文档库 最新最全的文档下载
当前位置:文档库 › 变胞机构的自由度及形态变化分析

变胞机构的自由度及形态变化分析

变胞机构的自由度及形态变化分析
变胞机构的自由度及形态变化分析

变胞机构的自由度及形态变化分析

摘要:综述了变胞机构自由度的计算方法和变胞过程的矩阵描述理论。在自由度计算中运用了基于约束的螺旋求解法;在变胞过程的矩阵描述中介绍了邻接矩阵、变胞源机构与变胞子机构、变胞源矩阵与变胞子矩阵的概念,引入了变胞方程以及两条修正规则,阐明了矩阵法在变胞机构变胞过程中的应用过程,并通过实例分析了这两种理论。

关键词:变胞;自由度;矩阵描述

0 前言

机构是机器的组成部分,它将输入的运动或力由一种形式转化为另一种形式。对于传统机构,其在运动和力的传递过程中有效构件数及自由度均不发生变化。但近年来研究的一类新型机构,它们在一定条件下却可以改变自身的有效构件数或自由度,从而使得对于同一输入产生多种输出,拓宽了机构的应用范围,这类机构称为变胞机构。变胞机构在当今有着广泛运用,如李威等人发明的用于铝合金汽车轮毂模具修理中的快速夹紧装置[1](图1)、北京理工大学高枫等人开发的陆空两栖球形变胞机器人[2](图2)以及伦敦大学国王学院研制的变胞手等[3](图3)。

图1 基于变胞原理的快速夹紧装置图2 陆空两栖球形变胞机器人

图3 伦敦大学国王学院研制的变胞手

鉴于变胞机构的广阔应用前景,本文对变胞机构的有关理论进行了综述,主要包括变胞机构的自由度计算以及变胞机构的形态变化分析。

1 变胞机构的自由度计算

常见的变胞机构大多为三维空间机构,对于空间机构自由度的计算,最简单有效的方法是约束螺旋求解法,计算公式为[4]:

?υ-++--=∑=g

i i f g n d M 1

)1((1.1)

这里M 表示机构的自由度,d 表示机构的阶数(λ-=6d ,λ表示机构的公共约束数),

n 表示包括机架的构件数目,g 表示运动副的数目,i f 表示第i 个运动副的自由度,υ表示

多环并联机构在去除公共约束因素后的冗余约束数目,?表示机构中存在的局部自由度。

图4 共点球面五杆变胞机构 图5 共点球面四杆变胞机构 图4所示是一共点球面五杆变胞机构[5],图中的数字1~5分别表示空间中的5根杆,j i ,$(5,4,3,2,1,=j i )表示连接第i 根杆与第j 根杆的转动副,5个转动副的轴线相交于球心O 。以O 为原点,x 轴沿5,1$轴线,z 轴沿竖直方向建立坐标系Oxyz ,则5个转动副对应的螺旋可表示为:

)000;(:$1112,1c b a )000;(:$2223,2c b a )000;(:$3334,3c b a )000;(:$4445,4c b a )000;001(:$5,1

则相应地存在3个反螺旋:

)000;001(:$1r )000;010(:$2r )000;1

00(:$3r 从反螺旋可以看出,机构存在沿着z y x ,,三个方向的移动公共约束,即3=λ,故机构属于三阶螺旋系,此外0==?υ,由公式(1.1)计算自由度25)155(3=+--?=M 。

在一定条件下,杆4与杆5可固连在一起,从而形成图5所示的共点球面四杆变胞机构,变胞后的4个转动副对应的螺旋可表示为:

)000;(:$'1'1'12,1c b a )000;(:$'2'2'23,2c b a )000;(:$'3'3'35,4c b a )000;001(:$5,1

易知变胞后的机构仍具有与变胞前机构相同的3个反螺旋r

1$、r

2$、r 3$,变胞后机构仍属于

三阶螺旋系,此外仍有0==?υ,自由度14)144(3=+--?=M

通过上述分析可以发现:该球面变胞机构在变胞前后有效构件数和自由度均发生了变化。

2 变胞机构变胞过程的矩阵描述

在研究变胞机构的特征时,一个重要的工具是邻接矩阵,其定义如下[6]:

n n j i d D ?=][,

其中,n 为构件的数目。邻接矩阵中的每一行和每一列均对应一个构件,当构件i 与构件j 之间由运动副直接连接时,1,,==i j j i d d ;当构件i 与构件j 之间没有运动副直接连接时,0,,==i j j i d d ;对应构件与构件自身相连的矩阵元素被赋予零值,即当j i =时,0,=j i d 。

以图4为例,由于机构中具有5个构件,故邻接矩阵为5×5的方阵。因为杆1与杆2、杆2与杆3、杆3与杆4、杆4与杆5、杆5与杆1之间由转动副直接连接,故邻接矩阵中2,1d 、

1,2d 、3,2d 、2,3d 、4,3d 、3,4d 、5,4d 、4,5d 、1,5d 、5,1d 均取1,其它元素取0,得到对应

的邻接矩阵:

???

????

?

????????=010011010001010

00101100100A

当机构发生变胞转化为图5所示的形态后,其对应的邻接矩阵变为:

?????

????

???=01

01

1010010110101A 由于图5对应的球面四杆机构是由图4对应的球面五杆机构转化而来,因此我们称图5的球面五杆机构是变胞源机构,其对应的邻接矩阵0A 是变胞源矩阵;而图4的球面四杆机构是变胞子机构,其对应的邻接矩阵是变胞子矩阵[7]。显然,在球面五杆机构的基础上增加不同的连接关系将得到不同的变胞子机构(如将球面五杆机构中的杆1与杆3相连将得到图6所示的变胞子机构,其对应的邻接矩阵为:

??

??

?

?????=011101110'1A

它是不同于图5所示的球面四杆机构的)。

图6 共点球面五杆变胞机构的另一种变胞子机构

变胞源矩阵与变胞子矩阵之间的转化关系可以用EU 矩阵组来实现,即

T j i j j i j U E A U E A )()(,0,1=(2.1)

式(2.1

)称为变胞机构的变胞方程,用于描述变胞源矩阵到变胞子矩阵的变胞过程。其中

矩阵j i U ,用于将第j 个构件上的连接关系转移到第i 个构件上,矩阵j E 用于消去变胞合并后的构件j ,前乘j i j U E ,表示对变胞源矩阵0A 进行行操作,后乘T j i j U E )(,表示对变胞源矩阵

0A 进行列操作[8]。

仍以图4到图5的变胞过程为例,当将杆4与杆5相连时,杆5与周围各杆的连接关系将被转移到杆4上,因此需要将变胞源矩阵0A 中第五行和第五列的元素对应加到第四行和第四列上,故

???

????

?

????????=1000011000001000001000001

5

,4U

容易看出5,4U 是将五阶单位矩阵的第五行加到第四行变化而来。

连接关系转移后,杆5将不复存在,因而需要将邻接矩阵中表示杆5连接关系的第五行和第五列删除,故

?????

????

???=01

000

0010000010000015E 容易看出5E 是在四阶单位矩阵中加入第五列全零列变化而来。 将5,4U 、5E 代入变胞方程(2.1)得:

?????

????

???=21

01

10100101

1010)()(5,4505,45T U E A U E 结果发现经过变胞方程计算得到的初步结果与变胞子矩阵1A 并不相等,差异在于矩阵中出现了除0、1以外的其它元素(即第四行第四列的元素2),出现这种情况的原因是杆5与杆4本来就是直接相连的,当进行EU 矩阵组计算时,连接关系的合并导致杆4与自身连接关系的显化。因此为了使得变胞方程成立,需要引入如下的修正规则[9]:

修正规则I :每进行一轮EU 矩阵组计算后,若邻接矩阵元素中出现2,则将其全部以0覆

盖。

经过修正规则I 修正的结果将与变胞子矩阵1A 完全相同。

为了进一步完善变胞方程和加深对它的理解,再以图4到图6的变胞过程为例进行说明。当将杆1与杆3相连时,杆3与周围各杆的连接关系将被转移到杆1上,因此需要将变胞源矩阵0A 中第三行和第三列的元素对应加到第一行和第一列上,故

???

????

?

????????=100000100000100

0001000101

3,1U

容易看出3,1U 是将五阶单位矩阵的第三行加到第一行变化而来。

连接关系转移后,杆3将不复存在,因而需要将邻接矩阵中表示杆3连接关系的第三行和第三列删除,故

?????

????

???=10

000

0100000010000013E 容易看出3E 是在四阶单位矩阵中加入第三列全零列变化而来。 将3,1U 、3E 代入变胞方程(2.1)得:

?????

?????????????????

???=01

01

100100001100

01

01

100100021120)()(3,1303,13T

U E A U E 计算后经过修正规则I 修正的邻接矩阵中第二行和第二列的元素全为0,这是因为为了实现杆1与杆3的合并,杆2将与杆1、杆3连成一体,即杆2被杆1和杆3吞并。因此为使得变胞方程成立,还需添加如下的修正规则:

修正规则II :每进行一轮EU 矩阵组计算后,若邻接矩阵中出现全零行和全零列,则将其删除。

再经过修正规则II 修正的结果将与变胞子矩阵'

1A 完全相同。

当变胞机构出现连续多次变胞时,反复套用变胞方程以及两条修正规则,可以很好的贴

合变胞过程,但要格外注意变胞过程中邻接矩阵的行列与构件的对应关系。

图7 礼物包装纸盒 图8 半折叠纸盒

图7所示是一个礼物包装纸盒,若将其每一个折痕看作转动副,每一个面看作杆,它可以转化为一个具有9个转动副和10根杆的空间机构[10],其作为变胞源机构对应的变胞源矩阵为:

??

???

???

???

?????????????

????????=00000010000010000000010010000000000000010010000010000000010010000001000000011010000010010100010000100A 10

9

87

65

43

21

面面面面面面面面面面←←←←←←←←←← 对该机构连续进行4次变胞操作可得到4种不同形态的变胞子机构。

首先,将面2、3、4沿着折痕部分折叠并将面1和面10相固连可得到如图8所示的半折叠纸盒,所对应的EU 矩阵组为:

??

?

??

?

???

??

?

???

?

????????????????=100000000001000000000010000000000100000000001000000000010000000000100000000001000000000010100000000110

,1U

10,1U 是将十阶单位矩阵的第十行加到第一行变化而来。

???

?

??

???

?

???

??????????????

?=01000000000010000000000100000000001000000000010000

000000100000000001000000000010000000000110E

10E 是在九阶单位矩阵中加入第十列全零列变化而来。

第一次变胞所得的变胞子矩阵为:

???

???

???

???????????????????==010000000100100000000000001010000010000000100

000000101

000011010000100101001001010

)()(10,110010,110'1T U E A U E A 9

87

6543

21面面面面面面面面面←←←←←←←←←

然后将面6沿着折痕折叠并将其与面5固连,所对应的EU 矩阵组为:

???

?

??

???

?

???

???????????????=1000000000100000000010000000001100000000100000000010000000001000000000100000000015

,6U

5,6U 是将九阶单位矩阵的第五行加到第六行变化而来。

????????????

????????

??????=100000000

01000000000100000000010000000000100000000010000000001000000000

15E 5E 是在八阶单位矩阵中加入第五列全零列变化而来。

第二次变胞所得的变胞子矩阵为:

????????????

????????

??????==01

000000

10010000000000010100011000000101

00011010000101010010101

)()(5,65'15,65''1T U E A U E A 9

8764

321面面面面面面面面←←←←←←←←

接着将面8沿着折痕折叠至物理极限位置并将面9与面4固连,所对应的EU 矩阵组为:

????????????

??????????????=10

000000

0100000000100000000100001000100000000100000000100000000

19

,4U 这里需要注意的是,9,4U 的作用是将面9与周围各面的连接关系转移到面4上,由于这一变换关系针对的是''1A 所对应的变胞子矩阵,而在''1A 所对应的变胞子矩阵中,面4对应第四行,面9对应第八行,所以9,4U 是将八阶单位矩阵的第八行加到第四行变化而来。

???

?

??

?

???

????????????=01000000001000000001000000001000

000001000000001000000001

9E 9E 的作用是将''1A 中表示面9连接关系的第八行和第八列删除,所以9E 是在七阶单位矩阵

中加入第八列全零列变化而来。 第三次变胞所得的变胞子矩阵为:

???

?

??

?

???

???????

?????==0011001000000110001101000101

001101000101011101010

)()(9,49''19,49'''1T U E A U E A 87643

21面面面面面面面←←←←←←←

图9 完全折叠的礼物包装纸盒

最后将面8与面7固连,可以得到如图9所示的六面体盒,所对应的EU 矩阵组为:

???

?

??

?

???

????????????=11000000100000001000000010000000100000001000000017

,8U 7,8U 的作用是将面7与周围各面的连接关系转移到面8上,

由于这一变换关系针对的是'''1A 所对应的变胞子矩阵,而在'

''1A 所对应的变胞子矩阵中,面7对应第六行,面8对应第七行,所以7,8U 是将七阶单位矩阵的第六行加到第七行变化而来。

??

?

???

???

?

?????

?????=1000000001000000010000000100000001000000017E

7E 的作用是将'''1A 中表示面7连接关系的第六行和第六列删除,所以7E 是在六阶单位矩阵

中加入第六列全零列变化而来。 第四次变胞所得的变胞子矩阵为:

??

?

??

?

???

?

?????

?????==011001100110100101011010

010*********)()(7,87'''17,87''''1T U E A U E A 8

64321面面面面面面←←←←←←

可以看出最终得到的变胞子矩阵''''1A 是符合图9所示的六面体盒各个面的连接关系的,即:

T U E U E U E U E A U E U E U E U E A )()(10,1105,659,497,87010,1105,659,497,87''''1=

3 总结

本文综述了变胞机构的自由度计算及变胞过程的矩阵描述理论,通过对一共点球面五杆变胞机构和一由礼物包装盒演化而来的变胞机构的实例分析说明了这两种理论的应用方法,为进一步研究变胞机构提供了一定的理论基础。

参考文献

[1] 李威,等. 一种新型变胞快速夹紧装置[J]. 机械设计与研究,2005,21(2):45~47. [2] 罗庆生,高枫等. 一种基于变胞原理的陆空两栖球形变胞机器人[P]. 北京理工大学,2014. [3] Jian S.Dai ,Delun Wang. Geometric analysis and synthesis of then metamorphic robotic hand[J]. Journal of Mechanical Design ,2007,129:1191~1197. [4] 黄真,等. 高等空间机构学[M]. 北京:高等教育出版社,2006.

[5] Jian S.Dai ,John Rees Jones. Matrix representation of topological changes in metamorphic mechanisms[J]. Journal of Mechanical Design ,2005,127:837~840.

[6] 郭宗和,马履中,杨启志. 基于变胞原理的变自由度机构拓扑型分析[J]. 中国机械工程,2005,16(1):1~3.

[7] 王德伦,戴建生. 变胞机构及其综合的理论基础[J]. 机械工程学报,2007,43(8):32~42. [8] 戴建生,丁希仑,邹慧君. 变胞原理和变胞机构类型[J]. 机械工程学报,2005,41(6):7~12.

[9] 李端玲,戴建生,张启先,金国光. 基于构态变换的变胞机构结构综合[J]. 机械工程学报,2002,38(7):12~16.

[10] J.S.Dai,J.Rees Jones. Mobility in metamorphic mechanisms of foldable/erectable kinds. In: 25th ASME Biennial Mechanisms and Robotics Conference, Baltimore,1998,New York:ASME,1998.

机械原理平面机构的运动简图及自由度习题答案

1. 计算齿轮机构的自由度. 解:由于B. C 副中之一为虚约束,计算机构自由度时,应将 C 副去除。即如下 图所示: 该机构的自由度1213233231=?-?-?=--=h p p n F 2. .机构具有确定运动的条件是什么如果不能满足这一条件,将会产生什么结果 机构在滚子B 处有一个局部自由度,应去除。 该机构的自由度017253231=-?-?=--=h p p n F 定轴轮系 A B C 1 2 3 4 图2-22 A B C D G E H F

当自由度F=1时,该机构才能运动, 如果不能满足这一条件,该机构无法运动。 该机构当修改为下图机构,则机构可动: N=4, PL=5, Ph=1; F=?-?-= 自由度342511 3. 计算机构的自由度. 1)由于机构具有虚约束, 机构可转化为下图机构。 F=?-?-= 自由度342511

2)由于机构具有虚约束, 机构可转化为下图机构。 F=?-?= 自由度31211 3)由于机构具有虚约束, 机构可转化为下图机构。 F=?-?= 自由度33241 第一章平面机构的运动简图及自由度 一、判断题(认为正确的,在括号内画√,反之画×) 1.机构是由两个以上构件组成的。() 2.运动副的主要特征是两个构件以点、线、面的形式相接触。() 3.机构具有确定相对运动的条件是机构的自由度大于零。() 4.转动副限制了构件的转动自由度。() 5.固定构件(机架)是机构不可缺少的组成部分。() 个构件在一处铰接,则构成4个转动副。() 7.机构的运动不确定,就是指机构不能具有相对运动。() 8.虚约束对机构的运动不起作用。() 二、选择题 1.为使机构运动简图能够完全反映机构的运动特性,则运动简图相对于与实际机构的()应相同。 A.构件数、运动副的类型及数目 B.构件的运动尺寸 C.机架和原动件 D. A 和B 和C 2.下面对机构虚约束的描述中,不正确的是()。 A.机构中对运动不起独立限制作用的重复约束称为虚约束,在计算机构自由度时应除去虚约束。 B.虚约束可提高构件的强度、刚度、平稳性和机构工作的可靠性等。 C.虚约束应满足某些特殊的凡何条件,否则虚约束会变成实约束而影响机构的正常运动。为此应规定相应的制造精度要求。虚约束还使机器的结构复杂,成本增加。 D.设计机器时,在满足使用要求的情况卜,含有的虚约束越多越好。 三、综合题

机械机构自由度计算方法

机构自由度计算方法 机构自由度的计算例子 机 械 原 理 机构自由度的计算是机构的结构分析的重要内容。任何一个机构设计好以后,需要做的第一件事情就是计算机构的自由度。

机构自由度的计算公式是:F=3n-2p l-p h。 公式本身简单,只需要数出活动构件的数目n,低副的数目p l,高副的数目p h,则自由度就很容易计算了。 使用该公式有一个前提,就是要先判断出一些特殊情况:复合铰链,局部自由度和虚约束,在把这些情况都弄清楚后,再用上述公式计算,才可以得到正确的结果。 下面举一个例子,说明机构自由度的计算方法。计算图示机构的自由度,并判断该机构是否具有确定运动。如有复合铰链、局部自由度、虚约束,请直接在题图中标出。 拿到该机构以后,第一步就是找到凸轮M,发现推杆DB尖端有一个滚子,此滚子就是局部自由度。局部自由度几乎永远出现在滚子推杆的凸轮机构中。对于该局部自由度,处理方法是把该滚子B与BD杆焊接在一起,成为一个整体。 接着考察虚约束。虚约束中最常见的就是某一个构件和机架之间有导路重合或者平行的移动副。这里FH构件就在F,G,H三个地方有三个移动副与机架相联,而这三个移动副导

路重合。此时只有一个起作用,其它的就是虚约束。对于虚约束,只保留其中一个,其它的全部拿掉。 最后考虑复合铰链。复合铰链出现在转动副的地方,如果在转动副处有2个以上的构件相联,则该铰链就是复合铰链。从上图可以看出,J点有三个构件IJ,KJ,JL相连,所以J 是复合铰链。对于复合铰链,在计算转动副的数目时,在此处留心即可,注意这里的转动副数目等于相连的构件数目减1. 综上所述,把局部自由度,虚约束,复合铰链表示出来的结果见下图 这样,把滚子B和BD焊接在一起,从而去掉局部自由度;而去掉G,H这两个虚约束;J点有两个转动副。 下面进入公式的计算。 活动构件:齿轮A,齿轮M,连杆IJ,连杆KJ,连杆JL,滑块L,连杆BD(焊接了滚子B),连杆DE,连杆FH。共计9个。 低副:A, M, I, K, J(2),L(2), C, D, E, F. 共计12个.{注意,这里L处一个转动副,1个移动副,不能算成复合铰链,所谓铰链是指转动副,复合意味着着多个转动副}高副:齿轮A和齿轮B之间1个,B和凸轮之间1个,共计2个。 则 由于该机构有一个原动件,原动件的数目 = 自由度的数目,所以该机构有确定的运动。

1章机构自由度计算

第1章习题 1-1 绘出图1-7所示的唧筒机构的机构运动简图。 1-2 绘出图1-8所示叶片式油泵的机构运动简图。 1-3 绘出图1-9所示回转柱塞泵的机构运动简图。 1-4 绘出图1-10所示冲床架机构的机构运动简图。 1-5 试判断图1-11、图1-12所示运动链能否成为机构,并说明理由。若不能成为机构,请提出修改办法。 1-6 计算图1-13至图1-20所示各机构的自由度,并指出其中是否含有复合铰链、局部自由度或虚约束,说明计算自由度时应做何处理。 1-7 计算图1-21至图1-26所示各机构的自由度,用低副代替高副,并确定机构所含杆组的数目和级别以及机构的级别。

第1章综合测试题 1-1 填空题及简答题 (1)平面机构中若引入一个高副将带入个约束,而引入一个低副将带

入人约束。 (2)高副低代必须满足的条件是,。 (3)何谓运动链?运动链具备什么条件才具有运动的可能性?具备什么条件才具有运动的确定性?运动链具备什么条件才能成为机构? (4)何谓机构运动简图?绘制的步骤如何? (5)机构具有确定运动的条件是什么? (6)在计算平面机构自由度时应注意哪些事项? (7)杆给具有什么特点?如何确定杆组的级别? (8)如果确定机构的级别?选择不同原动件对机构的级别有无影响? 1-2 画出图1-27所示油泵的机构运动简图,并计算其自由度。 1-3 判别图1-28、图1-29所示运动链能否成为机构,并说明理由。如果有复合铰链、局部自由度或虚约束,需一一指出。 1-4 试用低副代替图1-30所示机构中的高副,并说明高副低代的一般方法。

1-5 图1-31所示为一机构的初拟设计方案,试从机构自由度的概念分析其设计是否会理,并提出修改措施。又问,在此初似设计方案中,是否存在复合铰链、局部自由度和虚约束? 1-6 计算图1-32所示机构的自由度,并在高副低代后,确定机构所含杆组的数目和级别并判断机构的级别。 第1章习题参考答案 1-5 F=0,机构不能运动 F=0,机构不能运动

教案平面机构的自由度

平面机构的自由度 【教学目的】 1、掌握运动链成为机构的条件。 2、熟练掌握机构自由度的计算方法。能自如地运用自由度计算公式计算机构自由度,尤其是平面机构的自由度。 【教学内容】 1、引出自由度的概念,明确自由度和约束的关系; 2、推导自由度计算公式,并加以举例说明; 3、学会利用公式计算平面机构的自由度。 【教学重点和难点】 1、机构自由度的计算 【教学方法】 1、课堂以讲授为主,结合实物文件进行分析讲解。 2、注重师生交流,提倡师生互动,上课时细心观察学生的反应,课间与学生交谈,了解学生的掌握情况,根据反馈的信息,适当地调整授课内容和方法等。【教学内容】 1、概念:平面机构的自由度——机构具有确定运动的独立运动参数称为机构的 自由度。 2、自由度的引入 构件的独立运动称为自由度。一个作平面运动的自由构件具有3个独立的运动,见图1。 图1 平面自由度 即沿x轴、y轴移动及绕垂直于xoy面的轴线的转动。 构件组成运动副后,其运动就受到了约束,其自由度数随之减少,不同类型的运动副带来的约束不同。 如图2移动副中,限制了2相对1沿垂直于导路的移动及相对限制转动,引入两个约束。 如图3中转动副限制了2相限制1沿x轴y轴移动,引入两个约束。

如图4高副中,限制了2相对1沿法线轴的移动,引入一个约束。 图4 高副及表示符号 3 自由度公式的推导 如设平面机构共有n 个活动构件(不包括机架),当此机构的各构件尚未通过运动副联接时,显然它们共有3n 个自由度。 当两构件构成运动副之后,它们的运动就将受到约束,其自由度将减少,假设各构件间共构成了L p 个低副和H p 个高副,自由度减少的数目等于运动副引入的约束(H L p p +2)。于是,该机构的自由度应为 ()H L H L p p n p p n F --=+-=2323 (1) 4 自由度的计算 图5 平面四连杆机构 图6 平面五连杆机构 (1)三个活动构件,四个低副,零个高副。 104233=-?-?=F (2)四个活动构件,五个低副,零个高副 342502F =??= 总结: 平面机构自由度的计算是教学中的重点和难点,计算自由度时需要找准活动构件的个数,注意低副和高副的约束,然后进行计算。

第一章平面机构运动简图与自由度计算(精品文档)

本课程是测控专业一门近机类课程,上课之前尤其要作专业引导工作,以树立对本课程的正确认识。课程安排:课堂教学60学时,实验教学12学时,共计72学时。 第一章平面机构运动简图与自由度计算 学时8 知识要点:运动副概念和分类、平面机构低副和高副、平面机构运动简图、平面机构自由度计算 难点:自由度计算和虚约束判断,结合多媒体重点讲解。 §1 概述 机构是按一定方式联接的构件组合,是用来转递运动和力或改变运动的形式。 研究机构的目的: ⑴探讨机构运动的可能性、具有确定运动的条件; ⑵将机构按特点分类,建立运动分析和动力分析的一般方法; ⑶学会关于运动简图的绘制。 (4)熟悉构件组成机构的规律,以合理设计和创新机构。 §2运动副及其分类 运动副:两构件直接接触,而又能产生一定相对运动的联接(可动联接)。?? 例如:滚珠轴承的滚珠与内外座圈之间为点接触;互相啮合的轮齿之间为点或线接触;而轴颈与

轴承或滑块与导槽之间为面接触。 运动副要素:构成运动副的点、线、面。 按运动情况可把运动副分为平面运动副和空间运动副。本节将主要讨论平面运动副。 构件作运动时,可分为三个独立的运动。当X或Y值变化时,构件将沿X或Y轴移动;当α值变化 。 2只能绕垂直于XOY平面的轴相对运动。 图4-1b,构件2沿Y轴相对移动和垂直于XOY平面的轴相对移动受约束,构件2相对于构件1只能 2沿公法线n-n A独立转

沿接触点公法线相对移动的可能性即被取消。因此,从相对运动来看,平面运动副有三种型式: ⑴具有一个独立相对转动的运动副(转动副);F=1 ⑵具有沿一个方向独立相对移动的运动副(移动副);F=1 ⑶具有一个独立移动和一个独立转动的运动副。F=2 按照接触的特性,通常把运动副分为高副和低副。 点接触或线接触的运动副称为高副;平面高副具有一个约束。F=2 面接触的运动副称为低副。平面低副具有两个约束。F=1 §3 平面机构的运动简图 机构运动简图:表明各机构间相对运动关系的简单图形。仅仅用简单的线条和符号来代表机构和运动副,并按照一定的比例表示各运动副间的相对位置,不考虑与运动无关的因素。 表4-1 绘制运动简图时,首先要搞清楚所要绘制机械的结构和运动原理,然后从原动件开始,按照运动传递的顺序,分析各构件相对运动的性质,确定运动副的类型和数目;并合理选择视图平面。选取适当的长度比例尺,按一定的顺序进行绘图,并将比例尺标注在图上。 例题4-1 试画出图4-4a所示油泵机构的运动简图。 解此机构主要由圆盘1、导杆2、摇块3和机架4等四个机构组成,其中构件1为原动件,构件4为机架。该机构的工作情况是:当回转副B在AC中心线的左边时,从机架4的右孔道吸油;当B在AC 中心线的右边时,经机架4的左孔道排油。 构件1与构件4和构件2、构件3与构件4分别在A、B、C点构成转动副,构件2与构件3组成移动副它们的导路沿BC方向。 现在选择适当的投影面和比例尺,定出各转动副的位置即可绘制出机构运动简图,如图4-4b所示。

平面机构自由度计算例题及答案

1. 2. 3. 4. 5. 6.

1.构件数n为7,低副p为9,高副pn为1,局部自由度为1,虚约束为0. E处为局部自由度,C处为复合铰链. F=3n-2p-pn=3*7-2*9-1=2(与原动件数目一致,运动确定) 2. B处有复合铰链,有2个转动副。 无局部自由度。 B点左侧所有构件和运动副带入的约束为虚约束,属于与运动无关的对称部分。n=5, PL=7, PH=0, F= 3n-2PL -PH=3×5-2×7-1×0=1。 运动链有确定运动,因为原动件数= 自由度数。 3.A处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。B处为局部自由度,假设将滚子同构件CB固结。 无虚约束。 n=6, PL=8, PH=1, F= 3n-2PL -PH=3×6-2×8-1=1。 运动链有确定运动,因为原动件数= 自由度数。 4. 没有复合铰链、局部自由度、虚约束。 n=4, PL=5, PH=1, F= 3n-2PL -PH=3×4-2×5-1=1。 运动链有确定运动,因为原动件数= 自由度数。 5. 计算自由度:n=4, P L=6, P H=0, F= 3n-2P L -P H=3×4-2×6-1×0=0,运动链不能动。修改参考方案如图所示。

6. F处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。 B处为局部自由度,假设将滚子同构件CB固结。 移动副M、N中有一个为虚约束,属于两构件在多处组成运动副。 n=7, PL=9, PH=1, F= 3n-2PL -PH=3×7-2×9-1=2。 运动链没有确定运动,因为原动件数< 自由度数。

平面机构自由度的计算

平面机构自由度的计算 1、单个自由构件的自由度为 3 如所示,作平面运动的刚体在空间的位置需要三个独立的参数(x ,y, θ)才能唯一确定。 2、构成运动副构件的自由度 图2—19运动副自由度 运动副 自由度数 约束数 回转副 1(θ) + 2(x ,y ) =3 移动副 1(x ) + 2(y ,θ) =3 高 副 2(x,θ) + 1(y ) =3 结论:构件自由度=3-约束数 3、平面机构的自由度 1)机构的自由度:机构中活动构件相对于机架所具有的独立运动的数目。 2).机构自由度计算公式 H P -=L 2P -3n F 式中: n-------活动构件数目(不包含机架) L P -----低副数目(回转副、移动副) H P ------高副数目(点或线接触的) 移动副 高副(点或线接触) 约束数为2 约束数为1

例题1: 计算曲柄滑块机构的自由度。 解:活动构件数n=3 低副数 PL=4 高副数 PH=0 H P -=L 2P -3n F 图 曲柄滑块机构 =3×3 - 2×4 =1 例题2:计算五杆铰链机构的自由度。 解:活动构件数n=4 低副数 PL=5 高副数 PH=0 H P -=L 2P -3n F 图 五杆铰链机构 =3×4 - 2×4 =2 例题3: 计算凸轮机构的自由度 解:活动构件数n=2 低副数 PL=2 高副数 PH=1 H P -=L 2P -3n F =3×2 -2×2-1 =1 图 凸轮机构 4.机构具有确定运动的条件 原动件的数目=机构的自由度数F (F >0或F≥1)。 若 原动件数<自由度数,机构无确定运动; 原动件数>自由度数,机构在薄弱处损坏。 (a)两个自由度 (b)一个自由度 (c)0个自由度 图3-11 不同自由度机构的运动

机构的组成及其自由度的分析计算DOC

一、机构的组成及其自由度的分析计算(共170题) 1.组成机构的要素是和;构件是机构中的单元体。 2.具有、、等三个特征的构件组合体称为机器。 3.机器是由、、所组成的。 4.机器和机构的主要区别在于。 5.从机构结构观点来看,任何机构是由三部分组成。 6.运动副元素是指。 7.构件的自由度是指。 机构的自由度是指。 8.两构件之间以线接触所组成的平面运动副,称为副,它产生个约束,而保留个自由度。 9.机构中的运动副是指。 10.机构具有确定的相对运动条件是原动件数机构的自由度。 11.在平面机构中若引入一个高副将引入___个约束,而引入一个低副将引入____个约束,构件数、约束数与机构自由度的关系是 12.平面运动副的最大约束数为,最小约束数为。 13.当两构件构成运动副后,仍需保证能产生一定的相对运动,故在平面机构中,每个运 动副引入的约束至多为,至少为。

15.计算机机构自由度的目的是_ ____________ _________________。 16.在平面机构中,具有两个约束的运动副是副,具有一个约束的运动副是副。 17.计算平面机构自由度的公式为F=,应用此公式时应注意判断: (A)铰链,(B)自由度,(C)约束。 18.机构中的复合铰链是指;局部自由度是指;虚约束是指。 19.划分机构的杆组时应先按的杆组级别考虑,机构的级别按杆组中的级别确定。 20.机构运动简图是的简单图形。 31.任何具有确定运动的机构都是由机架加原动件再加自由度为零的杆组组成的。--------------( ) 32.一种相同的机构组成不同的机器。 (A) 可以;(B) 不能 33.机构中的构件是由一个或多个零件所组成,这些零件间产生任何相对运动。(A) 可以;(B)不能 34.有两个平面机构的自由度都等于1,现用一个带有两铰链的运动构件将它们串成一个 平面机构,则其自由 等于。 (A) 0;(B) 1;(C) 2

平面机构自由度的计算

平面机构自由度的计算 1、单个自由构件的自由度为 3 如所示,作平面运动的刚体在空间的位置需要三个独立的参 数(x ,y, θ)才能唯一确定。 2、构成运动副构件的自由度 图2—19运动副自由度 运动副 自由度数 约束数 回转副 1(θ) + 2(x ,y ) =3 移动副 1(x ) + 2(y ,θ) =3 高 副 2(x,θ) + 1(y ) =3 构件自由度=3-约束数 3、平面机构的自由度 1)机构的自由度:机构中活动构件相对于机架所具有的独立运动的数目。 2).机构自由度计算公式 H P -=L 2P -3n F 式中: n-------活动构件数目(不包含机架) L P -----低副数目(回转副、移动副) H P ------高副数目(点或线接 触的) 例题1: 计算曲柄滑块机构的自由度。 解:活动构件数n=3 低副数 PL=4 高副数 PH=0 H P -=L 2P -3n F 图 曲柄滑块机构 =3×3 - 2×4 =1 例题2:计算五杆铰链机构的自由度。 解:活动构件数n=4 低副数 PL=5 高副数 PH=0 H P -=L 2P -3n F 图 五杆铰链机构 =3×4 - 2×4 =2 例题3: 计算凸轮机构的自由度 解:活动构件数n=2 低副数 PL=2 高副数 PH=1 =3×2 -2×2-1 =1 图 运动 副 低副(面接触) 移动副 高副(点或线接触) 约束数为2 约束数为1

凸轮机构 4.机构具有确定运动的条件 原动件的数目=机构的自由度数F(F>0或F≥1)。 若原动件数<自由度数,机构无确定运动; 原动件数>自由度数,机构在薄弱处损坏。 (a)两个自由度(b)一个自由度 (c)0个自由度 图3-11 不同自由度机构的运动 5.计算机构自由度时应注意的事项 1)复合铰链:两个以上个构件在同一条轴线上形成的转动副。 由m个构件组成的复合铰链,共有(m-1)个转动副。 2)局部自由度:在某些机构中,不影响其他构件运动的自由度称为局部自由度局部自由度处理:将滚子看成与从动杆焊死为一体。 注意:在去除滚子的 同时,回转副也应同 时去除,这就相当于 使机构的自由度数减 少了一个,即消除了 局部自由度。 3)虚约束:重复而不起独立限制作用的约束称为虚约束 计算机构的自由度时,虚约束应除去不计。 几种常见虚约束可以归纳为三类: 第一类虚约束:两构件之间形成多个运动副,它们可以是移动副(图2-17)或转动副(图2-18),这类虚约束的几何条件比较明显,计算自由度的处理也较简单,两个构件之间只按形成一个运动副计算即可。 图3-14 导路重合的虚约束图3-15 轴线重合的虚约束第二类虚约束:机构中两构件上某两点的距离始终保持不变。如用一个附加杆件把这两点铰接,即形成虚约束。这两个点可以是某动点对某固定点的关系(如2-15中的E、F),也可以是两个动点之间的关系。这类虚约束常见于平行四边形机构,计算自由度时应撤去附加杆及其回转副。 第三类虚约束:机构中对运动不起作用的对称部分可产生虚约束(图2-19)。这类虚约束常见于多个行星齿轮的周转轮系,计算自由度时应只保留一个行星轮而撤去所有多余的行星轮及其有关运动副。 最后必须说明,虚约束是人们在工程实际中为改善机构或构件受力状况,在一定条件下所采取的

机构自由度计算a汇总

1、计算图示机构的自由度(如有复合铰链、局部自由度或虚约束,应在图上标出)。图b 中,C 、F 的导路在图示位置相互平行。 答案 (1) 图 a B 、 C 处 为 复 合 铰 链 F n p p =--=?-?=323102142L H (2) 图 b C (或F ) 为 虚 约 束。 F n p p =--=?-?=3234252L H 2、试分析下图所示的系统,计算其自由度,说明是否能运动?若要使其能动,并具有确定运动,应如何办?在计算中,如有复合铰链、局部自由度和虚约束,应说明。图中箭头表示原动件。图b 中各圆为齿轮。 答案 (1) 图a ,滚子B 处有 局 部 自 由 度,E 或F 为 虚 约 束,故 n p p ===341 ,,,L H F n p p =--32L H =?-?-=332410 不 能 运 动, 故 不 是 机 构。 可 增 加 一 个 构 件 和 一 个 低 副, 如 解 答 中 图 a , 这 时 n p p ===451 ,,,L H F n p p =--=?-?-=32342511L H (2)图b , A 、B 处为复合铰链,D 或E 为 虚 约 束, 故 n p p ===672,,L H

F n p p =--32L H =?-?-=362722 故 可 动, 但 因 只 有 一 个 原 动 件, 所 以 运 动 不 确 定。 修 改 方 法: (a) 可 增 加 一 个 原 动 件, 如 认 为 杆3 亦 为 原 动 件。 (b) 减 少 一 个构 件 和 一 个 低 副, 仍 用 一 个 原 动 件, 如 认 为 杆3 和 轮1 为 一 个 构 件 ( 图 b), 这 时 n p p ===562,,,L H F n p p =--32L H =?-?-=352621 注: 修 正 办 法 还 有 多 种。 3,计算下列机构的自由度。如有复合铰链、局部自由度和虚约束,必须注明。图b 中两圆为齿轮,导路F 垂直于AE 。 答案 (1) 图a A 处 为 复 合 铰 链。 F n p p =--=?-?-=3231021402L H (2) 图b BC 杆 引 入 虚 约 束, 应 去 除。 11524323H L =-?-?=--=p p n F 4,计算图示机构的自由度。若有复合铰链、局部自由度或虚约束,必须指出。(已

平面机构的自由度习题

平面机构的自由度 一、填空题 1、运动副是指能使两构件之间既保持接触。而又能产生一定形式相对运动的。 2、由于组成运动副中两构件之间的形式不同,运动副分为高副和低副。 3、运动副的两构件之间,接触形式有接触,接触和接触三种。 4、两构件之间作接触的运动副,叫低副。 5、两构件之间作或接触的运动副,叫高副。 6、回转副的两构件之间,在接触处只允许孔的轴心线作相对转动。 7、移动副的两构件之间,在接触处只允许按方向作相对移动。 8、带动其他构件的构件,叫原动件。 9、在原动件的带动下,作运动的构件,叫从动件。 10、房门的开关运动,是副在接触处所允许的相对转动。 11、抽屉的拉出或推进运动,是副在接触处所允许的相对移动。 12、火车车轮在铁轨上的滚动,属于副。 1、机器或机构,都是由组合而成的。 2、机器或机构的之间,具有确定的相对运动。 3、机器可以用来人的劳动,完成有用的。 4、组成机构、并且相互间能作的物体,叫做构件。 5、从运动的角度看,机构的主要功用在于运动或运动的形式。 6、构件是机器的单元。零件是机器的单元。 7、机器的工作部分须完成机器的动作,且处于整个传动的。 8、机器的传动部分是把原动部分的运动和功率传递给工作部分的。 9、构件之间具有的相对运动,并能完成的机械功或实现能量转换的的组合,叫机器。 二、判断题 1、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。() 2、凡两构件直接接触,而又相互联接的都叫运动副。() 3、运动副是联接,联接也是运动副。() 4、运动副的作用,是用来限制或约束构件的自由运动的。() 5、两构件通过内表面和外表面直接接触而组成的低副,都是回转副。() 6、组成移动副的两构件之间的接触形式,只有平面接触。() 7、两构件通过内,外表面接触,可以组成回转副,也可以组成移动副。() 8、运动副中,两构件联接形式有点、线和面三种。()

平面机构自由度计算思考题和习题

平面机构自由度计算思考题和习题 1、思考题 什么是构件、运动副、运动链自由度?它们有何异同点? 什么是运动副约束?平面运动副中最多约束数为多少?为什么? 试写出计算平面运动链自由度公式,并从物理概念简述其推演过程。 计算运动链自由度的目的何在? 机构具有确定运动的条件是什么?如果不满足该条件可能会出现哪些情况? 什么是虚约束?总结归纳出现虚约束的几种情 况。 2、习题 1)通过自由度计算判断图示运动链是否有确定运动 (图中箭头所示构件为原动件)。如果不满足有确 定运动的条件,请提出修改意见并画出运动简图。 2)计算下列各运动链的自由度,并指出其中是否有复合铰链、局部自由度、虚约束。最后判断该机构是否有确定运动(图中箭头所示构件为原动件),为什么? (A) (B) (C) (D)

3、习题答案 1)计算自由度:n=4, P L=6, P H=0, F= 3n-2P L -P H=3×4-2×6-1×0=0,运动链不能动。修改参考方案如图所示。 2)答案 (A)没有复合铰链、局部自由度、虚约束。 n=4, PL=5, PH=1, F= 3n-2PL -PH=3×4-2×5-1=1。 运动链有确定运动,因为原动件数= 自由度数。 (B)A处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。 B处为局部自由度,假设将滚子同构件CB固结。 无虚约束。 n=6, PL=8, PH=1, F= 3n-2PL -PH=3×6-2×8-1=1。 运动链有确定运动,因为原动件数= 自由度数。 (C) F处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。 B处为局部自由度,假设将滚子同构件CB固结。 移动副M、N中有一个为虚约束,属于两构件在多处组成运动副。 n=7, PL=9, PH=1, F= 3n-2PL -PH=3×7-2×9-1=2。 运动链没有确定运动,因为原动件数< 自由度数。 (D) B处有复合铰链,有2个转动副。 无局部自由度。 B点左侧所有构件和运动副带入的约束为虚约束,属于与运动无关的对称部分。n=5, PL=7, PH=0, F= 3n-2PL -PH=3×5-2×7-1×0=1。 运动链有确定运动,因为原动件数= 自由度数。

平面机构自由度计算 (1)

百度文库- 让每个人平等地提升自我! 1 平面机构虚约束的分析 机构是由若干构件组成的,是实现机械预期运动的装置,这些“预期运动”都是在原动 件的驱动下实现的,而其原动件的数目必须等于它的自由度。由此可见,准确计算机构的自由度对于正确分析和设计机构至关重要。在各种实际机构中,为了改善构件的受力情况,增加机构的刚度,或保证机构运动的顺利,往往要多增加一些构件与运动副(1)这些运动副中往往包括虚约束。 在计算平面机构自由度时,最常用的公式是契贝舍夫公式,简称契氏公式(2): W=3n-2P L-P H 现计算下图所示机构的自由度: 可知,n=4, P L=6, P H=0,所以W=3*4-2*6=0 显然答案是错误的,原动件个数是1。这是因为该机构中出现了虚约束。所谓虚约束,笔者认为就是指不产生约束的约束,也即是所引入的构件由于几何尺寸满足一定的规律,不会对所在机构产生约束。 在机构自由度计算中.产生虚约束的情况有4种情况(3): (1)如果将机构的某个运动副拆开,机构被拆开的两部分在原联接点的运动轨迹仍相互重合,则产生虚约束。 (2)在机构运动过程中,如果某两构件上两点之间的距离始终保持不变.那么,若将此两点以构件相连,则因此而引入的约束必为虚约束。 (3)如果两构件在几处接触而构成移动副,且各接触处两构件的相对运动方向一致;或者两构件在几处配合而构成转动副,且各配合处的轴线重合,则只应考患一处运动副引入的约束,其他各处为虚约束。 (4)机构中对运动不起作用的对称部分亦是虚约束。 笔者认为,在分析机构是否含有虚约束时,最好的方法是先分析该构件的功能,特别是“可疑”构件的作用,然后试着去掉该构件,看该机构还能否实现所期待的功能,因为引入虚约束的目的是为了改善构件的受力情况,增加机构的刚度,或保证机构运动的顺利,且不影响机构的运动规律。例如以上机构的虚约束的作用是约束下面的导杆在水平方向运动,如果去掉E,,该机构的运动规律并没有发生改变,就可以断定E,是虚约束。 在机械设计中,虚约束往往是“点睛之笔”,它能够使机械变得更加科学、实用。学会分析虚约束的最终目的是在自己设计机械机构的时候能够“因地适宜”、灵活地运用虚约束。能否熟练实用虚约束是判断机械设计者是否合格的重要标准。—————————————————————————————————————— 参考文献 (1)徐锦康.机械原理[M].北京:机械工业出版社 (2)李学荣.四连杆机构综合概论(第一册)[M].北京:机械工业出版 社。1985. (3)孙桓,陈作模机械原理(第5版)[MJ北京:高等教育出 版社,1996. 电气工程及自动学院 胡佳男

空间机构的自由度计算

2.5.2空间机构的自由度计算 同平面机构自由度计算公式推导过程一样,空间机构的自由度 = 所有活动构件自由度 - 所有运动副引入的约束数,其公式为: F=6n-5P 5-4P 4 -3P 3 -2P 2 -P 1 式中:n为活动构件数; P 1、P 2 、P 3 、P 4 、P 5 分别为1 ~ 5级运动副的个数。 (a) (b) 图2.5.2-1 图(a)所示为自动驾驶仪操纵装置内的空间四杆机构。活塞2相对气缸运动后通过连杆3使摇杆4作定轴转动。构件1、2组成圆柱副,构件2、3和构件4、1分别组成转动副,构件3、4组成球面副,其运动示意图如图(b)所示。试计算该机构的自由度。 解: n=3, P 5 =2, P 4 =1, P 3 =1 F=6n-5P 5 -4P 4 -3P 3 -2P 2 -P =6×3-5×2-4×1-3×1=1. 图(a)所示为某飞机起落架的收 放机构。构件1为原动件,构件1、2和2、3分别组成3级球副,构件1、4和3、4分别组成5级移动副和转动副,其运动示意图如图(b)所示。试计算该机构的自由度并判断其运动是否确定。

(a) (b) 解: n=3, P 5=2, P 3 =2 F=6n-5P 5-4P 4 -3P 3 -2P 2 -P =6×3-5×2-3×2=1. 计算结果表明需要2个原动件机 构的运动才能得以确定。而实际上该机构 在1个原动件的带动下运动就能确定了。 上述问题出现在何处? 图2.5.2-2 构件2的两端同构件1、3分别组成球副,这样使得构件2可以绕自身轴线转动,而这个转动(自由度)对整个机构的运动没有影响,对比平面凸轮机构中滚子的转动一样,称为局部自由度。 图2.5.2-3 对于局部自由度也有两种处理方法: ①. 修正自由度计算公式:F=6n-5P 5 -4P 4 -3P 3 -2P 2 -P 1 -k 式中:k为局部自由度数。这样例题2的机构的自由度应为: F=6n-5P 5 -4P 4 -3P 3 -2P 2 -P 1 -k=6×3-5×2-3×2-1=1 具有确定的运动。 ②. 机构设计时改变运动副类型在例题2中,可以将构件2一端的球副设计变成球销副,如图2.5.2-3所示,这样就消除了构件2绕自身轴线转动的局部自由度。这时机构的自由度应为: F=6n-5P 5 -4P 4 -3P 3 -2P 2 -P 1 =6×3-5×2-4×1-3×1=1 具有确定的运动。

相关文档