文档库 最新最全的文档下载
当前位置:文档库 › 斯伦贝谢微电阻率microscope_hd_br

斯伦贝谢微电阻率microscope_hd_br

斯伦贝谢微电阻率microscope_hd_br
斯伦贝谢微电阻率microscope_hd_br

各类测井曲线名称(中英文对照)

测井曲线名称符号(常用) 单位符号单位符号名称 自然伽玛GR API 自然电位SP MV 毫伏 井径CAL cm 厘米 中子伽马NGR 冲洗带地层电阻率Rxo 深探测感应测井Ild 中探测感应测井Ilm 浅探测感应测井Ils 深双侧向电阻率测井Rd 浅双侧向电阻率测井Rs 微侧向电阻率测井RMLL 感应测井CON 声波时差AC 密度DEN g/cm3 中子CN v/v 孔隙度POR 冲洗带含水孔隙度PORF 渗透率PERM 毫达西 含水饱和度SW 冲洗带含水饱和度SXO 地层温度TEMP 有效孔隙度POR 泥浆滤液电阻率Rmf 地层水电阻率Rw 泥浆电阻率Rm 微梯度ML1或MIN 微电位ML2或MNO 补偿密度RHOB或DEN G/CM3 补偿中子CNL或NPHI 声波时差DT或AC US/M 微秒/米 深侧向电阻率LLD或RT OMM 欧姆米 浅双侧向电阻率LLS或RS OMM 欧姆米 微球电阻率MSFL或SFLU、RFOC 中感应电阻率ILM或RILM 深感应电阻率ILD或RILD 感应电导率CILD MMO 毫姆欧 PERM绝对渗透率,PIH油气有效渗透率,PIW水的有效渗透率。

测井符号英文名称中文名称 Rt true formation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率Ild deep investigate induction log 深探测感应测井Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log 深双侧向电阻率测井Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井 AC acoustic 声波时差 DEN density 密度 CN neutron 中子 GR natural gamma ray 自然伽马 SP spontaneous potential 自然电位 CAL borehole diameter 井径 K potassium 钾 TH thorium 钍 U uranium 铀 KTH gamma ray without uranium 无铀伽马 NGR neutron gamma ray 中子伽马 5700系列的测井项目及曲线名称 Star Imager 微电阻率扫描成像 CBIL 井周声波成像 MAC 多极阵列声波成像 MRIL 核磁共振成像 TBRT 薄层电阻率 DAC 阵列声波 DVRT 数字垂直测井 HDIP 六臂倾角 MPHI 核磁共振有效孔隙度 MBVM 可动流体体积 MBVI 束缚流体体积 MPERM 核磁共振渗透率 Echoes 标准回波数据 T2 Dist T2分布数据 TPOR 总孔隙度 BHTA声波幅度 BHTT 声波返回时间 Image DIP 图像的倾角 COMP AMP 纵波幅度 Shear AMP 横波幅度

斯伦贝谢旋转导向系统 Power-V 使用介绍

斯伦贝谢旋转导向系统Power-V 使用介绍 1 Power-V 简介和应用范围 Power-V是斯伦贝谢旋转导向系统PowerDrive家族中的一员。所谓旋转导向系统,是指让钻柱在旋转钻进过程中实现过去只有传统泥浆马达才能实现的准确增斜、稳斜、降斜或者纠方位功能,但相对于泥浆马达,PowerDrive有非常明显的优点。 旋转导向系统广泛用于使用泥浆马达进行滑动钻进时比较困难的深井、大斜度井、大位移井、水平井、分枝井(包括鱼刺井),以及易发生粘卡的情况。 2 旋转导向系统PowerDrive的优点 ⑴反映和降低了所钻井段的真正狗腿度,使井眼更加平滑。用泥浆马达打30m井段,滑动钻进15m,转动钻进15m,井斜角增加4°,得到平均狗腿度4°/30m。实际上,转钻15m井斜角几乎没有变化,这15m的实际狗腿度是零;而4°的井斜角变化是由滑钻15m产生的,这15m的实际狗腿度是 8°/30m。而用Power-V在同一设置下打出的每米都是同样均匀和平滑的,减少了井眼轨迹的不均匀度,从而减少了在起下钻和钻进过程中钻具实际所受的拉力和扭矩,减少了以后下套管和起下完井管串的难度。 ⑵使用Power-V钻出的井径很规则。使用传统泥浆马达在滑动井段的井径扩大很多,而转动井段的井径基本不扩大。这种井径的忽大忽小是井下事故的隐患,也不利于固井时水泥量的计算。 ⑶由于Power-V钻具组合中的所有部分都在不停的旋转,大大降低了卡钻的机会。使用传统泥浆马达在滑动钻进时除钻头外,其它钻具始终贴在下井壁上,容易造成卡钻。 ⑷在钻进过程中,由于Power-V组合中的所有钻具都在旋转,这有利于岩屑的搬移,大大减少了形成岩屑床的机会,从而更好的清洁井眼。这对于大斜度井、大位移井、水平井意义很大。 ⑸由于Power-V钻具组合一直在旋转,特别有利于水平井、大斜度井和3000m以下深井中钻压的传递,可以使用更高的钻压和转盘转速,有利于提高机械钻速。使用泥浆马达在大井斜的长裸眼段滑动钻进时送钻特别困难,经常是上部的钻杆已经被压弯了,而钻压还没有传递到钻头上,还常常引发随钻震击器下击,损害钻头寿命。 3 Power-V 组成部分和工作原理简介 Power-V主要有两个组成部分,它们分别是上端的Control Unit

普通电阻率测井

1地层倾角对普通电阻率测井的影响 汪宏年等于1999年发表文章“各向异性地层中电阻率测井的响应特征”,文章中利用模拟匹配算法给出了斜井眼中普通电阻率测井的快速正演模拟方法,系统研究了井眼倾角、地层厚度和地层各向异性等对普通电阻率测井的影响。对于水平各向异性无限厚的地层,井眼的倾角为θ,电位和梯度电极系的视电阻率值与地层或井眼倾角间的关系: (1)对于各向同性地层,由于各向异性系数=1,这时上式可简化为: (2)这说明各向同性地层中的视电阻率值与倾角无关。 文章中同时给出了A0.5M的电位电极系在两种不同模型上的正演计算结果: 第一个模型假定厚度分别为0.5,1.0,1.5,2.0,3.0和4.0m的单一地层位于均值的 围岩中;井眼倾角分别为0°,30°,60°和85°,用来研究地层的厚度、倾角变化以及地 层电阻率的各向异性对视电阻率测井曲线的影响。首先假定所有的地层均为各向同性地层条 件下的正演模拟结果,其中,中间目的层和上下围岩的电阻率分别是20Ω·m和1Ω·m。结果显示:在各向同性地层中,井眼倾角的变化对厚度明显大于测井仪器纵向分辨率的厚储 层的测井响应影响很小;但对于厚度较小的薄层,其视电阻率测井曲线受倾角变化的影响较 大。这是由于倾角的增加导致视厚度的增加,使薄层的响应变得与厚度类似。此外,倾角的 增加使地层的视厚度增大从而导致整个测井曲线变得更加光滑,但厚层中的视电阻率值并不 随倾角的变化而改变,这一现象与式(2)的预测结果一致。然后假定中间目的层为各向异 性地层,但围岩仍为各向同性地层情况下的正演模拟结果,中间目的层的纵横向电阻率分别 是20Ω·m和5Ω·m,围岩层的电阻率仍是1Ω·m。结果表明,随着倾角的增加,除了薄 储层上的视电阻率曲线的形态发生明显的变化外,厚层中的视电阻率值均明显增大,且厚层中间的视电阻率值与倾角的变化关系基本满足式(1)给出的结果。此外,地层的各向异性 使得测井曲线的形态变化更加复杂,在地层边界附近视电阻率曲线出现了较大的起伏,倾角较小时,这种特征很明显,但随着倾角的增加,这种现象逐渐消失。最后假定中间目的层和 围岩电阻率均为各向异性情况下的正演模拟结果。中间目的层的纵横向电阻率仍是20Ω·m

Petrochina Annual Meeting 8May 2012

斯伦贝谢金地伟业中石油服务汇报
柏险峰 斯伦贝谢金地伟业油田技术( 斯伦贝谢金地伟业油田技术(山东) 山东)公司

汇报内 容
斯伦贝谢金地伟业公司简介 斯伦贝谢金地伟业运行能力介绍 斯伦贝谢金地伟业在中石油的服务表现
2

公司概况
成立于2000年,初期主要业务为研发制造及销售 井眼轨迹测量仪器 公司位于山东省黄河三角洲地区的东营市开发区 目前主要业务
定向井,水平井钻井工程服务 o 随钻测量,随钻测井服务 o 研制,生产及销售MWD/LWD及电子单多点仪器
o
为国内最大规模民营专业定向井、水平井钻井、随钻测量及随钻测井 服务公司 2009年和斯伦贝谢合作成立合资公司,引入更先进的斯伦贝谢仪器装备、 研发技术,管理经验,提升公司仪器品牌 结合斯伦贝谢技术装备领先优势,为国内油田客户提供本地化服务
3

合资后的持续改进
成立合资公司后,斯伦贝谢金地伟业保留了原公司的基础架构和运作 模式,注重本地人才的培养,对自产设备的更新改造。增强本地化服 务的基础 斯伦贝谢引入先进的仪器装备、研发制造技术,管理经验,提升公司 品牌
注入主要管理人员 o 注入管理及作业流程 o 注入设备
o o
建立合资公司与斯伦贝谢的紧密联系
组织结构图 2012.1.1
4

资质与荣誉
公司的技术开发能力自 2005年开始被东营市及 山东省认可为高新技术 企业 公司实行现代化、规范 化的管理,已于2001年 顺利通过了 ISO9001:2000质量管 理体系认证及健康,安 全与环境体系认证 公司多次荣获客户颁发 良好业绩与表现证明 逐渐纳入斯伦贝谢运作 体系
5

斯伦贝谢公司基本专利布局及其发展

COMPANY STRATEGY 公司战略 专利权具有严格的地域性,要使一项新发明技术获得多国专利保护,就必须将该发明创造向多个国家申请专利。同一项发明创造在多个国家申请专利而产生的一组内容相同或基本相同的文件出版物,称为一个专利族。在每一专利族中,向第一国申请专利的文件出版物称为基本专利。目前,全球范围内约2/3的专利申请是申请人为了在多个国家和地区获得专利保护,就基本专利的技术内容向多个国家和地区进行专利申请。 全世界每年90%~95%的发明创造成果能在专利文献中查到,基本专利申请状况真实体现了企业技术发展重点和技术实力,是研究企业技术发展策略的重要手段。 在2007年《财富》世界500强企业排名中,斯伦贝谢(Schlumberger )公司在油气设备和服务领域利 润排名第一,营业收入排名第二。本文以德温特专利数据库(Derwent Innovations Index,DII)申请日截至2007年底的数据为依据,通过对申请日分布、申请人分布、德温特专利分布等展开分析,同时结合企业的市场表现、科研投入等信息,探讨斯伦贝谢公司基本专利策略,希望相关企业能够从中得到启示与借鉴。 一、斯伦贝谢公司 基本专利布局和特点分析 截至2007年底,斯伦贝谢公司拥有的基本专利数为3397件,其上游基本专利拥有量占世界石油上游基本专利的3.4%。检索结果显示,斯伦贝谢公司基本专利具有以下特点。 斯伦贝谢公司基本专利布局及其发展趋势 张运东 李春新 赵 星* (中国石油集团经济技术研究院) * 本文合作者还包括万勇、张丽。 摘 要 斯伦贝谢公司是全球最大的跨国石油技术服务公司,截至2007年底,该公司在石油上游主要技术领域拥有基本专利3397件,占全球石油上游基本专利的3.4%。其中在测井领域,该公司基本专 利拥有量占全球测井基本专利的16.8%;在美国和英国的分支机构申请的基本专利占公司基本专利的 65.5%。斯伦贝谢公司基本专利的11.9%是与其他机构或企业合作申请的,共同申请是该公司专利申请 的重要方式之一。斯伦贝谢公司的专利申请以市场为导向进行重点布局。欧洲和北美既是该公司的市场重点,也是专利申请的重点地区。1996年以来,斯伦贝谢公司对科研的投入不断增加,对科研成果的知识产权保护力度不断加强,其基本专利年均增长率达到21%,在钻井、采油、测井、物探领域的基本专利申请量几乎每年都上一个新台阶。其中,钻井领域技术研发重点为旋转钻井井控设备;测井领域研发重点为电测井、随钻测井和声波测井;采油领域的研发重点为完井/增产。 关键词 斯伦贝谢 基本专利 布局 技术研发 发展策略

LandingtheBigone-打捞的艺术-斯伦贝谢

Landing the Big one - 打捞的艺术
司钻通常将遗留在井下的工具及设备称为“落鱼” 。实际上,这 些物体被错误地遗失于地表以下几千英尺。 自油田开发早期, 从井筒 移除这些物体对司钻而言一直是一个极大的挑战。
Enos Johnson
美国新墨西哥州 Hobbs
Jimmy Land Mark Lee
在油田上,落鱼指留在井筒并且阻 碍后续作业的任何物体。这个定义广义 上涵盖了各种钻井、测井和生产设备, 包括钻头、钻柱、测井工具、手动工具 或可能会丢失、损坏、卡住或遗落于井 眼中的任何其他废弃物。当废弃物或硬 件阻塞了后续作业的通路,这些落物必 须首先通过称为打捞的作业从井眼中移 除。 打捞这个词起源于早期的绳式顿钻 钻井时代,这种方式通过连接着弹簧钻 杆上的缆绳上下反复升降一个比较重的 钻头去凿开岩石,以钻出新井筒。当缆 绳断裂时,司钻在弹簧钻杆上挂一段新 缆绳,下入一个临时准备的大钩,试图 从井底收回断裂的缆绳和钻头。从事地 下废弃物回收工艺的专家被称为落鱼打 捞者。多年来,他们的工作已经备受追 捧,并且打捞工艺已经填补了油井服务 业的空白。 所有设备都可能会故障、遇卡、待 在一口井生命周期内的任何时间都可能 需要打捞作业。钻井阶段,大多数打捞 工作是意想不到的,通常是由机械故障 或钻柱遇卡造成的。卡钻也可能在电缆 测井、试井作业期间发生。随后,在完 包括射孔枪遇卡、过早坐封封隔器或砾 石充填筛管失败。井投产后,在修井、
弃井过程中, 打捞作业可能被规划为 修井、 更换或回收井下设备及管柱整 个过程的有机组成。 在许多油田, 修 井过程需要清洗或收回常年产油而 砂塞的油管, 因此在作业一开始就需 要实施打捞工作。 弃井过程中, 作业 公司们封堵油井前, 往往试图打捞井 下管柱、 泵和完井设备。 甚至打捞设 备也可能遇卡, 那么就需要改进原打 捞策略。 似乎油田上没有哪项作业能 免除打捞的可能性。 从上世纪 90 年代中期以来的统 计结果表明, 打捞作业占全球钻井成 本的 25%[1]。如今,采用其他更具成 本效益的选择常可避免或规避打捞。 例如, 现代钻井技术如旋转导向, 通 过影响用于决定是否要打捞, 是否购 买称之为落鱼的被卡设备, 是否侧钻 或是否弃井(J&A)的经济性评价, 实现了打捞策略的转变。 每次打捞情形均是独一无二的: 连续油管或电缆, 且每次情况都面临 不同的环境和问题, 落鱼回收的解决 方案必须与之相匹配。 在这个范围宽 泛的话题中, 本文主要讨论在钻井过 程中采用的打捞技术; 对这些技术进 续油管、 电缆测井及修井应用。 本文 概述了可能导致设备落井的常见过
美国德克萨斯州休斯顿
Robert Robertson
挪威斯塔万格
《油田新新术》 (2012/2013 冬季刊) :24 卷,第 4 期。 ?斯伦贝谢 2013 年版权所有。 在本文编写过程中得到以下人员的帮助,谨表谢 意:挪威斯塔万格的 Torodd Solheim 及美国休斯顿 的 Eric Wilshusen。 FPIT 为斯伦贝谢公司商标。
更换或需要从井筒回收。从钻井到弃井, 计划内或计划外、裸眼井或套管井、
井阶段,各种各样的问题可能阻碍作业, 行了各种改进, 以适用于套管井、 连
26
油田新技术

压裂泵阀箱 制造标准

前言 压裂车用于石油油井的压裂,陶粒砂、压裂液等介质通过液力端产生高压使地层瞬 间开裂,同时介质渗入裂缝中使原油溢出,液力端总成是压裂车上一重要易损件是石油 油井维护和提高油产量的重要设备。 本标准结合了国外(斯伦贝谢,哈里伯顿公司的技术规范,具体阐述了液力端相关 的加工技术,有利于该类产品的技术指导。 一、压裂泵阀箱锻件: 1.(斯伦贝谢;N14,规范号506562000、N22,规范号507643000) 哈里伯顿:4330V改型,规范号D0030175-C版,包括锻造要求,化学性能,机械性能等 要求。 2. 4330V改型钢阀箱锻件热处理:70.94191-D版。 3. 关键部位湿磁粉探伤:70.94154-G版。 4. 标准部位湿磁粉探伤检验:70.94158-J版。 5. 阀箱预应力:278.87558-O版。 二、加工流程: 1.粗铣面—超声波探伤--粗加工—热处理—抛丸清理—渗透探伤---精加工--- 磁粉探伤---试压---内腔喷丸处理---外形抛丸---(内腔淡化处理)--磁粉探伤—三坐 标检测—装配—油漆—包装。 三、液力端阀箱规格型号: 1. TG06---300泵-3.75”。TI06---300-4”、3ZB70-295----300-4.5”TH06---300-5”。 2. HT400- 3.375”. HT400-4”,HT400- 4.5”. 3. TWS600S-2.5”,TWS600S-3”,TWS600S-3.5”,TWS600S-4”TWS600S- 4.5”. 4. QWS1000S-3”,QWS1000S-3.5”. 5. TWS SPM2000-4.5”,TWS SPM2000-5”,QWS SPM2000-4”,QWS SPM2000-4.5”, QWS SPM2000-5”. 6. GD2250SGWS-4.5”GD2250SGWS-5”GD2500SGWS-4”GD2500SGWS-4.5”GD300-4.5” 7.5ZB2500-4”,5ZB2500-4.5”,5ZB2800-3.75”,5ZB2800-4”,5ZB2800-4.5”,5ZB2800-5” 8. OPI1800-4”,OPI1800-4.5”,OPI1800-5”. 9. RR1500-4”,RR1500-3.75”. 10. JMAC2250-4.5”Y型,FMC2700-4” 四、动力端: 300泵, 600S, 5ZB2500, 5ZB2800, 五、井下工具,井口保护器。内喷丸设备等。

斯伦贝谢的数字化转型经验

与贝克休斯强调独立的数字化业务板块和全产业链覆盖、侧重设备运营不同,斯伦贝谢的数字化转型,一是强调数据、管理系统和硬件设备的有效组合,以实现更高水平的技术一体化,重心在上游勘探开发生产的各个专业领域;二是强调数字技术赋能生产作业,提高作业效率、减少非生产时间、降低综合成本。 在组织架构方面,斯伦贝谢油藏描述、钻井、卡麦龙和生产四大业务集团负责搭建四个专业领域技术平台,将各业务集团内部的硬件设备、软件应用程序、专业领域知识和数字化技术组合在一起,向客户提供无缝衔接的一体化产品和服务。 斯伦贝谢软件一体化解决方案部门是数字化技术和软件开发的主体,成立35年来推出了大量专业应用程序、信息管理系统和IT设备,过去5年加速吸收数字化技术最新成果。2014年,斯伦贝谢在美国加州门罗公园建立斯伦贝谢软件技术创新中心;2016年,美国得州舒格兰工业互联网中心开始侧重云计算、大数据分析、工业物联网、自动化、网络安全领域的平台架构和基础设施架构研发;2017年,位于美国马萨诸塞州剑桥市的斯伦贝谢道尔研究所(Schlumberger-Doll Research Center)设立机器人部门,支持系统自动化业务。 2017年,斯伦贝谢将整个公司的技术研发与设备制造力量重组为勘探与开发、建井、非常规完井、生产管理四个专业领域技术平台(基本上与四大业务集团对应),首先完成各个专业领域内部的研发一体化,推动数字化技术与硬件设备制造、软件开发和专业领域知识一起为专业领域技术系统服务,实现从单个技术创新到技术系统创新的转变。与此同时,斯伦贝谢推出DELFI勘探开发认知环境(DELFI Cognitive E&P Environment),为四个专业领域技术平台提供数字化技术支持;逐步建立数字化硬件框架,为硬件设备提供一套清晰的设计准则,使硬件设备产品能够更好地发挥数字化技术优势。DELFI环境和数字化硬件框架作为统一职能管理平台的一部分,支持各“业务—地域”单元的生产经营。 01专注上游业务专业领域内部创新 斯伦贝谢数字化转型的特点是分步骤的小范围整合,具体表现在业务集团内部努力将彼此独立的数字化技术、硬件设备、软件应用程序和专业领域知识有机组合成一体化专业领域技术系统,即勘探与开发、建井、非常规完井、生产管理四个专业领域技术平台。斯伦贝谢认为精心设计的平台架构既能够促进各个产品和服务共同提高系统绩效,又能够利用全部数据推动系统的持续改进,还能够不断提高系统的自动化水平。

测井曲线解释

1.常用测井曲线名及简写: 测井符号英文名称中文名称 Rt true formation resistivity. 地层真电阻率 Rxoflushed zone formation resistivity冲洗带地层电阻率 Ilddeep investigate induction log深探测感应测井 Ilmmedium investigate induction log中探测感应测井 Ilsshallow investigate induction log 浅探测感应测井 Rd deep investigate double lateral resistivity log 深双侧向电阻率测井Rs shallow investigate double lateral resistivity log浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井 CONinduction log 感应测井 AC acoustic声波时差 DENdensity 密度 CN neutron 中子 GR natural gamma ray 自然伽马 SP spontaneous potential 自然电位 CALborehole diameter 井径 Kpotassium 钾 TH thorium 钍 Uuranium 铀 KTHgamma ray without uranium 无铀伽马 NGRneutron gamma ray 中子伽马 5700系列的测井项目及曲线名称 Star Imager 微电阻率扫描成像 CBIL井周声波成像 MAC 多极阵列声波成像 MRIL核磁共振成像 TBRT薄层电阻率 DAC 阵列声波 DVRT数字垂直测井 HDIP六臂倾角

一井双泵的安装程序设计

一井双泵的安装程序设计 装备电泵分公司

目录 第一张-------------------------------------------------------- 2简述 第二章-------------------------------------------------------- 2 1.Y型换向阀--------------------------------------------------------- 2 2.用Y型换向阀并联的双泵机组效果图----------------------------------- 3 3. 导流罩------------------------------------------------------------- 5第三章 1.机组数据------------------------------------------------------------------------------------------------- 5 2. 双电潜泵安装程序设计-------------------------------------------------------------------------------- 7 第四章 1.电缆下放程序设计-------------------------------------------------------------- 9 2.电缆的保护---------------------------------------------------------------------------------------------- 9 3.小扁电缆保护器--------------------------------------------------------- 10 4.电泵机组手铐----------------------------------------------------------------------------------------- 10 第五章作业中的关键点 1.封隔器的电缆连接------------------------------------------------------------------------------------- 11 2.安装电缆保护罩---------------------------------------------------------------------------------------- 12 3.油管挂处的电缆连接--------------------------------------------------------------------------------- 12 4.单井作业时间长、作业难度大---------------------------------------------------------------------- 12 小结---------------------------------------------------------- 13

测井曲线一览表

测井符号英文名称中文名称 Rt true formation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井 Rd deep investigate double lateral resistivity log 深双侧向电阻率测井 Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井 CON induction log 感应测井 AC acoustic 声波时差 DEN density 密度 CN neutron 中子 GR natural gamma ray 自然伽马 SP spontaneous potential 自然电位 CAL borehole diameter 井径 K potassium 钾 TH thorium 钍 U uranium 铀 KTH gamma ray without uranium 无铀伽马 NGR neutron gamma ray 中子伽马 --------------------------------------------------- GRSL—能谱自然伽马 POR 孔隙度 NEWSAND PORW 含水孔隙度 NEWSAND PORF 冲洗带含水孔隙度 NEWSAND PORT 总孔隙度 NEWSAND PORX 流体孔隙度 NEWSAND PORH 油气重量 NEWSAND BULK 出砂指数 NEWSAND PERM 渗透率 NEWSAND SW 含水饱和度 NEWSAND SH 泥质含量 NEWSAND CALO 井径差值 NEWSAND CL 粘土含量 NEWSAND DHY 残余烃密度 NEWSAND SXO 冲洗带含水饱和度 NEWSAND DA 第一判别向量的判别函数 NEWSAND DB 第二判别向量的判别函数 NEWSAND DAB 综合判别函数 NEWSAND CI 煤层标志 NEWSAND

常见的几种电阻率测井方法

第七章 普通电阻率测井 普通电阻率测井是地球物理测井中最基本最常用的测井方法,它根据岩石导电性的差别,测量地层的电阻率,在井内研究钻井地质剖面。 岩石电阻率与岩性、储油物性、和含油性有着密切的关系。普通电阻率测井主要任务是根据测量的岩层电阻率,来判断岩性,划分油气水曾研究储集层的含油性渗透性,和孔隙度。 普通电阻率测井包括梯度电极系、电位电极系微电极测井。本章先简要讨论岩石电阻率的影响因素,然后介绍电阻率测井的基本原理,曲线特点及应用。 第一节 岩石电阻率与岩性储油物性和含油物性的关系 各种岩石具有不同的导电能力,岩石的导电能力可用电阻率来表示。由物理学可知,对均匀材料的导体其电阻率为: S L R r 其中L :导体长度,S :导体的横截面积,R :电阻率仅与材料性质有关 由上式可以看出,导体的电阻不仅和导体的材料有关,而且和导体的长度、横截面积有关。 从研究倒替性质的角度来说,测量电阻这个物理量显然是不确切的,因此电阻率测井方法测量的是地层的电阻率,而不是电阻。 下面分别讨论一下影响岩石电阻率的各种因素: 一 岩石电阻率与岩石的关系 按导电机理的不同,岩石可分成两大类,离子导电的岩石很电子导电的岩石,前者主要靠连同孔隙中所含的溶液的正负离子导电;后者靠组成岩石颗粒本身的自由电子导电。 对于离子导电的岩石,其电阻率的大小主要取决于岩石孔隙中所含溶液的性质,溶液的浓度和含量等(如砂岩、页岩等),虽然其造岩矿物的自由电子也可以传导电流,但相对于离子导电来说是次要的,因此沉积岩主要靠离子导电,其电阻率比较底。 对于电子导电的岩石,其电阻率主要由所含导电矿物的性质和含量来决定。大部分火成岩(如玄武岩、花岗岩等)非常致密坚硬不含地层水,主要靠造岩矿物中少量的自由电子导电,所以电阻率都很高。如果火成岩含有较多的金属矿物,由于金属矿物自由电子很多,这种火成岩电阻率就比较底。 二 岩石电阻率与地层水性质的关系 沉积岩电阻率主要由孔隙溶液(即地层水)的电阻率决定,所以研究沉积岩的电阻率必须首先研究影响地层水电阻率的因素。 地层水的电阻率,取决于其溶解岩的化学成分,溶液含盐浓度和地层水的温度,电阻率与含盐浓度,及地层水的温度成正比,溶解盐的电离度越大,离子价越高,迁移率越大,地层水电阻率越小。也就是说岩石电阻率与地层水矿化度温度之间存在正比关系。 三 含水岩石电阻率与孔隙度的关系 沉积岩的导电能力主要取决于单位体积岩石中,孔隙体积(孔隙度)和地层水电阻率,孔隙度越大,地层水的电阻率越低,岩石电阻率就越低 实验证明,对于沉积岩

斯伦贝谢POWER-V

【机械仪表】 斯伦贝谢旋转导向系统 Power-V 简介 1 Power-V 简介和应用范围 Power-V是斯伦贝谢旋转导向系统PowerDrive家族中的一员。所谓旋转导向系统,是指让钻柱在旋转钻进过程中实现过去只有传统泥浆马达才能实现的准确增斜、稳斜、降斜或者纠方位功能,但相对于泥浆马达,PowerDrive有非常明显的优点。 旋转导向系统广泛用于使用泥浆马达进行滑动钻进时比较困难的深井、大斜度井、大位移井、水平井、分枝井(包括鱼刺井),以及易发生粘卡的情况。 2 旋转导向系统PowerDrive的优点 ⑴反映和降低了所钻井段的真正狗腿度,使井眼更加平滑。用泥浆马达打30m井段,滑动钻进15m,转动钻进15m,井斜角增加4°,得到平均狗腿度4°/30m。实际上,转钻15m井斜角几乎没有变化,这15m的实际狗腿度是零;而4°的井斜角变化是由滑钻15m产生的,这15m的实际狗腿度是8°/30m。而用Power-V在同一设置下打出的每米都是同样均匀和平滑的,减少了井眼轨迹的不均匀度,从而减少了在起下钻和钻进过程中钻具实际所受的拉力和扭矩,减少了以后下套管和起下完井管串的难度。 ⑵使用Power-V钻出的井径很规则。使用传统泥浆马达在滑动井段的井径扩大很多,而转动井段的井径基本不扩大。这种井径的忽大忽小是井下事故的隐患,也不利于固井时水泥量的计算。 ⑶由于Power-V钻具组合中的所有部分都在不停的旋转,大大降低了卡钻的机会。使用传统泥浆马达在滑动钻进时除钻头外,其它钻具始终贴在下井壁上,容易造成卡钻。 ⑷在钻进过程中,由于Power-V组合中的所有钻具都在旋转,这有利于岩屑的搬移,大大减少了形成岩屑床的机会,从而更好的清洁井眼。这对于大斜度井、大位移井、水平井意义很大。 ⑸由于Power-V钻具组合一直在旋转,特别有利于水平井、大斜度井和3000m以下深井中钻压的传递,可以使用更高的钻压和转盘转速,有利于提高机械钻速。使用泥浆马达在大井斜的长裸眼段滑动钻进时送钻特别困难,经常是上部的钻杆已经被压弯了,而钻压还没有传递到钻头上,还常常引发随钻震击器下击,损害钻头寿命。 3 Power-V 组成部分和工作原理简介 Power-V主要有两个组成部分,它们分别是上端的Control Unit (电子控制部分,简称CU) 和下端的Bias Unit (机械部分,简称BU)。在两者中间还有一个辅助部分Extension Sub(加长短接,简称ES) 3.1 电子控制部分CU CU是Power-V的指挥中枢,它内部有泥浆驱动的发电机,还有陀螺、钻柱转速传感器、流量变化传感器、震动传感器、温度传感器以及电池控制的时钟等等。它可以独立于外面的钻铤而旋转或者静止不转。 工作原理:开泵后,发电机发电,陀螺测量到井底的井斜角和方位角(即高边),然后按照地面工程师的要求把其内部的电子控制部分固定在某一个方位上(即高边工具面角),从而实现无论钻柱如何旋转,CU内部的控制轴始终对准在需要的方位上,这个方位加上一个校对值后就是地面

地层微电阻率扫描成像测井在识别裂缝方面的应用

地层微电阻率扫描成像测井在识别 裂缝方面的应用 目录 摘要 ............................. 错误!未定义书签。 1. 地层微电阻率扫描成像测井简介?3 1.1电极排列及测量原理........ 错误!未定义书签。 1.2全井眼地层微电阻率扫描成像测井(FMI)错误!未定 义书签。 2.利用地层微电阻率成像测井识别裂缝错误!未定义书签。 2.1. 天然裂缝................. 错误!未定义书签。 2.1.1非构造裂缝............ 错误!未定义书签。 2.1.2构造裂缝?错误!未定义书签。 2.2钻井诱生裂缝(诱导裂缝) .... 错误!未定义书签。结论?错误!未定义书签。 参考文献?错误!未定义书签。

摘要 测井技术是油气勘探的“眼睛”。中国的隐蔽性油气藏多,客观要求这双眼睛特别明亮、敏锐,可是常规测井技术只能对地层性质做大致的划分,精度不够。需要一种新的测井手段,就是成像测井。成像测井(imaging logging)是根据钻孔中地球物理场的观测,对井壁和井周围物体进行物理参数成像的方法。广义地说,成像测井应包括井壁成像、井边成像和井间成像。井壁成像测井在技术上最成熟,包括井壁声波成像和地层微电阻率扫描成像。井边成像主要是电阻率成像,所用的方法为方位侧向测井和阵列感应测井。井间成像包括声波、电磁波和电阻率成像,在工程勘察中已得到比较广泛的应用,在石油勘探中也已获得一些成功的实例。这种技术采集信息多,精度高,不受干扰,能准确确定地层的真正电阻率,是解决复杂储层测井评价的有力手段。 地面系统综合化、便携化、网络化。未来的地面系统要具有多种作业功能,不仅可以挂接成像测井仪器和常规测井仪器进行裸眼井测井,还能挂接生产测井、测试、射孔、取芯等工具进行套管井测井,满足全系列测井服务的要求。 井下仪器集成化、高分辨、深探测、高可靠、高时效、低成本。井下仪器测量探头阵列化,变单点测量为阵列测量以适应地层非均质

主要测井曲线及其含义

主要测井曲线及其含义

自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。 ③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,

二维电阻率成像的有限元解法

岩石力学与工程学报 CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING 1999年 第18卷 第3期 Vol.18 No.3 1999 二维电阻率成像的有限元解法* 底青云 王妙月 摘要 为了研究电流线追踪电阻率成像的可靠性, 首先开展了二维电阻率成像的有限元方法研究, 在传统有限元成像的基础上,做了三方面的研究工作: 一, 推导了有限元反演方程, 从理论上对比了有限元方法和电流线追踪方法获得反演系数矩阵元素的优缺点; 二, 采用分块压缩的方式求反演系数, 节省计算机内存和计算机时间; 三, 用改进的塞德尔方法快速求解反演方程。 从试算的数值模型实例来看, 结果比较可靠。 关键词 有限元, 电阻率成像 分类号 O242.1 TWO DIMENSION RESISTIVITY TOMOGRAPHY USING THE FINITE ELEMENT METHOD Di Qingyun Wang Miaoyue (Institute of Geophysics, The Chinese Academy of Sciences, Beijing 100101) Abstract In order to verify the reliability of resistivity tomography by tracing the electric current ray, the research of 2D resistivity tomography using the finite element method is completed. The work is done from three aspects. First, the reverse FEM equations with artificial boundary terms are derived, and their advantages and shortages are pointed out compared with the method of tracing electric current ray. Second, through solving the reversed coefficient using the method of section by section and using the sparse and symetrial property of the coefficient, the computing time and computer memory are saved. At last, the reverse equations are solved by the improved Gauss-Sadal iteration method. The results of model simulation are much reliable. Key words FEM, resistivity tomography 1 引 言 直流电法勘探一直是资源勘探、水文工程、地质勘察以及地下埋设物调查的一种有效方法[1,2]。反演求解中最常用的方法有一维自动反演;对于二维地电结构主要是采用有限元法、有限差分法和边界元法等技术进行模拟分析;对三维地电结构的求解

测井曲线代码一览表

lld Deep Investigation Log 是深侧向测井 lls Shallow Investigation Log 是浅侧向测井 msfl Microspherical Focused Log 是微球形聚焦测井 ild 是深感应测井 ils 是浅感应测井 ilm 是中感应测井 上述这三个最后一个字母分别是d代表deep,就是深;s代表shallow,就是浅;m代表middle,就是中的意思。il是是induction log ,就是感应测井的意思 sflu 是球形聚焦电阻率测井 pef 是光电吸收截面指数 rhob 是岩性密度测井 nphi?这个不知道,是不是phin,这个是中子孔隙度测井,呵呵! cali 这个是井径测井 bs 这个也不是很清楚。 其实我倒是觉得写成大写大家更好认一点,因为这些本来就是英文缩写的大写字母,在表头里往往出现的是小写,所以让人很费解. 测井曲线代码一览表 常用测井曲线名称 Rt true formation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log 深双侧向电阻率测井 Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井 CON induction log 感应测井 AC acoustic 声波时差 DEN density 密度 CN neutron 中子 GR natural gamma ray 自然伽马 SP spontaneous potential 自然电位 CAL borehole diameter 井径 K potassium 钾 TH thorium 钍 U uranium 铀

相关文档
相关文档 最新文档