rod? What kind of function these parts have? Especially, how to realize the different value of velocity exponents in the dampers? The above questions will be discussed here. It is a important symbol of damper quality the damper velocity exponents. Free choose of the exponents in certain range is need by design optimization. Unfortunately only few damper manufactories are able to make damper with different exponents Introduction of the construction of damper and design ideal is to be reference for both damper's maker and users. Key worlds : Velocity Exponents Accumulator Damper Valve Orifices Run Through Piston Rod ?前言 我们所谈的是速度型液体粘滞阻尼器。这种阻尼器基本公式为: F=CV α (1 ) 这里,F -阻尼力;C -阻尼系数;α -速度指数。速度指数为 1 时,为线性阻尼器。不等于 1 时通称非线性阻尼器。我们工程中常用的范围为α 在0.3 ~1.0 之间。一般的说, 速度指数越小阻尼器的耗能越大(见图 1 ),但对结构未必是最优状态(见后)。 图 1 不同速度指数的位移-阻尼力模型

粘滞阻尼器产品介绍

产品名称:粘滞阻尼器(Fluid Viscous Damper) 详细介绍: 一、概述 粘滞阻尼器一般由缸筒、活塞、阻尼通道、阻尼介质(粘滞流体)和导杆等部分组成。当工程结构因振动而发生变形时,安装在结构中的粘滞阻尼器的活塞与缸筒之间发生相对运动,由于活塞前后的压力差使粘滞流体从阻尼通道中通过,从而产生阻尼力耗散外界输入结构的振动能量,达到减轻结构振动响应的目的。 我公司与同济大学工程抗震与减震研究中心合作,开发了线性粘滞阻尼器、非线性粘滞阻尼器、可控式粘滞阻尼器、拟摩擦粘滞阻尼器。通过对所研制的阻尼器的缩尺和足尺模型的性能试验,深入研究了阻尼器各种参数之间的关系,掌握了该类阻尼器的基本力学性能,建立了双出杆型粘滞阻尼器的理论计算公式,并通过大量的阻尼器力学性能实验,对其进行了修正。研究表明,该类阻尼器结构合理,受力机理明确,性能稳定,耗能能力强。 二、示意图 (朱)

三、代号表示法 四、主要特点 1. 外形简洁,结构对称、紧凑,安装便捷,安装空间小; 2. 摩擦阻力小,一般低于额定载荷的1%~2%; 3. 阻尼器的长度设计了±25mm的调节量,方便现场的安装; 4. 耗能效率高,达到90%以上; 5. 阻尼器两端可安装关节轴承,利于施工安装和工作时的摆动(允许工作摆角±5°); 6. 液压介质使用稳定、抗燃、耐老化的硅油;密封件使用与介质相容性好的橡胶材料。 五、使用要求 1、路博粘滞流体阻尼器在保管、运输、存放过程中,对所有的零部件和产品本身应采用有效地防护包装,防止发生锈蚀、污染、划伤等不良现象的发生; 2、路博粘滞流体阻尼器外表面为镀硬铬保护层,相关动配合处均采用多种手段加固密封。因此,如需在其周围进行焊接等作业应采取严格的遮挡保护措施,不允许明火 烘烤及重力敲砸等不良现象发生; 3、路博粘滞流体阻尼器是精度和技术含量较高的产品,对装配和测试的操作技能,环 境条件,使用工具等都有很高的要求,施工现场不准拆卸和修理;

减振器基础知识

减振器基础知识 减振器的结构是带有活塞的活塞杆插入筒内,在筒中充满油。活塞上有节流孔,使得被活塞分隔出来的两部分空间中的油可以互相补充。阻尼就是在具有粘性的油通过节流孔时产生的,节流孔越小,阻尼力越大,油的黏度越大,阻尼力越大。如果节流孔大小不变,当减振器工作速度快时,阻尼过大会影响对冲击的吸收。因此,在节流孔的出口处设置一个圆盘状的板簧阀门,当压力变大时,阀门被顶开,节流孔开度变大,阻尼变小。由于活塞是双向运动的,所以在活塞的两侧都装有板簧阀门,分别叫做压缩阀和伸张阀。减振器按其结构可分为双筒式和单筒式。双筒式是指减振器有内外两个筒,活塞在内筒中运动,由于活塞杆的进入与抽出,内筒中油的体积随之增大与收缩,因此要通过与外筒进行交换来维持内筒中油的平衡。所以双筒减振器中要有四个阀,即除了上面提到的活塞上的两个节流阀外,还有装在内外筒之间的完成交换作用的流通阀和补偿阀。与双筒式相比,单筒式减振器结构简单,减少了一套阀门系统。它在缸筒的下部装有一个浮动活塞, (所谓浮动即指没有活塞杆控制其运动),在浮动活塞的下面形成一个密闭的气室,充有高压氮气。上面提到的由于活塞杆进出油液而造成的液面高度变化就通过浮动活塞的浮动来自动适应之。除了上面所述两种减振器外,还有阻力可调式减振器。它可通过外部操作来改变节流孔的大小。最近的汽车将电子控制式减振器作为标准装备,通过传感器检测行驶状态,由计算机计算出最佳阻尼力,使减振器上的阻尼力调整机构自动工作。减振器类型为加速车架与车身振动的衰减,以改善汽车的行驶平顺性(舒适性),在大多数汽车的悬架系统内部装有减震器。减震器从产生阻尼的材料这个角度划分主要有液压和充气两种,还有一种可变阻尼的减震器。液压汽车悬架系统中广泛采用液力减震器。其原理是,当车架与车桥做往复相对运动儿活塞在减震器的缸筒内往复移动时,减震器壳体内的油液便反复地从内腔通过一些窄小的孔隙流入另一内腔。此时,液体与内壁的摩擦及液体分子的内摩擦便形成对振动的阻尼力。充气式减震器充气式减震器是60年代以来发展起来的一种新型减震器。其结构特点是在缸筒的下部装有一个浮动活塞,在浮动活塞与缸筒一端形成的一个密闭气室种充有高压氮气。在浮动活塞上装有大断面的O 型密封圈,它把油和气完全分开。工作活塞上装有随其运动速度大小而改变通道截面积的压缩阀和伸张阀。当车轮上下跳动时,减震器的工作活塞在油液种做往复运动,使工作活塞的上腔和下腔之间产生油压差,压力油便推开压缩阀和伸张阀而来回流动。由于阀对压力油产生较大的阻尼力,使振动衰减。阻力可调式减震器装有阻力可调式减震器的汽车的悬架一般用刚度可变的空气弹簧作为弹性元件。其原理是,空气弹簧若气压升高,则减震器气室内的压力也升高,由于压力的改变而使油液的节流孔径发生改变,从而达到改变阻尼刚度的目

非线性粘滞性阻尼器的结构运动方程的解法

非线性粘滞性阻尼器的结构运动方程的解法 提要:本文基于国内外现有的粘滞阻尼器性能试验和计算研究,提出单自由度粘滞阻尼器的计算方法文中给出了粘滞阻尼器非线性运动方程的解法,并运用该方法进行了大量的比较计算,研究了这种解法的精度. 关健词:非线性粘滞阻尼器sap2000 1引言 粘滞性阻尼器是抗震被动控制中的一种十分有效的耗能减震装置,一般是由缸体、活塞和流体组成。活塞在缸筒内可作往复运动活塞上有适量小孔,筒内盛满流体,利用活塞在粘滞性流体中运动消耗地震时输入结构的能量。国内外关于粘滞性阻尼器的数值计算和试验研究都很多,但大多数都局限于将其简化为线性阻尼器模型再进行计算。但是当一个长周期的结构承受强烈的地面振动时,线性的粘滞性阻尼器会产生额外的阻尼力,这对结构来说是不利的,而非线性的粘滞阻尼器则不同,它不但在结构运动速度很快时提供阻尼力,而且可以有效的限制阻尼力的幅值。 采用非线性时程分析的方法求解单自由度系统的非线性的运动方程,可以得出系统在动力荷载作用下的反应。目前,国内外学者对粘滞性阻尼器多采用等效刚度等效阻尼模型进行非线性时程分析。但是等效模型将粘滞性阻尼器的刚度、阻尼均简化为线性,会导致阻尼器应力应变曲线有一定程度的失真,将直接影响到减震结构的时程分析结果。 为了保证减震结构设计的安全可靠,有必要对设有粘滞阻尼器的消能减震结构进行更加深人,更加准确的非线性时程分析。为此,本文提出了一种非线性时程分析的计算方法. 2非线性粘滞阻尼器 非线性粘滞阻尼器的力和位移的关系可以写成: (1) 其中为对应不同速度指数a值零频率时的阻尼系数,a为正实数指数,其变化范围在0.1—1.0之间。符号sgn(D)是一个正负符号函数。当a=1时,方程(1)可写为 ,这时方程表示的是线性的粘滞性阻尼器;当=0时,方程(1)可写为,这时方程表示的是纯摩擦阻尼器。因此a为非线性粘滞阻尼器的非线性特征量。 3单自由度系统的非线性运动方程的解法

改进型粘滞流体阻尼器的研究

改进型粘滞流体阻尼器的研究 改进型粘滞流体阻尼器的研究 摘要:本文在普通粘滞流体阻尼器的基础上,研制出了一种改性粘滞流体材料的新型粘滞阻尼器,并进行了粘滞流体阻尼器的力学性能试验。试验研究了粘滞流体阻尼器的输出阻尼力与激振频率、位移幅值和阻尼材料粘度变化的关系,并通过试验数据回归出了阻尼器阻尼力的计算公式。 关键词:阻尼器;粘滞流体阻尼器;输出阻尼力 中图分类号:TU74 文献标识码:A 文章编号: 引言 粘滞性流体阻尼器是一种使用比较广泛的减震、隔震设备,它一般是利用活塞推动油缸中的油通过节流孔时产生阻尼力,将结构振动的部分能量通过阻尼器中粘滞流体阻尼材料的粘滞耗能耗散掉,达到减小结构振动(地震和风振)反应的目的。本文在普通粘滞阻尼器的研究基础上,对自行设计研制的新型粘滞流体阻尼器进行力学性能试验,研究粘滞阻尼器输出阻尼力随激振频率、位移幅值和阻尼介质粘度变化的关系。建立力学模型,标定其性能参数。 粘滞流体阻尼器的基本理论 2.1 粘滞流体材料的耗能机理 材料有弹性材料和粘性材料之分,理想弹性材料只能储存能量,而不能耗散能量;相反理想粘性材料则只能耗散能量,而不能储存能量,即无刚度;粘弹性材料则既能储存能量,又能耗散能量;然而在实际的工程应用中理想的粘性或弹性材料是不可获得的[1][2]。 流体分子之间存在相互吸引的内聚力,流体和固体之间又作用着附着力,流体能承受较大的压应力,却几乎不能承受拉应力,对剪切应力的抵抗极弱,不管作用的剪切力是怎样的微小,流体总会发生连续变形,这就是流体的易流性。流体在流动时呈现出内摩擦力,这个力的大小一方面取决于流体的种类,另一方面也与运动状态有关。粘

相关文档