文档库 最新最全的文档下载
当前位置:文档库 › 数学建模整数规划

数学建模整数规划

数学建模整数规划
数学建模整数规划

整数规划

前面介绍的线性规划问题中,只要求决策变量非负,也就是说决策变量可以取小数,然而在许多经济管理的实际问题中,决策变量只有取非负的整数才有实际意义。如果一个线性规划问题要求全部的决策变量都取整数,那么这样的线性规划问题称为全整数规划或纯整数规划问题。如果只要求一部分决策变量取整数,那么这样的线性规划问题称为混合整数规划问题。如果决策变量只能取0或者1,那么就称为0-1规划问题 整数规划在实际中的应用: 1. 指派问题:

某公司人事部门欲安排四个人去做四项不同的工作,每个人只能完成一项工作,一项工作只能由一个人完成。每个人完成各项工作所消耗的时间(单位:分钟)如下表所示,

(2) 如果把(1)中的消耗时间数据看成创造效益的数据,那么应该如何指派,可以使得

总的效益最大?

(3) 如果在(1)中再增加一项工作E ,甲 、乙、丙、丁四人完成工作E 的时间分别为

17,20,15,16分钟,那么应该指派这四个人干哪四项工作,可使得这四个总的消耗时间为最少?

解:(1) 引入0-1变量ij x ,并令?

??=项工作时个人不做第当第项工作时

个人去做第当第j i j i x ij 01,

于是这个分派问题的数学模型为:

??

?

??

?

??

??

?

??

?

???====+++=+++=+++=+++=+++=+++=+++=+++++++++++

+++++++=4,3,2,1,4,3,2,1101111111119242017181516262027241828201920min 443424144333231342322212413121114443424134333231242322211413121144434241343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x Z ij ,或 用管理运筹学2.0软件求解结果如下:

**********************最优解如下*************************

目标函数最优值为 : 71

变量 最优解 ------- --------

x1 0 x2 1 x3 0 x4 0 x5 1 x6 0 x7 0 x8 0 x9 0 x10 0 x11 1 x12 0 x13 0 x14 0 x15 0 x16 1 约束 松弛/剩余 ------- ---------

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0 这就说明112=x ,121=x ,133=x ,144=x

所以应该让甲去做B 工作,让乙去做A 工作,让丙去做C 工作,让丁去做D 工作,这时总的消耗时间为71分钟。

(4) 由于增加了一项工作E ,因此工作数大于人数,这时为了保持工作数和人数相等,

我们增加一个虚拟的人数,由于这个人是虚拟的,因此这个人去做各项工作所消耗的时间为0,这样就成了分派5个人去做5项不同的工作的问题,于是该分派问题的数学模型如下:

2. 投资场所选择问题:

京城畜产品公司计划在市区的东、西、南、北四区建立销售门市部,拟议中有10个位置()10,3,2,1 =i A i 可供选择,考虑到各地区居民的消费水平及居民居住密集度,规定: 在东区由1A 、2A 、3A 三个点至多选择两个; 在西区由4A ,5A 两个点中至少选一个; 在南区由6A 、7A 两个点中至少选一个 在北区由8A 、9A 、10A 三个点中至少选两个。

i A 各点的设备投资及每年可获利润由于地点不同都是不一样的,预测情况如下表所示

投资总额不能超过720万元,问应该选择哪几个销售点,可使年利润为最大? 解:引入0-1变量i x ,并令?

??=点被未选用时,当点被选用时

当i i i A A x 0,1,则该投资场所问题的数学模型

????

?

??

?

??

????

?

??

?

???====++++=++++=++++=++++=++++=++++=++++=++++=++++=+++++++++++++++++++++++=5,4,3,2,1,5,4,3,2,11011111111111619242017151815162620202724181728201920min 55453525155444342414534333231352423222125141312111555453525145444342413534333231252423222115141312114544434241353433323125242322211514131211j i x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x x Z ij ,或

?

?

?

??

?

????

?==≥≥++≥+≥+≤++≤++++++++++++++++++=10,3,2,11002112720

18016014080907080150120010061584825302022504036max 109876543211098765432110

987654321 i x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x z i i ,或者且

3. 固定成本问题

高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳动力和机器设备、

金属板有500t ,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元。现在要制定一个生产计划,使获得的利润为最大。

解:这是一个整数规划问题,设1x ,2x ,3x 分别为小号容器、中号容器和大号容器的生产数量。各种容器的固定费用只有在生产该种容器时才投入,为了说明固定费用的这种性质,设??

?=>=时。中容器即,当不生产第

时;

中容器即当生产第000,1i i i x i x i y

这样扣除了固定费用的最大利润的目标函数可以写成:

321321200150100654max y y y x x x z ---++=

由于受金属板、劳动力以及机器设备等资源限制,所以有三个约束条件:

100

32300432500

842321321321≤++≤++≤++x x x x x x x x x 然后,为了避免出现某种容器不生产就投入固定费用这样一种不合理的情况,必须加上以下三个约束条件:

M

y x M y x M y x 332211≤≤≤, 这里M 为一个充分大的数,从制造一台容器至少需要1台机器设备可知各种容器的制造数量不会超过100台,于是可取100=M ,即得

3

32211100100100y x y x y x ≤≤≤ 综上所述可得该固定成本问题的数学模型为:

??

?

??

?

?

?

????

?≥≤-≤-≤-≤++≤++≤++---++=1

0,,0,,01000100010010032300432500842200150100654max 321321332211321321321321321或者为且为整数,y y y x x x y x y x y x x x x x x x x x x y y y x x x z

4. 分布系统设计

某企业在1A 地已有一个工厂,其产品的生产能力为30万箱,为了扩大生产,打算在2A ,3A ,

4A ,5A 四个地方中再选择几个地方建厂。已知在2A 地建厂的固定成本为175万,在3A 地

建厂的固定成本为300万,在4A 地建厂的固定成本为375万元,在5A 地建厂的固定成本为500万元,另外,1A 的产量,2A ,3A ,4A ,5A 建成厂的产量,那时销地的销量以及产地到销地的单位运价(每万箱运费)如下表所示,

费用之和最小? (2) 如果由于政策要求必须在2A ,3A 地建一个厂,应该在哪几个地方建厂? 解:(1)设ij x 为从i A 运往j B 的运输量(单位:万箱),引入0-1变量i y ,并令

??

?=厂址没被选中时,当厂址被选中时

当i i i A A y 0,1,则该问题的固定成本及总运输费最小的目标函数可写为 53

525143424133323123222113121154322410579434325348500375300175min x x x x x x x x x x x x x x x y y y y z ++++++++++++++++++=

其中前4项为固定投资额,后面的为运输费用。

对1A 厂来说其产量的限制的约束条件可写成:30131211≤++x x x

但是对2A ,3A ,4A ,5A 准备选址建设的新厂来说,只有当被选上时才会有生产量,所以它们的产量限制的约束条件写为:

5

53525144342413

333231223222140302010y x x x y x x x y x x x y x x x ≤++≤++≤++≤++

而满足销量的约束条件可以写为:

???

??=++++=++++=++++20

20305343332313

52423222125141312111x x x x x x x x x x x x x x x 再加上ij x 为非负整数以及i y 为0-1变量就可以得到该问题的数学模型。

(3) 只需在问题(1)的数学模型上加上132=+y y 这一约束条件就可以得到问题(2)的数学模型。

整数规划问题的求解:分枝定界法

1、 分解:用)(P R 表示问题P 的可行域,若问题m P P P ,,,21 满足条件:

(1)() m

i i

P R P R 1

)(==,

(2)()m j i P R P R j

i ≤≠≤Φ=?1)()(,则称问题P 可被分解成子问题m P P P ,,,21 之和。

2、 松弛:对于问题P ,称舍弃P 的某些约束条件后得到的问题~

P 称为问题P 的松弛问题。 松弛问题的主要特点是它的可行域比原问题的可行域的范围更大。故松弛问题具有以下三个性质:

性质1:若松弛问题没有可行解,则原问题一定也没有可行解。

性质2。松弛问题目标函数的最优值给出原问题目标函数最优值的一个界。

性质3:若松弛问题的某个最优解是原问题的可行解,则它也是原问题的一个最优解。 分枝顶界法的基本思想是:

1、 定界:找出整数规划的任一整数可行解,并算出其目标函数值,以这个值作为目标函数

最优值的下界z 。然后解该整数规划对应的松弛线性规划问题。若松弛线性规划问题无解,则原整数规划问题也无解。若松弛线性规划问题的最优解满足整数条件,则这个解就是原整数规划问题的最优解。若松弛线性规划问题的最优解不满足整数条件,则算出其目标函数值,以这个值为原整数规划问题目标函数最优值的一个上界z ,显然,原整数线性规划问题的最优目标函数值*

z 满足:z z z ≤≤*

2、 分枝:从松弛问题最优解的非整数分量中选取一个分量,假定它是j x ,其值为j b ,将

新的约束条件[]

j j b x ≤和[]

1+≥j j b x 分别加入原整数规划问题中,从而把原整数规划问题分解成两个子问题。

3、 解上述两个子问题的松弛问题,如果子问题的松弛问题无解,则该子问题已经查明就不

再向下分枝。如果子问题的松弛问题的最优解满足整数性约束,则该子问题同样也被查明不再向下分枝,这个解对应的目标函数值,如果比原来的下界大,那么就以它为原整

数规划问题的目标函数最优值的新的下界z ,如果它比原整数规划问题的上界小,并且在各个平行分枝中提供的上界中是最大的就以它原整数规划问题的目标函数最优值的新的上界z 。如果子问题的松弛问题的最优解不是整数解并且其目标函数值小于原整数规划问题目标函数最优值的下界z ,则说明该子问题不可能含有原整数规划问题的最优解,因此就不再向下分枝。如果其目标函数值在下界和上界之间,就返回第2步继续进行分枝。

4、 如上继续进行分枝,求解松弛问题,修改上下界和剪枝,当求出的下界和上界相等时就

达到了最优解。

例1:求解下述整数规划

?????

????≥≤+≤++=为整数

2121212121,0,83210

434max x x x x x x x x x x z (1) ???

???

?≥≤+≤++=0,83210434max 21212

12

1x x x x x x x x z (2) 显然()()T

T

x x X 0,0,21==为(1)的一个可行解,以其目标函数值0作为(1)的目标函数最优的一个下界。松弛问题的最优解为()

T

T

x x X ??

?

??==56,511,21)0(,最优目标函数值为562)0(=

z ,以它作为(1)的目标函数最优的一个上界。即0=z ,5

62=z 考虑非整数分量2x ,将新的约束条件12≤x 和22≥x 分别加入(1),从而将(1)分成两个子问题

??????????

?≥≤≤+≤++=为整数21212212121,0,18

3210

434max x x x x x x x x x x x z (3) ??????????

?≥≥≤+≤++=为整数

2121221212

1,0,28

3210

434max x x x x x x x x x x x z (4) ????????

??

?≥≤≤+≤++=为整数

2121221212

1,0

,18

3210

434max x x x x x x x x x x x z (3)对应的松弛问题为?????????≥≤≤+≤++=0,1

83210434max 212212121x x x x x x x x x z (5) (5)的最优解为()

T

T

x x X ??

?

??==1,49,21)1(,最优目标函数值为12)1(=z ?????

???

??

?≥≥≤+≤++=为整数2121221212

1,0

,28

3210

434max x x x x x x x x x x x z (4)对应的松弛问题为?????????≥≥≤+≤++=0,1

83210434max 212212121x x x x x x x x x z (6) (6)的最优解为()()T

T

x x X 2,1,21)2(==,最优目标函数值为10)

2(=z

,这里

()()T

T x x X 2,1,21)2(==已经是整数解从而它是子问题(4)的可行解,从而也就是子问题

(4)的最优解,由于010)

2(=>=z z ,故应让10=z ,因为原问题只有上述两个子问题

并且)0()1()

2(z z z

<<,故让12)1(==z z 。这时子问题(4)以被查明,就不再对它分枝。

由于子问题(3)对应的松弛问题(5)的最优解为()

T

T

x x X ??

?

??==1,49,21)1(不是整数解,将新的约束条件21≤x 和31≥x 分别加入子问题(3)中,从而将(3)又分成两个子问题

?

??

???

??

??

?≥≤≤≤+≤++=为整数212112212121,0,2183210

434max x x x x x x x x x x x x z (7) ?

??

???

??

??

?≥≥≤≤+≤++=为整数

212112212121,0,3183210

434max x x x x x x x x x x x x z (8) ?

?

??????

??

?≥≥≤≤+≤++=为整数2

1211221212

1,0,3

18

3210

434max x x x x x x x x x x x x z (8)对应的松弛问题为???????????≥≥≤≤+≤++=0,3

18

3210434max 2112212121x x x x x x x x x x z (10),它无可解,故子问题(8)也无可行解,这时子问题(8)被查明,不再对它分枝。

?

?

??????

???≥≤≤≤+≤++=为整数2

12112

21212

1,0,2

18

3210

434max x x x x x x x x x x x x z (7)对应的松弛问题为:??????

?????≥≤≤≤+≤++=0,2

183210434max 2112212121x x x x x x x x x x z (9),它的最优解为()()T

T x x X 1,2,21)3(==,最优目标函数值为11)3(=z ,由于由于1011)3(=>=z z ,故应

让11=z ,同时1211)

3(=<=z z

,并且它是第二层的所有分枝中最大的目标函数值,故让

11)3(==z z ,这时z z =,故原整数规划问题(1)的最优目标函数值为11,最优解为11

对应的()()T

T

x x X 1,2,21)3(==

整数规划的两种数学模型解法

规划模型求解 指导老师: 组员: 组员分工 实际的内容: 1·简要介绍线性规划的历史 线性规划是运筹学中最基本、应用最广泛的分支。规划模型是一类有着广泛应用的确定性的系统优化模型,1939年,苏联数学家康托洛维奇出版《生产组织和计划中的数学方法》一书. 1947年,美国数学家丹兹格提出了线性规划问题的单纯形求解方法. 1951年,美国经济学家库普曼斯(J.C.Koopmans,1910—1985)出版《生产与配置的活动分析》一书. 1950~1956年,线性规划的对偶理论出现. 1960年,丹兹格与沃尔夫(P.Wolfe)建立大规模线性规划问题的分解算法. 1975年,康托洛维奇与库普曼斯因“最优资源配置理论的贡献”荣获诺贝尔经济学奖. 1978年,苏联数学家哈奇扬(L.G.Khachian)提出求解线性规划问题的多项式时间算法(内点算法),具有重要理论意义. 1984年,在美国贝尔实验室工作的印度裔数学家卡玛卡(N.Karmarkar)提出可以有效求解实际线性规划问题的多项式时间算法——Karmarkar算法.

线性规划的基本点就是在满足一定约束条件下,使预定的目标达到最优. 现在线性规划已不仅仅是一种数学理论和方法,而且成了现代化管理的重要手段,是帮助管理者与经营者做出科学决策的一个有效的数学技术. 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看 函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念 对数学发展,数学学习的巨大作用。 2·线性规划的原理:线性规划是合理利用、调配资源 的一种应用数学方法。它的基本思路就是在满足一定的约束条件下,使预定的目标达到最优。它的研究内容可归纳为两个方面:一是系统的任务已定,如何合理筹划,精细安排,用最少的资源(人力、物力和财力)去实现这个任务;二是资源的数量已定,如何合理利用、调配,使任务完成的最多。前者是求极小,后者是求极大。线性规划是在满足企业内、外部的条件下,实现管理目标和极值(极小值和极大值)问题,就是要以尽少的资源输入来实现更多的社会需要的产品的产出。因此,线性规划是辅助企业“转轨”、“变型”的十分有利的工具,它在辅助企业经营决策、计划优化等方面具有重要的作用。其一般形式为: n n n n n n b x a x a x a b x a x a x a x c x c x c x f =+++=+++→+++= 2 2222121112121112211min )(

(完整word版)整数规划的数学模型及解的特点

整数规划的数学模型及解的特点 整数规划IP (integer programming):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。 松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。 若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。 一、整数线性规划数学模型的一般形式 ∑==n j j j x c Z 1 min)max(或 中部分或全部取整数n j n j i j ij x x x m j n i x b x a t s ,...,,...2,1,...,2,10 ),(.211 ==≥=≥≤∑= 整数线性规划问题可以分为以下几种类型 1、纯整数线性规划(pure integer linear programming):指全部决策变量都必须取整数值的整数线性规划。有时,也称为全整数规划。

2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。 3、0—1型整数线性规划(zero —one integer liner programming):指决策变量只能取值0或1的整数线性规划。 1 解整数规划问题 0—1型整数规划 0—1型整数规划是整数规划中的特殊情形,它的变量仅可取值0或1,这时的 ???? ? ????≥≤+≥+≤-+=且为整数0,5210453233max 2121212121x x x x x x x x x x z

01型整数规划模型

甲乙公司不合作即竞争下所争取到的不同名专业推广者所建立的不同动态规划模 型的组合方案如下:其中X 为可能竞争到的专业推广者人数,即动态规划模型中第一天的

专业推广者推 广能力的份数,Y 为第二天需要的专业推广者推广能力的份数,即第三天安排从事推广 工作的专业推广者的人数;Z 为第三天需要的专业推广者推广能力的份数,即第三天安排从事推广工作的专业推广者的人数;a 为x 名专业推广者累计从事培训工作出来的兼职推广者的批数(每批20 人),其中,有多种组合方案;甲公司雇佣这些兼职推广者均工作一天,从事推广工作,第二天辞退a ?b 批兼职推广员,其余的b 批继续从事推广工作一天后辞退,即兼职宣传员总共最多雇佣2 天;cost 为花费的成本,即资金的使用数量;F 为不同方案下所达到的总推广效益。上表可以提供给甲公司做决策依据,根据效益的大小甲公司可以决策的目标方向顺序是从①--⑧,即不合作的情况下甲公司可以尽量争取到9 人,如若 不行,考虑争取4 人。 §5.4 0—1型整数规划模型 1、 0—1型整数规划模型概述 整数规划指的是决策变量为非负整数值的一类线性规划,在实际问题的应用中,整数规划模型对应着大量的生产计划或活动安排等决策问题,整数规划的解法主要有分枝定界解法及割平面解法(这里不作介绍,感兴趣的读者可参考相关书籍)。在整数规划问题中,0—1型整数规划则是其中较为特殊的一类情况,它要求决策变量的取值仅为0或1,在实际问题的讨论中,0—1型整数规划模型也对应着大量的最优决策的活动与安排讨论,我们将列举一些模型范例,以说明这个事实。 0—1型整数规划的的数学模型为: 目标函数 n n x c x c x c z M i n M a x +++= 2211)( 约束条件为: ???? ?? ?==≥≤++=≥≤++=≥≤++1 | 0 ) ,() ,() ,(2211222221211 1212111n m n mn m m n n n n x x x b x a x a x a b x a x a x a b x a x a x a , , ,21 这里,0 | 1表示0或1。 2、0—1型整数规划模型的解法

数学建模MATLAB算法大全第02章 整数规划

-16- 第二章 整数规划 §1 概论 1.1 定义 规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法,往往只适用于整数线性规划。目前还没有一种方法能有效地求解一切整数规划。 1.2 整数规划的分类 如不加特殊说明,一般指整数线性规划。对于整数线性规划模型大致可分为两类: 1o 变量全限制为整数时,称纯(完全)整数规划。 2o 变量部分限制为整数的,称混合整数规划。 1.2 整数规划特点 (i ) 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况: ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。 ②整数规划无可行解。 例1 原线性规划为 21min x x z += 0,0, 5422121≥≥=+x x x x 其最优实数解为:4 5 min ,45,021===z x x 。 ③有可行解(当然就存在最优解),但最优解值变差。 例2 原线性规划为 21min x x z += 0,0, 6422121≥≥=+x x x x 其最优实数解为:2 3 min ,23,021===z x x 。 若限制整数得:2min ,1,121===z x x 。 (ii ) 整数规划最优解不能按照实数最优解简单取整而获得。 1.3 求解方法分类: (i )分枝定界法—可求纯或混合整数线性规划。 (ii )割平面法—可求纯或混合整数线性规划。 (iii )隐枚举法—求解“0-1”整数规划: ①过滤隐枚举法; ②分枝隐枚举法。 (iv )匈牙利法—解决指派问题(“0-1”规划特殊情形)。 (v )蒙特卡洛法—求解各种类型规划。 下面将简要介绍常用的几种求解整数规划的方法。 §2 分枝定界法 对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分枝与定界内容。通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。在每次分枝后,凡是界限超出已知可行解集目标值的那些子集不再进一步分枝,

数学建模(整数规划)

整数规划模型

实际问题中 x x x x f z Max Min T n "),(),()(1==或的优化模型 m i x g t s i ",2,1,0)(..=≤x ~决策变量f (x )~目标函数g i (x )≤0~约束条件 多元函数决策变量个数n 和数 线性规划条件极值约束条件个数m 较大最优解在可行域学 规 非线性规划解 的边界上取得划 整数规划

Programming +Integer 所有变量都取整数,称为纯整数规划;有一部分取整数,称为混合整数规划;限制取0,1称为0‐1型整数规划。 型整数规划

+整数线性规划 max(min) n z c x =1j j j n =∑1 s.t. (,) 1,2,,ij j i j a x b i m =≤=≥=∑"12 ,,,0 () n x x x ≥"且为整数 或部分为整数

+例:假设有m 种不同的物品要装入航天飞机,它们的重量和体积分别为价值为w j 和v j ,价值为c j ,航天飞机的载重量和体积限制分别为W 和V ,如何装载使价值最大化? m 1?1 max j j j c y =∑ 1 0j j y =?被装载 s.t. m j j v y V ≤∑0 j ?没被装载1 j m =1 j j j w y W =≤∑ 0 or 1 1,2,,j y j m =="

(Chicago)大学的Linus Schrage教授于1980年美国芝加哥(Chi)Li S h 前后开发, 后来成立LINDO系统公司(LINDO Systems Inc.),网址:https://www.wendangku.net/doc/8416455221.html, I)网址htt//li d LINDO: Interactive and Discrete Optimizer (V6.1) Linear(V61) LINGO: Linear Interactive General Optimizer (V8.0) LINDO——解决线性规划LP—Linear Programming,整数规划IP—Integer Programming问题。 LINGO——解决线性规划LP—Linear Programming,非线性规划NLP—Nonlinear Programming,整数规划IP—Integer Programming g g整划g g g 问题。

数学建模实验答案数学规划模型二

实验05 数学规划模型㈡(2学时) (第4章数学规划模型) 1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102 (1) (LP)在模型窗口中输入以下线性规划模型 max z = 2x1 + 3x2 + 4x3 . + 3x2 + 5x3≤ 600 280x1 + 250x2 + 400x3≤ 60000 x1, x2, x3≥ 0 并求解模型。 ★(1) 给出输入模型和求解结果(见[101]): model: TITLE汽车厂生产计划(LP); !文件名:; max=2*x1+3*x2+4*x3; *x1+3*x2+5*x3<600; 280*x1+250*x2+400*x3<60000; end (2) (IP)在模型窗口中输入以下整数规划模型 max z = 2x1 + 3x2 + 4x3 . + 3x2 + 5x3≤ 600 280x1 + 250x2 + 400x3≤ 60000 x1, x2, x3均为非负整数

并求解模型。 LINGO函数@gin见提示。 ★(2) 给出输入模型和求解结果(见[102]模型、结果):model: TITLE汽车厂生产计划(IP); !文件名:; max=2*x1+3*x2+4*x3; *x1+3*x2+5*x3<600; 280*x1+250*x2+400*x3<60000; @gin(x1); @gin(x2); @gin(x3);!将x1,x2,x3限定为整数; end 2.(求解)原油采购与加工(非线性规划NLP,LP且IP)p104~107 模型: 已知 ? ? ? ? ? ≤ ≤ + ≤ ≤ + ≤ ≤ = ) 1500 1000 ( 6 3000 ) 1000 500 ( 8 1000 ) 500 0( 10 ) ( x x x x x x x c 注:当500 ≤x≤ 1000时,c(x) = 10 × 500 + 8( x– 500 ) = (10 – 8 ) × 500 + 8x

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

农业生产规划模型数学建模

长江学院 课程设计报告课程设计题目:农业生产规划模型 姓名1:袁珍珍学号: 08354230 姓名2:倪美丹学号: 08354213 姓名3:阮鹏娟学号: 08354216 专业土木工程 班级083542 指导教师邱淑芳 2010年4月11号

摘要: 通过对题目的分析可以看出本题是关于线性规划的问题,解决此类问题要找出决策变量,目标函数,约束条件等,在解题中我们建立了两种模型,通过比较来使问题更加的具有科学性。 中国是一个农业大国,农民的生产生活可以直接影响到国家的经济,优化农业生产模型是一个不可忽视的问题。本题就是研究了农民在农业生产中种植农作物和养殖畜牧业的生产规划问题。以现有标准为参考,采用假设分析法提出了优化模型,计算出农民在农业生产中合理规划农作物的种植和畜牧业养殖的分配问题。让拥有有限经济实力和有限土地的农民,在有限的投资和有限的土地限制下,可以按照不同季节合理安排种植业和畜牧业的劳动时间,更可用赋予时间进行多项劳动,从而可以在规定的劳动力和劳动时间内收获最大净收益。这不仅可以发展我国的农业,更可使农民富裕起来,从而缩小了我国的贫富差距,对我国的经济发展有着重大促进作用。本文根据题目给出的数据和条件,假设出必要未知量,再列出必要方程式,运用Lingo等数学软件分析提出合理的数学模型。关键字: 线性规划、数学建模、Lingo、农业生产、合理分配、最大净收益

阐述题目 某农户拥有100亩土地和25000元可供投资,每年冬季(9月份中旬至来年5月中旬),该家庭的成员可以贡献 3500h的劳动时间,而夏季为4000h。如果这些劳动时间有赋予,该家庭中的年轻成员将去附近的农场打工,冬季每小时元,夏季每小时元。 现金收入来源于三种农作物(大豆、玉米和燕麦)以及两种家禽(奶牛和母鸡)。农作物不需要付出投资,但每头奶牛需要400元的初始投资,每只母鸡需要3元的初始投资,每头奶牛需要使用亩土地,并且冬季需要付出100h劳动时间,夏季付出50h劳动时间,该家庭每年产生的净现金收入为450元;每只母鸡的对应数字为:不占用土地,冬季,夏季,年净现金收入元。养鸡厂房最多只能容纳3000只母鸡,栅栏的大小限制了最多能饲养32偷奶牛。 根据估计,三种农作物每种植一亩所需要的劳动时间和收入如下表所示。建立数学模型,帮助确定每种农作物应该种植多少亩,以及奶牛和母鸡应该各蓄养多少,使年净现金收入最大。

数学建模b题标准答案

2011高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):北京大学 参赛队员(打印并签名) :1. 姚胜献 2. 许锦敏 3. 刘迪初 指导教师或指导教师组负责人(打印并签名):刘业辉 日期: 2011 年 9 月 12日赛区评阅编号(由赛区组委会评阅前进行编号):

2011高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号): 交巡警服务平台的设置与调度 摘要 本文通过建立整数规划模型,解决了分配各平台管辖范围、调度警务资源以及合理设置交巡警服务平台这三个方面的问题;通过建立线性加权评价模型定量评价了某市现有交巡警服务平台设置方案的合理性,并根据各个区对服务平台需求量的不同,提出了重新分配全市警力资源的解决方案。在计算交巡警服务平台到各个路口节点的路程时,使用了图论里的floyd算法。 针对问题一的第一个子问题,首先假设交巡警服务平台对某个路口节点的覆盖度是二元的,引入决策变量,建立了0-1整数规划模型。交巡警出警应体现时间的紧迫性,所以选择平均每个突发事件的出警时间最短作为目标函数,运用基于MATLAB的模拟退火算法进行求解,给出了中心城区A的20个服务平台的管辖范围,求得平均每个案件的出警时间为1.013分钟。 针对问题一的第二个子问题,为了实现对中心城区A的13个交通要道的快速全封锁,以最短的封锁时间为目标,建立了0-1整数规划模型,利用lingo软件编程求解,给出了该区交巡警服务平台警力合理的调度方案,并求得对13个交通要道实现全封锁最短需要8.02分钟。 问题一的第三个子问题是交巡警服务平台的选址问题。考虑到建设新的服务平台需要投入更多的成本和警务资源,还需平衡各个服务平台的工作量。因此,以增加最少的服务平台数和服务平台工作量方差最小为目标,采用集合覆盖理论,建立了双目标0-1整数规划模型,用基于MATLAB的模拟退火算法求解出增加的服务平台数为4个,新增 的服务平台具体位置为A 28,A 40 ,A 48 ,A 88 ,并得到各个服务平台的工作强度方差为2.28。 针对问题二的第一个子问题,通过建立线性加权评价模型定量评价了该市现有交巡警服务平台设置方案的合理性,结果发现全市服务平台覆盖率较低且各个区的工作量不均衡,得出全市服务平台的布局存在明显的不合理的结论。并确定各区域人口密度、各区域公路总长度以及各区域平均每天总的发案率为各区域对交巡警需求的指标,然后根据各个区对服务平台需求量的不同,提出了较为合理的分配全市警力资源的解决方案。 对于问题二的第二个子问题,以围堵范围最小和调动警力最少的原则,通过分析案发后嫌疑犯可能到达的位置,给出了围堵方案。 关键词:交巡警服务平台 0-1整数规划模拟退火法

数学建模之规划问答

一、线性规划 1.简介 1.1适用情况 用现有资源来安排生产,以取得最大经济效益的问题。如: (1)资源的合理利用 (2)投资的风险与利用问题 (3)合理下料问题 (4)合理配料问题 (5)运 输 问 题 (6)作物布局问题 (7)多周期生产平滑模型 (8)公交车调度安排 1.2建立线性规划的条件 (1)要求解问题的目标函数能用数值指标来反映,且为线性函数; (2)要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述。 1.3线性规划模型的构成 决策变量、目标函数、约束条件。 2、一般线性规划问题 数学标准形式: 目标函数: 1 max == ∑ n j j j z c x 约束条件:1 ,1,2,...,,..0,1,2,...,.=?==???≥=?∑n ij j i j j a x b i m s t x j n matlab 标准形式:

min , ,.,.?≤?? ?=??≤≤? T s t Aeq beq lb ub f x A x b x x 3、可以转化为线性规划的问题 例:求解下列数学规划问题 1234123412341234min ||2||3||4||,2,..31,123. 2=+++? ?--+≤-?-+-≤-???--+≤-? z x x x x x x x x s t x x x x x x x x 解:作変量変换1||||,,1,2,3,4,22 +-= ==i i i i i x x x x u v i 并把新变量重新排序成一维变量[]1414,,,,,??==???? L L T u y u u v v v ,则可把模型转化为线性规划模型 []min , ,,..0.???-≤???????≥? T c y u A A b s t v y 其中:[]1,2,3,4,1,2,3,4;=T c 12,1,;2??=---??? ?T b 111111131 - - ?? ??= - -???? -1 -1 3??A 。 利用matlab 计算得最优解:12342,0,=-===x x x x 最优值z=2。 程序如下: 略

数学建模——混合整数规划

实验四 混合整数规划 一、问题重述 某开放式基金现有总额为15亿元的资金可用于投资,目前共有8个项目可供投资者选择,每个项目可重复投资。根据专家经验,对每个项目投资总额不能太高,应有上限。这些项目所需要的投资额已知,一般情况下投资一年后各项目所得利润也可估算出来,如表1所示。 请帮该公司解决以下问题: (1) 就表1提供的数据,应该投资哪些项目,使得第一年所得利润最高? (2) 在具体投资这些项目时,实际还会出现项目之间互相影响的情况。公司咨询有关专家后,得到以下可靠信息:同时投资项目A 1,A 3,它们的年利润分别是1005万元,1018.5万元;同时投资项目A 4,A 5,它们的年利润分别是1045万元,1276万元;同时投资项目A 2,A 6,A 7,A 8,它们的年利润分别是1353万元,840万元,1610万元,1350万元,该基金应如何投资? 其中M 为你的学号后3位乘以10。 (3) 如果考虑投资风险,则应如何投资,使收益尽可能大,而风险尽可能小。投资项目 总体风险可用投资项目中最大的一个风险来衡量。专家预测出各项目的风险率,如表2所示。 二、符号说明 i A ::投资额; i b :i A 个项目所获得的年利润; i C :第i A 个项目投资所获得的利润; 'i C :第i A 个项目同时投资所获得的利润; i m :投资i A 的上限; i y :表示0—1变量; i p :投资第i A 个项目的投资风险; 三、模型的建立 对于问题一 目标函数:8 1max i i i c x ==∑

s.t. 150000i i i i i i b x b x m ?≤? ??≤?∑ 对于问题二 设定0—1变量 131130...,1...,A A y A A ?? ?项目不同时投资项目同时投资 452450...,1...,A A y A A ???项目不同时投资 项目同时投资 2678326780...,,1...,,A A A A y A A A A ?? ?,项目不同时投资 ,项目同时投资 目标函数:'''' 11133111332445524455' '''322 66 77 88 322667788max ()(1)()()(1)()()(1)() y x c x c y x c x c y x c x c y x c x c y x c x c x c x c y x c x c x c x c =++-++++-++ ++++-+++ s.t. 1 13 131 24545 23267826783 1500001000i i i i i i b x k y x x x x y k y x x x x y k y x x x x x x x x y k b x m ?≤?? =??≤??≥?? ≤???≥? ?≤? ?≥?? ≤?∑ 对于问题三: 目标函数: max min max() i i i i i i c x b x p =∑ s.t. 150000i i i i i i b x b x m ?≤? ??≤?∑ 对于问题三模型的简化 固定投资风险,优化收益,设a 为固定的最大风险。 max i i i c x =∑

数学建模 四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

数学建模课程设计——优化问题

在手机普遍流行的今天,建设基站的问题分析对于运营商来说很有必要。本文针对现有的条件和题目的要求进行讨论。在建设此模型中,核心运用到了0-1整数规划模型,且运用lingo 软件求解。 对于问题一: 我们引入0-1变量,建立目标函数:覆盖人口最大数=所有被覆盖的社区人口之和,即max=15 1j j j p y =∑,根据题目要求建立约束条件,并用数学软件LINGO 对其模型求解,得到最优解。 对于问题二: 同样运用0-1整数规划模型,建立目标函数时,此处假设每个用户的正常资费相同,所以68%可以用减少人口来求最优值,故问题二的目标函数为:max=∑=15 1j j j k p 上述模型得到最优解结果如下: 关键字:基站; 0-1整数规划;lingo 软件

1 问题的重述.........................3 2 问题的分析.........................4 3 模型的假设与符号的说明...................5 3.1模型的假设...................... 5 3.2符号的说明...................... 5 4 模型的建立及求解...................... 5 4.1模型的建立...................... 5 4.2 模型的求解...................... 6 5 模型结果的分析.......................7 6 优化方向..........................7 7 参考文献..........................8 8、附录........................... 9

数学建模之线性规划

第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则2 1,x x 应满足 (目标函数)2134m ax x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min beq x Aeq =? ub x lb ≤≤ 其中c 和x 为n 维列向量,A 、Aeq 为适当维数的矩阵,b 、beq 为适当维数的列向 量。 例如线性规划 b Ax x c x T ≥ that such max

整数规划和多目标规划模型及应用

1 整数规划的MATLAB 求解方法 (一) 用MATLAB 求解一般混合整数规划问题 由于MATLAB 优化工具箱中并未提供求解纯整数规划和混合整数规划的函数,因而需要自行根据需要和设定相关的算法来实现。现在有许多用户发布的工具箱可以解决该类问题,例如比较著名的Y ALMIP ,读者可以自行到网上下载相关的工具包并进行学习。这里我们给出开罗大学的Sherif 和Tawfik 在MA TLAB Central 上发布的一个用于求解一般混合整数规划的程序,在此命名为intprog ,笔者在原程序的基础上做了简单的修改,将其选择分枝变量的算法由自然序改造成分枝变量选择原则中的一种,即:选择与整数值相差最大的非整数变量首先进行分枝。intprog 函数的调用格式如下: [x,fval,exitflag]=intprog(c,A,b,Aeq,beq,lb,ub,M,TolXInteger) 该函数解决的整数规划问题为: ????? ??????∈=≥≤≤=≤=) 取整数(M j x n i x ub x lb b x A b Ax t s x c f j i eq eq T ) ,,2,1(0 ..min 在上述标准问题中,假设x 为n 维设计变量,且问题具有不等式约束1m 个,等式约束2m 个,那么:c 、x 均为n 维列向量,b 为1m 维列向量,eq b 为2m 维列向量,A 为n m ?1维矩阵,eq A 为n m ?2维矩阵。 在该函数中,输入参数有c,A,b,A eq ,b eq ,lb,ub,M 和TolXInteger 。其中c 为目标函数所对 应设计变量的系数,A 为不等式约束条件方程组构成的系数矩阵,b 为不等式约束条件方程组右边的值构成的向量。Aeq 为等式约束方程组构成的系数矩阵,b eq 为等式约束条件方程组右边的值构成的向量。lb 和ub 为设计变量对应的上界和下界。M 为具有整数约束条件限制的设计变量的序号,例如问题中设计变量为621,,,x x x ,要求32,x x 和6x 为整数,则M=[2;3;6];若要求全为整数,则M=1:6,或者M=[1;2;3;4;5;6]。TolXInteger 为判定整数的误差限,即若某数x 和最邻近整数相差小于该误差限,则认为x 即为该整数。 在该函数中,输出参数有x, fval 和exitflag 。其中x 为整数规划问题的最优解向量,fval 为整数规划问题的目标函数在最优解向量x 处的函数值,exitflag 为函数计算终止时的状态指示变量。 例1 求解整数规划问题: ????? ?? ??≥≥≤+≥-+= 0, 12 1124 124 ..max 212212121,且取整数值x x x x x x x t s x x f

数学建模,线性规划,运输为问题

有限制的运输问题:6个发点6个收点,其供应量、接收量和运费如下表1(”-”表示某个 设:发点i向收点j的货物供应量为xij. 目标函数: MinZ=20x11+15x12+16x13+5x14+4x15+7x16+17x21+15x22+33x23+12x24+8x25+6x26+9x31 +12x32+18x33+16x34+30x35+13x36+12x41+8x42+11x43+27x44+19x45+14x46+7x52+10x53+ 21x54+10x55+32x56+6x64+11x65+13x66 供应限制:x11+x12+x13+x14+x15+x16=20 x21+x22+x23+x24+x25x+26=30 x31+x32+x33+x34+x35+x36=50 x41+x42+x43+x44+x45+x46=40 x52+x53+x54+x55+x56=30 x64+x65+x66=30 需求限制:x11+x21+x31+x41=30 x12+x22+x32+x42+x52=50 x13+x23+x33+x43+x53=40 x14+x24+x34+x44+x54+x64=30 x15+x25+x35+x45+x55+x65=30 x16+x26+x36+x46+x56+x66=20 LINGO代码: min=20*x11+15*x12+16*x13+5*x14+4*x15+7*x16+17*x21+15*x22+33*x23+12*x24+8*x25+ 6*x26+9*x31+12*x32+18*x33+16*x34+30*x35+13*x36+12*x41+8*x42+11*x43+27*x44+19* x45+14*x46+7*x52+10*x53+21*x54+10*x55+32*x56+6*x64+11*x65+13*x66; x11+x12+x13+x14+x15+x16=20; x21+x22+x23+x24+x25+x26=30; x31+x32+x33+x34+x35+x36=50; x41+x42+x43+x44+x45+x46=40; x52+x53+x54+x55+x56=30; x64+x65+x66=30; x11+x21+x31+x41=30;

数学建模数学规划

数模第二阶段培训(数学规划) 例1 油品混合问题 一种汽油的特性可用两个指标来描述,其点火性用“辛烷比率”来描述,其挥发性用“蒸汽压”来描述。某石油炼制厂生产两种汽油,这两种汽油的特性及产量如表1所示 表1 某厂炼制的汽油特性 辛烷比率蒸汽压(10-2克/cm2)可供数量(万公升) 第一种汽油104 4 3 第二种汽油94 9 7 用这两种汽油可以合成航空汽油与车用汽油两种最终产品,其性能如表2所示 表2 航空汽油与车用汽油性能要求 辛烷最小比率最大蒸汽压(10-2克 /cm2)最大需要量(万公 升) 售价(万元/万 公升) 航空汽油102 5 2 1.2 车用汽油96 8 不限0.7 根据油品混合工艺知道,当两种汽油混合时,其产品汽油的蒸汽压及辛烷比率与其组成成分的体积及相应指标成正比。问该厂应如何混合油品才能获得最大收益? 例2企业季度生产计划问题 某厂甲、乙两种产品,第一季度的最大需求量及单位产品利润和每月的库存成本如表1所示。 表1 产品需求量、利润及库存成本 需求量利润 (未计库存成本) (元/单位产品) 每月库存成本(元/单位产品) 一月二月三月 甲产品250 540 700 3.0 0.2 乙产品180 150 700 4.5 0.3 生产这两种产品都必须经过由两道工序,分别使用A、B两类机器。A类机器有4台,B类机器有5台,每台机器每月运转180工时。生产单位甲产品需机器A0.9工时,机器B1.0工时;生产单位乙产品需机器A0.5工时,机器B0.75工时。 该厂仓库容量为100平方米,存贮每单位甲产品需占面积0.75平方米,每单位乙产品需占面积1.2平方米。该季度开始时无库存量,计划在本季度结束时甲、乙两种产品各库存40单位。分别求解以下两个问题:

数学建模整数规划

整数规划 前面介绍的线性规划问题中,只要求决策变量非负,也就是说决策变量可以取小数,然而在许多经济管理的实际问题中,决策变量只有取非负的整数才有实际意义。如果一个线性规划问题要求全部的决策变量都取整数,那么这样的线性规划问题称为全整数规划或纯整数规划问题。如果只要求一部分决策变量取整数,那么这样的线性规划问题称为混合整数规划问题。如果决策变量只能取0或者1,那么就称为0-1规划问题 整数规划在实际中的应用: 1. 指派问题: 某公司人事部门欲安排四个人去做四项不同的工作,每个人只能完成一项工作,一项工作只能由一个人完成。每个人完成各项工作所消耗的时间(单位:分钟)如下表所示, (2) 如果把(1)中的消耗时间数据看成创造效益的数据,那么应该如何指派,可以使得 总的效益最大? (3) 如果在(1)中再增加一项工作E ,甲 、乙、丙、丁四人完成工作E 的时间分别为 17,20,15,16分钟,那么应该指派这四个人干哪四项工作,可使得这四个总的消耗时间为最少? 解:(1) 引入0-1变量ij x ,并令? ??=项工作时个人不做第当第项工作时 个人去做第当第j i j i x ij 01, 于是这个分派问题的数学模型为: ?? ? ?? ? ?? ?? ? ?? ? ???====+++=+++=+++=+++=+++=+++=+++=+++++++++++ +++++++=4,3,2,1,4,3,2,1101111111119242017181516262027241828201920min 443424144333231342322212413121114443424134333231242322211413121144434241343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Z ij ,或 用管理运筹学2.0软件求解结果如下: **********************最优解如下************************* 目标函数最优值为 : 71

数学建模之规划问题

数学建模之规划问题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一、线性规划 1.简介 适用情况 用现有资源来安排生产,以取得最大经济效益的问题。如: (1)资源的合理利用 (2)投资的风险与利用问题 (3)合理下料问题 (4)合理配料问题 (5)运 输 问 题 (6)作物布局问题 (7)多周期生产平滑模型 (8)公交车调度安排 建立线性规划的条件 (1)要求解问题的目标函数能用数值指标来反映,且为线性函数; (2)要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述。 线性规划模型的构成 决策变量、目标函数、约束条件。 2、一般线性规划问题 数学标准形式: 目标函数: 1 max == ∑n j j j z c x 约束条件:1 ,1,2,...,,..0,1,2,...,.=?==???≥=?∑n ij j i j j a x b i m s t x j n matlab 标准形式: 3、可以转化为线性规划的问题 例:求解下列数学规划问题

解:作変量変换1||||,,1,2,3,4,22 +-= ==i i i i i x x x x u v i 并把新变量重新排序成一维变量[]1414, ,,, ,?? ==???? T u y u u v v v ,则可把模型转化为线性规划模型 其中:[]1,2,3,4,1,2,3,4;=T c 12,1,;2??=---??? ?T b 111111131 - - ?? ??= - -???? -1 -1 3??A 。 利用matlab 计算得最优解:12342,0,=-===x x x x 最优值z=2。 程序如下: 略 二、整数规划 1.简介 数学规划中的变量(部分或全部)限制为整数时称为整数规划。目前流行求解整数规划的方法一般适用于整数线性规划。 整数规划特点 1)原线性规划有最优解,当自变量限制为整数后,出现的情况有 ①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。 ②整数规划无可行解。 ③有可行解(存在最优解),但最优解值变差。 2)整数规划最优解不能按照实数最优解简单取整获得。 求解方法分类 (1)分枝定界法—可求纯或混合整数线性规划。 (2)隔平面法—可求纯或混合整数线性规划。 (3)隐枚举法—可求“0-1”整数规划。 (4)匈牙利法—解决指派问题。 (5)蒙特卡洛法—求解各种类型规划. 整数规划的应用模型 (1)固定费用的问题。 (2)指派问题。 (3)合理下料问题。 (4)流动推销员问题。 (5)生产与销售计划问题。

相关文档
相关文档 最新文档