文档库 最新最全的文档下载
当前位置:文档库 › 二氧化碳制取甲烷

二氧化碳制取甲烷

二氧化碳制取甲烷
二氧化碳制取甲烷

(一) 全球CO2循环策略系统,包括第一步,用电解产生氢气;第二步,H2和CO2反应生成CH4和少量其他碳氢化合物;第三步,生成的CH4作为能源消耗又生成了CO2,如此循环往复。其中的核心环节就是利用太阳能发电和CO2催化加氢甲烷化的反应。

CO2甲烷化反应是由法国化学家Paul Sabatier提出的,因此,该反应又叫做Sabatier反应,反应过程是将按一定比例混合CO2的和H2气通过装有催化剂的反应器,在一定的温度和压力条件下CO2和H2发生反应生成水和甲烷。化学反应方程式如下。

CO2+4H2=CH4+2H2O

(二) CO2加氢甲烷化机理:

1 不经过一氧化碳中间物的机理

2 包括一氧化碳中间物的机理

随着研究的深入,CO2甲烷化反应机理被推定可能由下列2个途径组成:吸附的H和气相的CO2反应生成吸附态的CO,随后吸附态的CO直接加氢生成甲烷;或吸附的H和吸附的CO2反应生成吸附态的CO,随后吸附态的CO加氢生成中间体如甲酸根、碳酸根等再进一步加氢生成甲烷。Prairie提出了CO2加氢甲烷化的反应机理:

式中,m,s,i分别表示金属上,载体上及未经确定吸附点上的吸附物种。

Schild 等提出了Ni/ZrO2催化CO2加氢甲烷化的反应机理。CO2先在催化剂活性中心上转化为吸附的甲酸根和碳酸根,然后再进一步加氢为甲烷。

Os簇合物催化剂上反应机理表示为:

其中*表示吸附二氧化碳的活性点,M表示Os上的吸附活性点,主要用于加氢。Ni/ZrO2上的甲烷化机理可表示为:

二氧化碳先在催化剂表面转化为吸附的甲酸根和碳酸根,再进一步氢化为甲烷。图中虚线表示热力学可行但未被观察到。

由非晶态合金Pd25Zr71制得的催化剂也显示出与之相似的结果。如下图所示:

不同的研究者提出的机理有所不同,但大体上都遵循以下模式:

⑴二氧化碳和氢吸附于催化剂表面;

⑵吸附的H2分解为H;

⑶吸附的二氧化碳转变为其它含碳物种;

⑷含碳物种氢化为甲烷。

由二氧化碳转变而得到的含碳物种,可能是吸附的CO,甲酸根,碳酸根及含氢的吸附CO,近期的研究倾向于生成甲酸根和碳酸根。

一氧化碳对二氧化碳甲烷化的阻碍作用可解释为一氧化碳在催化剂表面的竞争性吸附取代了部分二氧化碳的位置,使吸附的二氧化碳减少而延缓了反应速度。同时,一氧化碳的吸附可加速催化剂的失活,提高反应的活化能,据信这也是同样催化剂作用下二氧化碳甲烷化速率高于一氧化碳的原因。

与一氧化碳相比,二氧化碳甲烷化机理的研究显得较为单薄,也不那么完备和深入,随着二氧化碳活化研究工作的深化,相信不远的将来会涌现出更多的突破性工作。

(三) 二氧化碳制取甲烷催化剂的研究

二氧化碳加氢甲烷化由于具有明确的应用前景而备受关注。目前的研究主要集中于催化剂的开发上。

(1) 金属活性组分

大量研究表明,大多数第Ⅷ族金属催化剂对CO2/CH4转化均有催化作用。贵金属催化剂具有较高转化活性,其中Rh、Ru、Ir催化性能最好,Pt、Pd稍差,过渡金属Fe、Co、Ni活性也较高,其中Ni的催化性能仅次于Rh,活性顺序为:Ni>Co》cu》Fe。

在选择催化剂时,除了考察活性外,还要考虑积炭。Rostrup一Nielsen等人研究了Pt族贵金属及Ni催化剂,结果表明,Rh和Ru有最佳的抗积炭性能,在

Rh催化剂上几乎不积炭,Ni催化剂虽具有与Rh、Ru相当的催化性能,但积炭较为严重。Al-ubaid等人在Pt/Zro2催化剂上,于853K,V(CO2):V(CH4)=1:1的条件下,对CO2/CH4重整反应进行了500h的稳定性试验,并对试验后的催化剂进行了热重分析/差示量热扫描(TGA/DSC)分析,表明催化剂上无积炭生成。

A.T.Aschroft等人则研究了负载Ni、Ru、Rh和Ir催化剂在该反应中的抗积炭性能,结果发现Ni、Pd催化剂因积炭很快失活,而具有抗积炭性能的Ru、Rh催化剂在运行260h后仍保持很高的活性。

目前,国外对贵金属催化剂的研究较多,但考虑到贵金属资源有限,价格昂贵和需要回收,不适合大规模应用。我国的研究主要集中在非贵金属催化剂上,特别是在负载型催化剂的抗积炭能力的提高上。

(2) 载体的选择

最近的一些研究结果表明,负载Rh、Pt和Ni催化剂选择TiO2作为载体时,能极大地抑制积炭。抑制积炭的主要原因可能是由于TiO2物种分布在金属表面,从而破坏利于碳形成的大活性金属集团的形成,还有就是由于TiO2中的O容易从TiO2迁移到金属表面,从而氧化金属表面上的积炭,TiO2中的氧迁移能力在单金属氧化物中是最强的,随后就是ZrO2、MgO、A12O3和SiO2。

Chang Jongson考查了Ni/分子筛催化剂在CO2/CH4重整反应中的活性和抗积炭性能。结果表明,在140h稳定性试验中催化剂始终保持良好的活性和较高的抗积炭性能。载体的Si/Al比对催化剂的抗积炭性能有影响。黄传敬等人用HZSM-5分子筛作为Co基催化剂载体时,发现较高的Si/Al比有助于催化剂的抗积炭性能。

Takashi Hayakawa等人选用Ca0.8Sr0.2TiO3类钙钦矿型材料为载体,通过用少量Ni取代晶格中Ti的位置,利用稳定钙钦矿结构的“矩阵效应”得到高分散且稳定的Ni金属粒子,制备得到了高性能Ni基催化剂,这类载体可以提供碱土金属,催化剂抗积炭性能好,并且这类钙钦矿型材料具有很好的高温稳定性。纪敏等人选择具有六铝酸盐结构的复合氧化物作为催化剂基质材料,将镍镶嵌在复合氧化物特定的晶格位置上,一方面提高镍离子的分散度和抗烧结能力;另一方面可以通过离子调变改变催化剂表面酸碱性,以提高催化剂抗积炭性能。

(3) 助剂

稀土助剂:近年来在催化剂中添加少量稀土氧化物作为助剂已引起广泛重视。在Ni催化剂中添加稀土氧化物对催化剂有改性作用,能提高催化剂的稳定性和选择性,使活性组分的分散度和抗积炭性能有明显提高。在以往的工作中,对Y2O3、LaO3和CeO2等稀土氧化物研究较多,而近几年,Pr6O11和Nd2O3也得到研究。Ni/A12O3经Y2O3或La2O3改性后,其比表面积和孔容量显著提高,这

有利于Ni在催化剂表面的分散,使Ni的分散度得到提高,并且加入的稀土氧化物能高度分散于Ni晶粒的边界,降低了Ni的表面自由能,抑制了因表面扩散引起的晶粒长大,从而减少了Ni的活性集团数,提高了催化剂的抗积炭性。

碱性助剂:改善非贵金属催化剂的抗积炭能力的另一主要方法就是添加碱性助剂,对于CO2/CH4转化体系,这方面的研究工作已经展开。因为CO2会在碱性催化剂表面上发生强吸附,覆盖大部分表面,因而可有效地抑制积炭。另外,使用双助剂CeO2-MgO能有效地一直在Ni/r-Al2O3催化剂上的积炭。K2O、Li2O、MgO等碱性助剂对催化剂都有明显改善作用,重整活性在不同范围里有不同程度的提高。

随着对二氧化碳重整甲烷反应研究的深人和测试手段的不断提高,人们对反应中的一些问题的认识正逐步加深,意见也趋于一致,一些问题如活性中心问题、载体效应和助剂的作用等正在逐步得到解决。这些问题的解决将大大促进催化剂的开发。

及其甲烷二氧化碳重整反应的性能

doi:10.6043/j.issn.0438-0479.201811009 氨辅助浸渍法制备抗烧结Ni/SiO 2催化剂 及其甲烷二氧化碳重整反应的性能 万吉纯,朱孔涛,翁维正*,楚沙沙,郑燕萍,黄传敬,万惠霖 (厦门大学化学化工学院,固体表面物理化学国家重点实验室,醇醚酯化工清洁生产国家 工程实验室,福建 厦门 361005) 摘要:以硝酸镍为前驱盐,商品SiO 2为载体,采用氨水辅助浸渍法通过改变n (NH 3)/n (Ni)制备了系列Ni/SiO 2催化剂,并将其应用于甲烷二氧化碳重整(DRM )制合成气反应,实验结果表明:在浸渍过程中加入氨水可显著改善Ni/SiO 2的DRM 反应活性、稳定性和抗积碳性。进一步的表征结果表明,随着氨水添加量的增加,催化剂活性相分散度提高,当n (NH 3)/n (Ni) ≥ 6 后,经800 ℃焙烧后催化剂上NiO 物种的平均粒径小于5 nm 。通过改变氨水,SiO 2,前驱盐的浸渍顺序发现只有用硝酸镍与一定浓度的氨水配成的混合溶液浸渍SiO 2才能获得具有良好分散度的Ni/SiO 2催化剂。氨水与Ni 形成镍氨络合物能够避免在浸渍过程中生成Ni(OH)2沉淀,进而有利于Ni 物种在SiO 2表面的均匀分散。氨水所形成的碱性环境还可使载体表面Si-O 物种部分溶解或“软化”,进而促进Ni 物种与载体表面Si-O 物种的相互作用,在后续的焙烧过程中生成与SiO 2具有较强相互作用的镍物种以及表面镍硅酸盐物种。这些物种具有良好的抗烧结性能,可防止Ni 物种在高温下团聚并在600 ℃以上通H 2还原后得到分散性良好且具有较强抗烧结性能的的金属Ni 颗粒。 关键词: Ni/SiO 2;氨水辅助浸渍;抗烧结;镍硅酸盐;甲烷二氧化碳重整 中图分类号:O 643.36+1 文献标志码: A 甲烷二氧化碳重整(DRM )制合成气反应是利用甲烷和二氧化碳这两种重要的含碳资源的一个有效途径,对缓解能源危机,减轻温室气体排放等具有重要意义[1-2]。目前用于DRM 反应的催化剂主要有3类,其中,负载型贵金属催化剂虽然催化活性高,稳定性好但是价格昂贵[3-6];金属硫化物或氧化物等虽然价格低廉但是常压下相比于Ni 基催化剂反应速率更慢且易于失活[7-8],需要在高压下反应;负载型非贵金属催化剂,尤其是Ni 基催化剂价格便宜,催化活性高,但在反应条件下容易发生烧结和积碳,导致催化剂失活[9-10]。如果能够解决厦门大学学报(自然科学版)

二氧化碳甲烷化(2008年江苏卷)

(2008年江苏卷)18.(10分)“温室效应”是全球关注的环境问题之一。CO 2是目前大气 中含量最高的一种温室气体。因此,控制和治理CO 2是解决温室效应的有效途径。 ⑴下列措施中,有利于降低大气中CO 2浓度的有: 。(填字母) a .减少化石燃料的使用 b .植树造林,增大植被面积 c .采用节能技术 d .利用太阳能、风能 ⑵将CO 2转化成有机物可有效实现碳循环。CO 2转化成有机物的例子很多,如: a .6CO 2 + 6H 2O 光合作用 C 6H 12O 6 +6O 2 b .CO 2 + 3H 2 催化剂△CH 3OH +H 2O c .CO 2 + CH 4 催化剂△ CH 3COOH d .2CO 2 + 6H 2 催化剂△ CH 2==CH 2 + 4H 2O 以上反应中,最节能的是 ,原子利用率最高的是 。 ⑶文献报道某课题组利用CO 2催化氢化制甲烷的研究过程如下: 反应结束后,气体中检测到CH 4和H 2,滤液中检测到HCOOH ,固体中检测到镍粉和Fe 3O 4。CH 4、HCOOH 、H 2的产量和镍粉用量的关系如下图所示(仅改变镍粉用量,其他条件不变):研究人员根据实验结果得出结论: HCOOH 是CO 2转化为CH 4的中间体, 即:CO 2 Ⅰ HCOOH Ⅱ CH 4 ①写出产生H 2的反应方程式 。 ②由图可知,镍粉是 。(填字母) a .反应Ⅰ的催化剂 b .反应Ⅱ的催化剂 c .反应Ⅰ、Ⅱ的催化剂 d .不是催化剂 ③当镍粉用量从1mmol 增加到10mmol ,反应速率的变化情况是 。(填字母) a .反应Ⅰ的速率增加,反应Ⅱ的速率不变 b .反应Ⅰ的速率不变,反应Ⅱ的速率增加 c .反应ⅠⅡ的速率均不变 d .反应ⅠⅡ的速率均增加,且反应Ⅰ的速率增加得快 e .反应ⅠⅡ的速率均增加,且反应Ⅱ的速率增加得快 f .反应Ⅰ的速率减小,反应Ⅱ的速率增加 18.⑴abcd ⑵a c ⑶①3Fe +4H 2O 300℃ Fe 3O 4+2H 2 ②c ③e

甲烷二氧化碳 测定器说明

CJR4/5 型甲烷二氧化碳测定器 使用说明书 上海高致精密仪器有限公司 警告: 1、维修时不得改变本安电路和与本安电路有关的元器件的电气参数﹑规格和 型号! 2、不得随意与其它未经联检的设备连接! 3、不得随意更改甲烷催化元器件生产厂家及型号、规格! 4、报警仪要由专人维护使用,初次使用应完整阅读使用说明书! 5、按规定的时间期限对报警仪进行零点、精度调节,如没有超差,可继续使 用! 6、要定期清扫报警仪;对于煤尘比较大,空气比较潮湿地点使用的报警仪要 经常检查报警仪气室内的粉末冶金过滤罩,当积累较多粉尘时,应换上干净的粉末冶金过滤罩;并将换下器件拿到地面进行清洗,以便下次使用!

仪器使用注意事项 (1)本仪器防护等级IP54,可以使用于较为阴暗、潮湿、粉尘等场所,但应避免强外力的猛烈撞击和挤压。 (2)仪器充电应在地面安全区域。 (3)仪器检修时不得随意更改产品元器件的参数、规格及型号。 (4)仪器使用时必须佩带动物皮套。 (5)仪器更换的催化元件应符合AQ6202-2006 的要求。 保管和维修 (1)仪器应有专人保管,并建立登记制度,将使用情况一一记录在案。 (2)仪器长期不用,应放于通风干燥处储存。 (3)禁止随意拆卸仪器,维修工作应由经过专门培训的专业人员担任。 仪器可能出现的现象或故障及可能原因

前言:本说明书为北京卓安恒瑞科技有限公司生产的CJR4/5 型甲烷二氧化碳测定器(以下简称仪器)使用说明书。使用本仪器前请详细阅读本说明书。 1 防爆型式和型号及含义 1.1 测定器防爆型式为矿用本质安全兼隔爆型,防爆标志为“ExdibⅠ Mb”。 1.2 由国家检验机构统一归口编制型号: C J R 4 / 5 1.3 外形尺寸及重量二氧化碳测量范围:0~5.00% CO2 甲烷测量范围:0~4.00%CH4 测定对象:二氧化碳测定对象:甲烷产品类型代号:测定器 1.3.1 外形尺寸:113.5mm×60.7mm×30mm 1.3.2 重量: 220g 1.3.3 外壳材质:ABS 工程塑料。 2. 用途 CJR4/5 型甲烷二氧化碳测定器适用于煤矿井下、巷道等处连续监测环境中甲烷(瓦斯)和二氧化碳浓度。当甲烷浓度超限或二氧化碳浓度低于某一设定值时,能自动发出声、光报警。可供相关工作人员、管理人员、专业人员、流动工作人员、煤矿通防人员等随身携带使用,也可供上述场所固定使用。 仪器防爆型式为矿用本安兼隔爆型,防爆标志为ExibdI。在具有甲烷爆炸性危险的煤矿井下: a)温度:0~40℃;b)湿 度:≤98%(25℃);c)大气 压力:80~116kPa;d)风 速:0~8m/s; e)贮存温度为-40~+60℃。 f)在具有爆炸性气体混合物的危险场所。 警示:当仪器使用环境条件超出上述使用条件时,可能会造成仪器误差增大。3. 测量原理 甲烷测量原理:甲烷可燃性气体检测采用热催化型高性能传感器组成惠斯顿电桥,测量臂由载体催 化元件(俗称黑元件)和纯载元件(俗称白元件)组成,辅助臂由金属膜电阻和电位器组成,稳压电路为电桥提供稳定的电压:在新鲜空气中桥路处于平衡状态,在被测气体中,甲烷在黑元件表面发生催化反映(无焰燃烧),使黑元件温度增高,电阻增大,桥路失去平衡,从而输出一个电位差,该电位差在一定范围内其大小与甲烷浓度成正比。此信号进入微处理器经过内部A/D 转换、数据处理、滤波之后直接驱动发光数码管显示出被测甲烷的浓度,并给出声光报警、电池检测等。

最新二氧化碳制取甲烷

1 (一) 全球CO 2循环策略系统,包括第一步,用电解产生氢气;第二步,H 2 和 2 CO 2反应生成CH 4 和少量其他碳氢化合物;第三步,生成的CH 4 作为能源消耗又生 3 成了CO 2,如此循环往复。其中的核心环节就是利用太阳能发电和CO 2 催化加氢 4 甲烷化的反应。5 CO 2甲烷化反应是由法国化学家Paul Sabatier提出的,因此,该反应又叫做 6 Sabatier反应,反应过程是将按一定比例混合CO 2的和H 2 气通过装有催化剂的反 7 应器,在一定的温度和压力条件下CO 2和H 2 发生反应生成水和甲烷。化学反应方 8 程式如下。 9 CO2+4H2=CH4+2H2O 10 (二) CO 2加氢甲烷化机理: 11 1 不经过一氧化碳中间物的机理 12 13 2 包括一氧化碳中间物的机理 14 随着研究的深入,CO 2甲烷化反应机理被推定可能由下列2个途径组成:吸附 15 的H和气相的CO 2反应生成吸附态的CO,随后吸附态的CO直接加氢生成甲烷; 16 或吸附的H和吸附的CO 2反应生成吸附态的CO,随后吸附态的CO加氢生成中间 17 体如甲酸根、碳酸根等再进一步加氢生成甲烷。Prairie提出了CO 2加氢甲烷化 18

的反应机理: 19 20 式中,m,s,i分别表示金属上,载体上及未经确定吸附点上的吸附物种。 21 Schild 等提出了Ni/ZrO 2催化CO 2 加氢甲烷化的反应机理。CO 2 先在催化剂活 22 性中心上转化为吸附的甲酸根和碳酸根,然后再进一步加氢为甲烷。 23 Os簇合物催化剂上反应机理表示为: 24 25 其中*表示吸附二氧化碳的活性点,M表示Os上的吸附活性点,主要用于加氢。 26 Ni/ZrO2上的甲烷化机理可表示为: 27

二氧化碳加氢催化合成甲醇的研究

二氧化碳加氢催化合成甲醇的研究 张四方3杨柳 1刘建春2 太原师范学院化学系山西太原030031 内容提要:二氧化碳加氢催化合成甲醇可以有效利用二氧化碳,缓解温室效应,提高氢能储存和运输的安全性。文章首先介绍了二氧化碳加氢合成甲醇的反应原理以及催化原理,然后介绍了影响二氧化碳加氢催化合成甲醇的三个重要条件。 关键词:二氧化碳加氢催化剂合成甲醇原理条件 现代工业的发展使得空气中二氧化碳的含量越来越高,大量二氧化碳的排放,不但严重浪费了碳资源,而且还使得温室效应日益严重。氢气是一种高效清洁燃料,燃烧时不但能够产生大量的热能,同时还不会对环境造成污染,但是氢气储存和运输却存在着高危因素。甲醇是氢的良好载体,不但可以在常温下进行保存,同时还可以方便运输,为有效利用二氧化碳,缓解温室效应,提高氢能储存和运输的安全性,工业上常常采取二氧化碳加氢催化合成甲醇的进行氢能的转化。 一、二氧化碳加氢合成甲醇的反应原理 对于二氧化碳加氢合成甲醇,目前存在着两种观点,一种观点认为二氧化碳首先和氢气反应生产一氧化碳和水,然后再由一氧化碳和氢气反应生成甲醇。其反应的化学原理式如下: CO2+H2 H2O+CO.....................................① CO+H2 H2O+CH3OH...............................② 第二种观点认为,在二氧化碳加氢合成甲醇的反应过程中,不存在中间产物一氧化碳,而是由二氧化碳和氢气直接反应生成甲醇。其反应的化学原理式如下: 随着科学的不断发展以及实验条件的逐渐完备,研究人员通过各种方法验证了第二种观点。这也就是说,二氧化碳加氢直接生成了甲醇,而不是经过中间产物一氧化碳加氢生成的。 二、二氧化碳加氢合成甲醇的催化原理 目前,在所有二氧化碳加氢合成甲醇的催化剂中,铜基催化剂是学者们研究最广泛的一类催化剂。铜基催化剂主要是由铜、锌等活性成分以及三氧化二铝、二氧化硅等载体组成的,其活性中心主要是低价铜,但是活动中心的价态以及结构组成目前尚不完全清除。有学者认为二氧化碳加氢合成甲醇的活性中心是+1价态的铜—氧化锌(Cu+/ZnO)或者+1价态的铜—氧化锆(Cu+/ZrO2);也有学者认为其活性成为零价态的铜—氧化锌(Cu0/ZnO),氧化锌主要是吸附氢气并且将解离出来的氢原子运输到零价态的铜(Cu0)上(Cu—H),促进二氧化碳活化,还有的学者认为,零价态的铜(Cu0)是二氧化碳加氢合成甲醇的活性中心,氧化锌主要起到提高铜分散度的作用。在对于活性中心研究的过程中,学者们纷纷得出结论,

甲烷化技术

甲烷化技术 ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ 甲烷化技术是煤制天然气的关键环节,一氧化碳和氢气在一定温度、压力和催化剂下合成甲烷的反应叫甲烷化反应。 煤制天然气的原理就是合成气的甲烷化反应,其化学方程式如下: 一氧化碳和氢反应: CO +3H2 =CH4 +H2O △H= -206.2kJ/mol 反应生成的水与一氧化碳发生作用 CO +H2O =CO2 +H2 △H= -38.4kJ/mol 二氧化碳与氢作用: CO2 +4H2 =CH4 +2H2O △H =-165.0kJ/mol 以上反应体系为强放热、快速率的自平衡反应,温度升高到一定程度后反应速率快速下降且向相反方向(左)进行。另外甲烷化的过程属于体积缩小的反应,增加反应压力,一方面有利于提高反应速率,另一方面有助于推动反应向甲烷合成向进行,增加压力可以在很大程度上减小装置体积,提高装置产能。 甲烷化反应为强放热反应,每转化1%的CO,体系绝热升温约72℃,因此煤制天然气工艺要解决一氧化碳转化率和反应热的转移问题。 该过程中发生的副反应: 一氧化碳的分解反应: 2CO =CO2 +C △H= -173.3kJ/mol 沉积碳的加氢反应 C +2H2 =CH4 △H = -84.3kJ/mol 该反应在甲烷合成温度下,达到平衡是很慢的。当有碳的沉积产生时催化剂失活。 反应器出口气体混合物的热力学平衡,决定于原料气的组成、压力和温度。目前,甲

烷化技术已经用在大规模的合成气制天然气上,最大的问题是催化剂的耐温和强放热反应器的设计制作上。 甲烷化工艺有两步法和一步法两种类型。 两步法甲烷化工艺是指煤气化得到的合成气,经气体变换单元提高H2/CO比后,再进入甲烷化单元的工艺技术。由于两步法甲烷化工艺技术成熟,甲烷转化率高,技术复杂度略低,已实现工业化运行。一步法甲烷化工艺是指将气体变换单元和甲烷化单元合并在一起同时进行的工艺技术,也叫直接合成天然气技术。 托普索甲烷化技术 ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ TREMP?技术的操作经验可以追溯到20世纪70年代后期,托普索进行了大量的中试验证,保证了该技术能够进行大规模应用。 托普索循环节能甲烷化工艺与鲁奇公司甲烷化技术和Davy公司甲烷化技术有所不同,

CH4与CO2重整制合成气研究的研究报告

CH4与CO2重整制合成气研究的研究报告 杨真一1 ,胡莹梦2,徐艳3 ,郑先坤4 (1:2009级化学工程与工艺四班,学号:0943084137 2::2009级化学工程与工艺三班,学号:0943084141 3:2009级化学工程与工艺三班,学号:0943084136 4:2009级化学工程与工艺三班,学号:0943084008) 摘要:二氧化碳和甲烷既是温室气体的主要组成,又是丰富的碳资源。在石油资源日益匮乏以及环境问题日益严重的今天,二氧化碳的资源化利用已受到了广泛的关注,二氧化碳与甲烷重整制合成气的方法也越来越多,从传统的催化重整反应到现今受到更多研究的等离子体重整CH4-CO2技术,还有等离子体协同催化剂重整技术,都有大量的研究基础,本文就目前常用的几种甲烷-二氧化碳重整技术进行了调研研究并对热等离子体重整制合成气的实验方法进行了简要说明与探讨。 关键词:甲烷二氧化碳重整合成气 研究二氧化碳和甲烷的化学转化和利用对于降低甲烷使用量、消除温室气体等具有重大意义;而合成气又是合成众多化工产品以及环境友好型清洁能源的重要原料。以天然气和CO 2 为原料制备合成气,与其他方法相比较,在获得同量碳 值的合成气情况下,不仅可以减少天然气消耗量50%,还有利于减排CO 2 。目前利用二氧化碳和甲烷重整制备合成气的方法主要有三种:(1)利用催化剂催化重 整制合成气;(2)利用等离子体技术重整CH 4-CO 2 ;(3)前两种方法的综合利用。 一、催化重整反应 在催化剂的作用下,发生CH4与CO2重整的反应。而其使用的催化剂则为重点研究对象。 (1)活性组分第ⅤⅢ族过渡金属除Os 外均具有重整活性,其中贵金属催化剂

二氧化碳转化制备化学品的研究进展

二氧化碳转化制备化学品的研究进展 摘要:二氧化碳是主要的温室气体,同时也是一种廉价、丰富的C1资源,将其转化为高附加值化学品具有重要的意义,而如何实现化学转化是一个极具挑战性的科学问题。基于此,本文简要介绍了CO2转化制备化工产品的现状及其发展前景,以期为其高效转化利用提供基础。 关键词:二氧化碳;化学转化;化学品 二氧化碳是工业燃料燃烧的主要产物之一,也是主要的温室气体,在自然界普遍存在,约占大气的体积分数为0.03%。随着碳排放量逐渐增大以及其给环保带来的巨大压力,CO2的减排已成为人们关注的焦点。 CO2的资源化利用是实现其减排的首要途径。CO2 作为一种廉价、丰富的C1 资源,将其转化为高附加值化学品具有重要意义。一般而言,CO2可转化制备的多种不同的化学品,如甲醇、合成气、低烯烃、醚等等。由于CO2具有很高的标准生成热,结构非常稳定,要实现其在温和条件下的化学转化成为一个极具挑战性的科学问题。因此,有必要对CO2转化为燃料、化工中间体等的研究进展进行介绍,从而为进一步实现CO2的高效转化利用提供基础。 1 CO2转化制甲醇 CO2直接催化加氢制甲醇是一个较经济的反应过程,早在1945年首次报道了Cu-Al催化剂上CO2和H2合成甲醇的研究。在5.15MPa和275 oC下,以Cu-Zn-Al2O3为催化剂进行CO2和H2合成反应,CO2的转化率为16%,甲醇的选择性为28%。近年来,报道了采用溶胶-凝胶技术制备Cu-ZnO-SiO2催化剂,在3.0 MPa、220 oC和6000 h-1的条件下,甲醇的选择性大于90%[1]。尽管目前就CO2的转化率及对应甲醇的选择性提高方面都有了一定的研究进展,但就催化机理方面的认识还非常欠缺,如反应的中间产物、催化活性中心等都不明确,这方面的研究尚处于初级阶段[2]。另外,就催化剂的稳定性和耐毒性问题也需要作进一步深入研究。总体而言,二氧化碳转化制甲醇的方法耗能高、投资大、反应条件较为苛刻(~6 MPa,250~300 oC)。 2 CO2转化制碳酸二甲酯(DMC) 碳酸二甲酯中含有甲基、甲氧基、羰基等官能团,具有较低的毒性,是一种很好的环境友好型产品,在工业化应用中展现出潜在的价值。CO2和甲醇合成DMC反应的平衡常数很小,这样将会使得CO2的平衡转化率也很小。通过设计催化剂可以打破反应的化学平衡限制,从而有助于碳酸二甲酯的生成[3]。目前研究的较多的催化剂有锡/钛的烷氧化物、碱/碱土金属碳酸盐和ZrO2基催化剂等等。就锡/钛基催化剂而言,其催化活性较低;在超临界条件下碱/碱土金属碳酸盐也能够催化该反应,但是对应的DMC产率较低。通过引入添加剂CH3I,可以有效的提高DMC的产率。虽然人们已经开展了一系列的研究工作,但是二

甲烷二氧化碳催化重整制合成气的研究进展和工艺技术

工艺与设备 化 工 设 计 通 讯 Technology and Equipment Chemical Engineering Design Communications ·56· 第45卷第9期 2019年9月 随着经济水平和科学技术不断的发展,我国的工业水平也得以不断的提高和强大。但是在工业生产的发展过程中,能源问题成为制约发展最为关键的因素。甲烷和二氧化碳作为两种主要的温室气体,它们的化学利用是一条非常好的节能减排途径,能够缓解当前日益严重的温室效应。1 甲烷二氧化碳催化重整制合成气的工艺技术 甲烷在实际化工过程中的利用主要可以分为两个部分。首先它可以直接转化:甲烷可以发生氧化反应,生产乙烯等一些重要的化工基本的原料。但是因为甲烷分子结构比较特殊,非常的稳定,所以它在发生氧化反应的过程中对反应的条件非常的苛刻,目前的技术手段下,没有办法大规模应用。第二种就是间接转化,可以将甲烷先转化成合成气,然后再转化成某种化工产品。生产过程中也可以通过一系列的反应来生产比较重要的化工产品。在目前的发展阶段中,完成规模化的生产甲烷制成合成气有三种办法:通过水蒸气来进行催化重整、进行甲烷的部分氧化、二氧化碳的重整。这三种模式在实际操作的过程中,最为基本的理论都是要提供一些还原性的物质。二氧化碳重整制成合成气的方法较其他两种方法相比具有一定的优点。首先通过这种方法制成的合成气具有较低的氢碳比,这样的比例可以使得在实际反应过程中直接作为合成的原料,这样就可以弥补在实际制成合成气过程中的一些不足。其次就是生产过程中使用了甲烷和二氧化碳这两种对地球温室效应影响大的气体,可以有效地改善人类的生存环境,提高人们生活的质量。还有就是甲烷和二氧化碳的催化重整,在实际反应过程中是具有较大反应热的可逆反应,所以它可以作为能源的储存介质。这样就可以使得甲烷和二氧化碳这样的惰性气体能够在一定程度上实现活化来进行相应的转变。近几年以来,人们对重整过程中催化剂的选择给予了高度的重视,并且在催化剂助剂、催化剂积碳行为以及催化反应理论等方面都取得了一系列的成果。 2 负载型技术催化剂 2.1 活性组分 活性组分见表1。 表1 活性组分 活性金属担载量% 反应温度K 1.Al 2O 3 Rh>Pd>Ru>Pt>Ir 1823Rh>Pd>Pt>>Ru 0.5~1823~973Ir>Rh>Pd>Ru 1 1 050Ni>Co>>Fe 9773~973Ni>Co>>Fe 10 1 023Ru>Rh 0.5873Ru>Rh 0.5 923~1 073 2.SiO 2 Ru>Rh>Ni>Pt>Pd 1973Ni>Ru>Rh>Pt>Pd>>Co 0.5 893 3.MgO Rh>Ru>Ir>Pt>Pd 0.5 1 073Ru>Rh>Ni>Pd>Pt 1973Ru>Rh~Ni>Ir>Pt>Pd 1823Ru>Rh>Pt>Pd 1 913 4.Eu 2O 3Ru>Ir 1~5 873~973 5.NaY Ni>Pd>Pt 2 873 在实际研究的过程中,甲烷二氧化碳重整制合成气的催化剂一般都会采用除锇外贵金属元素(钌、铑、铱、钯、铂)作为主要的活性组分,表1所示,其中钌、铑、铱催化性能较好,钯、铂次之。贵金属催化剂在甲烷氧化碳的重整反应中表现出了较高的活性,并且其选择性和抗积碳的性能也比非贵金属的性能要好。然而实际生产中,贵金属资源稀缺,价格昂贵,并且要考虑再回收问题,所以我国在实际研究的过程中,对 摘 要:近几年随着我国科学技术和经济水平的不断发展和提升,随之而来的环境问题也日益严峻,而二氧化碳则是重要的一环,为此我国政府以及相关工作部门加强了对甲烷和二氧化碳催化重整制合成气的研究力度。在甲烷和二氧化碳催化重整的相关技术取得阶段成果的同时,在反应时涉及的难点部分:催化剂的活性组分、载体的研究以及助剂的研究取得了突破,这体现出对工业发展质量和速度的高度肯定,但重整过程中仍然存在催化剂积碳失活等问题。主要对重整过程进行了综述,对重整过程需要的催化剂活性组分、载体以及催化剂积碳行为进行了介绍,并对制备方法进行了讨论。 关键词:甲烷;二氧化碳;催化重整;制合成气;研究进展;工艺技术中图分类号:O643.36;X51 文献标志码:A 文章编号:1003–6490(2019)09–0056–02 Research Progress and Technology of Catalytic Reforming of Methane with Carbon Dioxide to Synthetic Gas Chang Hui Abstract :In recent years ,with the continuous development and improvement of science ,technology and economy in China ,the environmental problems are becoming more and more serious.Carbon dioxide is an important link.Therefore ,our government and relevant departments have strengthened the research on catalytic reforming of methane and carbon dioxide to syngas ,in methane and carbon dioxide.At the same time ,the related technologies of carbon dioxide catalytic reforming have achieved some achievements ,and the difficult parts involved in the reaction :the research of active components ,carriers and promoters of catalysts have made breakthroughs ,which reflects the high affirmation of the quality and speed of industrial development ,but the deactivation of catalyst carbon deposition still exists in the process of reforming.And so on.In this paper ,the reforming process is reviewed.The active components ,supports and carbon deposition behavior of catalysts needed in the reforming process are introduced.The preparation methods are also discussed. Key words :methane ;carbon dioxide ;catalytic reforming ;synthesis gas ;research progress ;process technology 甲烷二氧化碳催化重整制合成气的研究进展和工艺技术 常?卉 (山西潞安煤基合成油有限公司,山西长治?046000) 收稿日期:2019–07–04作者简介: 常卉(1989—),女,山西长治人,助理工程师,主要从 事化工工艺相关工作。

二氧化碳制甲醇研究的进展

二氧化碳制甲醇研究的进展 二氧化碳是造成全球变暖的祸首,应对不断增长的碳排放量成为全球经济发展的重大课题。但它作为工业原料的用途却十分广泛。在低碳、减排成为世界经济发展主题词的今天,国内外已经开发出多项二氧化碳的新用途——发电、洗涤、杀虫……在这些五花八门的新技术中,有一项技术因有望对石化产业乃至整个工业发展产生颠覆性影响尤其值得关注,这便是二氧化碳加氢制甲醇。 国外攻关日渐升温 二氧化碳制甲醇对石化行业乃至世界工业的可持续发展究竟意味着什么? ?二氧化碳制甲醇如果实现产业化将引发石化行业原料来源的变革。因为一方面甲醇是用途最广的基础石油化工原料之一,它不仅本身可以直接用作燃料或者制汽油,同时甲醇也可以制芳烃、烯烃等化学品;另一方面,这一技术一旦获得突破和推广,意味着经济发展中面临的碳减排压力将得到有效缓解,之前人类发展中的减排负担将化身成为一项绿色产业的增长点。?北京化工大学一位副教授告诉CCIN 记者。 据了解,二氧化碳制甲醇曾经一度在全球引发一场关于?甲醇经济?的广泛探讨。诺贝尔化学奖得主、著名有机化学家乔治A〃奥拉曾提出,以可再生能源制氢,再利用二氧化碳加氢合成甲醇的循环模式可作为应对油气时代过后能源紧缺问题的一条解决途径。诺贝尔物

理学奖获得者卡罗〃卢比亚也多次公开建议采用二氧化碳制甲醇的方式取代现在风行的碳捕捉和封存,实现减排的同时为工业提供原料。 ?正是基于以上原因,该技术成为目前全球最受关注的二氧化碳应用技术之一。?北京化工大学这位副教授说,近几年来发达国家对二氧化碳制甲醇技术的探索研究步步升温,其探索步伐也一波三折。 早在2002年,韩国科学技术研究院纳米技术研究中心就已经开发出利用过渡金属催化剂在加温加压条件下日产100千克的二氧化碳加氢制甲醇中型试验装置,但由于种种原因,该装置后续的试验一度搁浅。 2009年,新加坡生物工程和纳米技术研究院的研究人员通过著名的专业杂志《应用化学》宣布,他们用N-杂环碳烯有机催化剂成功开发出了在室温下将二氧化碳转化为甲醇的催化工艺。就在业界充满期待时,该工艺的可行性却很快遭到德国海德堡大学有机化学研究所的专家多丽斯〃昆茨对催化剂本身能耗水平的质疑,因为制取该有机催化剂所消耗的能源比该工艺吸收并减少的二氧化碳还多。 不久前日本三井化学株式会社在该领域取得的成果再次让业界眼前一亮。今年5月,三井化学株式会社对外宣布,在二氧化碳分离、催化剂改良以及甲醇和水的分离等工序上获得很大突破后,他们2009年斥资1600万美元建成全球首套100吨/年二氧化碳制甲醇中试装置并获得成功。这是已有公布的消息中二氧化碳制甲醇最为领先的成果。

二氧化碳制取甲烷

(一) 全球CO2循环策略系统,包括第一步,用电解产生氢气;第二步,H2和CO2反应生成CH4和少量其他碳氢化合物;第三步,生成的CH4作为能源消耗又生成了CO2,如此循环往复。其中的核心环节就是利用太阳能发电和CO2催化加氢甲烷化的反应。 CO2甲烷化反应是由法国化学家Paul Sabatier提出的,因此,该反应又叫做Sabatier反应,反应过程是将按一定比例混合CO2的和H2气通过装有催化剂的反应器,在一定的温度和压力条件下CO2和H2发生反应生成水和甲烷。化学反应方程式如下。 CO2+4H2=CH4+2H2O (二) CO2加氢甲烷化机理: 1 不经过一氧化碳中间物的机理 2 包括一氧化碳中间物的机理 随着研究的深入,CO2甲烷化反应机理被推定可能由下列2个途径组成:吸附的H和气相的CO2反应生成吸附态的CO,随后吸附态的CO直接加氢生成甲烷;或吸附的H和吸附的CO2反应生成吸附态的CO,随后吸附态的CO加氢生成中间体如甲酸根、碳酸根等再进一步加氢生成甲烷。Prairie提出了CO2加氢甲烷化的反应机理:

式中,m,s,i分别表示金属上,载体上及未经确定吸附点上的吸附物种。 Schild 等提出了Ni/ZrO2催化CO2加氢甲烷化的反应机理。CO2先在催化剂活性中心上转化为吸附的甲酸根和碳酸根,然后再进一步加氢为甲烷。 Os簇合物催化剂上反应机理表示为: 其中*表示吸附二氧化碳的活性点,M表示Os上的吸附活性点,主要用于加氢。Ni/ZrO2上的甲烷化机理可表示为: 二氧化碳先在催化剂表面转化为吸附的甲酸根和碳酸根,再进一步氢化为甲烷。图中虚线表示热力学可行但未被观察到。 由非晶态合金Pd25Zr71制得的催化剂也显示出与之相似的结果。如下图所示:

焦炉气制甲醇工艺

焦炉气制甲醇工艺 The latest revision on November 22, 2020

焦炉气的精制是以炼焦剩余的焦炉气为生产原料,经化工产品回收(焦炉气的粗制);再经压缩后(2.55MPa),进入脱硫转化工段,脱硫采用NHD湿法脱硫和干法精脱硫技术,总硫脱至0.1×10-6,转化采用烃类部分氧化催化技术;制得合格的甲醇合成新鲜气(又称精制气),送去压缩工段合成气压缩机,最后进入甲醇合成塔制得甲醇。 第1章焦炉气成分分析 1.1典型焦炉气的组成 焦炉气的主要成分为甲烷26.49%、氢气58.48%、一氧化碳6.20%和二氧化碳 2.20%等,还有少量的氮气、不饱和烃、氧气、焦油、萘、硫化物、氰化物、氨、苯等杂质。焦炉气基础参数:流量62967m3/h(2台焦炉生产的剩余焦炉气);温度25℃;压力0.105MPa(a)(煤气柜压力)。 1.2焦炉气的回收利用 焦炉气是良好的合成氨、合成甲醇及制氢的原料。根据焦炉气组成特点,除H 2 、 CO、CO 2 为甲醇合成所需的有效成分外,其余组分一部分为对甲醇合成有害的物质(如多种形态的硫化物,苯、萘、氨、氰化物、不饱和烃等)。如焦炉气中的硫化物不仅会与转化催化剂的主要活性成分Ni迅速反应,生成NiS使催化剂失去活性,而且还会与甲醇合成催化剂的主要活性组分Cu迅速反应,生成CuS,使催化剂失去活性,并且这两种失活是无法再生的。又如,不饱和烃会在转化催化剂表面发生析碳反应,堵塞催化剂的有效孔隙及表面活性位,使催化剂活性降低。另一部分为对甲醇合成无用的物质(对 甲醇合成而言为惰性组分),如CH 4、N 2 等。惰性气体含量过高,不仅对甲醇合成无益, 而且会增加合成气体的功耗,从而降低有效成分的利用率。 第2章焦炉气的精制 2.1硫的脱除及加氢净化 焦炉气制甲醇工艺中,焦炉气精制的首要工作是“除毒”,将对甲醇合成催化剂有害

甲烷部分氧化与甲烷二氧化碳重整耦合制合成气Co系催化剂研究

文章编号:042727104(2003)0320253204 Ξ甲烷部分氧化与甲烷二氧化碳重整耦合制 合成气Co 系催化剂研究 郑小明,莫流业,井强山,费金华,楼 辉  (浙江大学催化研究所,杭州 310028) 摘 要:研究了Co/γ2Al 2O 3,Co/α2Al 2O 3和Co/SiO 2催化剂上的甲烷部分氧化与甲烷二氧化碳重整制合成气反应,只有Co/α2Al 2O 3是有效的.证明Co 和载体的相互作用过强或过弱都不利与此耦合反应.Co 和α2Al 2O 3的作用正好合适.此外,Co 的担载量和催化剂稳定性关系很大,Co 量过低则在反应过程中会因Co 0→CoAl 2O 4而失活,Co 担载量过高则会导致严重结碳. 关键词:甲烷部分氧化;甲烷二氧化碳重整;耦合反应;Co 催化剂 中图分类号:O 64 文献标识码:A CO 2是全球最丰富的碳资源.由于消耗化石燃料而排放的CO 2日益增多,其增加程度远远超过了以光合作用为主的植物对环境CO 2的自净化能力.CO 2是一种温室气体,其含量增加必然会逐渐造成生态灾难,严重威胁人类的生存环境.因此,效法自然生态系统,实现CO 2的资源化转化是一项重要而迫切的工作,也是目前国际上资源化生态化领域的研究热点之一.甲烷二氧化碳重整反应是利用甲烷和二氧化碳这2种最为廉价且都具有“温室效应”的一碳化合物作为氢源和碳源转化为合成气,它不仅具有环境效益,在经济上也有吸引力,但该反应是一个强吸热反应,能耗太高.若将甲烷二氧化碳重整与甲烷部分氧化、甲烷水蒸汽重整反应耦合,利用甲烷氧化放出的热量支持吸热的甲烷二氧化碳(或水蒸汽)重整反应,只要控制甲烷、二氧化碳、氧的比例,就可实现CO 2的低能耗或零能耗转化.该工艺过程克服了甲烷部分氧化和甲烷二氧化碳重整反应的缺点,是一个绿色的原子经济反应. 1 实验部分 载体γ2Al 2O 3为贵州产TL 202型;α2Al 2O 3由γ2Al 2O 3经1200℃焙烧5h 而得(经XRD 确证为α2Al 2O 3).SiO 2为南京天一无机化工厂生产.除SiO 2为0.280~0.450mm 外,载体使用前均取0.450~0.900mm. 负载钴催化剂的制备采用等体积浸渍制备,即用一定量的载体和Co (NO 3)2?6H 2O 溶液等体积浸渍过夜后,经120℃干燥,最后在空气气氛中650℃焙烧5h. 催化剂的体相组成用X 2射线衍射(XRD )方法测定.实验在日本理学公司生产的Rigaku D/Max 2ⅢB 型X 2射线粉末衍射仪上进行,Cu K α 射线,管流为40mA ,管压45kV.钴晶粒度的测定采用X 2射线宽化法.H 22TPR 在AM I 2200催化剂表征系统上进行.在Ar 气流中于300℃处理30min ,温度降至50℃后通H 2/Ar (φ(H 2)=10%)混合气,流速为25mL/min ,升温速率为20℃/min ,升温至900℃. 催化剂活性评价在自建常压固定床流动反应装置上进行,采用内径4mm 的石英反应管.原料气CO 2、CH 4、O 2纯度均达到99.9%.原料气流量由北京建中机器厂生产的D07212A/ZM 型质量流量控制器Ξ收稿日期:2003202226 基金项目:浙江省自然科学基金重点资助项目(ZD9903) 作者简介:郑小明(1941— ),男,教授,博士生导师.第42卷 第3期2003年6月 复旦学报(自然科学版)Journal of Fudan University (Natural Science ) Vol.42No.3J un.2003

甲烷二氧化碳自热重整工艺分析

2019年第44卷 天然气化工—C1化学与化工开发应用 收稿日期:2018-09-27;基金项目:国家重点研发计划(2016YFA0202802);作者简介:刘俊义(1981-),男,工程师,从事化工、生产管理工作,Email:luanljy@https://www.wendangku.net/doc/8d16918969.html, ;*通讯作者: 祝贺,Email:zhuh@https://www.wendangku.net/doc/8d16918969.html, ;张军,Email:zhangj@https://www.wendangku.net/doc/8d16918969.html, 。合成气是一种重要的碳一化工原料气,可以合成甲醇、甲酸甲酯、二甲醚、合成油等化工产品。以天然气为原料重整制备合成气,按照O 原子供应原料不同可分为:(1)水蒸气为氧原料的湿重整SMR ;(2)O 2为氧原料的甲烷部分氧化POM ;(3)CO 2为氧原料的干重整;(4)上述两种或三种物质为氧原料的耦合重整。 其中水蒸气重整SMR ,最早于1926年成功工业化,但所得合成气的n (H 2)/n (CO)高(约为3),该工艺过程能耗高、投资大、设备庞大、生产成本高、活性组分为Ni 的催化剂面临严重的积炭问题[1,2]。甲 烷部分氧化POM ,包括非催化部分氧化和催化部分氧化,非催化部分氧化为了获得甲烷的高转化率和最小的挥发分,要求温度控制在1573K 以上[3],不仅浪费资源并且对反应器材质的要求苛刻,催化部分氧化在催化床层中存在热点并且容易发生爆炸[4],因此难以得到广泛的工业应用。CO 2干重整,同时利用温室气体二氧化碳和甲烷作为原料,原料来源广泛,变废为宝,获得低n (H 2)/n (CO)的合成气, 引起学术界和产业界的广泛关注[5?7]。 CO 2干重整的重难点包括催化剂和高温条件 下热量供给等。制备高活性、高选择性、高稳定性、耐热性能好的催化剂是现阶段国内外研究的重点,已取得了很多有意义的结果[8]。许峥等[7]根据CO 2干重整可能包括的化学反应及热力学数据指出,重整反应CH 4+CO 2=2CO+2H 2是独立的吸热反应,高温对反应有利,且只有t >645℃才是热力学上可行的反应。甲烷部分氧化释放的高温热量用于满足干重整吸热的能量所需,实现甲烷二氧化碳自热重整(CO 2/CH 4/O 2重整),将是一个高效节能的方法,这也 是目前研究的热点[9]。 本项目组前期通过热力学Gibbs 自由能、计算 流体力学CFD 方法等对自热重整反应器进行了研究,并且在山西潞安进行了万方级的中试实验[10]。本文通过热力学方法对甲烷二氧化碳自热重整过程进行研究,分析其产物性质、转化率等主要特点,为原料选择、工艺条件、催化剂设计等提供帮助和指导。 1二氧化碳自热重整分析方法 甲烷二氧化碳自热重整主要反应有: (1)(2)(3)(4) 反应(1)为甲烷燃烧反应。反应(2)为CO 2?CH 4 重整反应,反应(3)为H 2O ?CH 4重整反应,水蒸气可为入口原料或过程产生,反应(2)和反应(3)均为可逆 甲烷二氧化碳自热重整工艺分析 刘俊义1,祝贺2*,张军2* (1.山西潞安矿业(集团)有限责任公司,山西 长治 046204; 2.中国科学院上海高等研究院低碳转化科学与工程重点实验室,上海 201203) 摘要:基于吉布斯自由能最小法,分析甲烷二氧化碳自热重整(CO 2/CH 4/O 2重整)工艺过程,可知:温度增加,合成气中甲烷 含量减少、二氧化碳转化率增加;压力增加,合成气中甲烷含量增加、二氧化碳转化率降低;碳碳比n (CO 2)/n (CH 4)增加,合成气中甲烷含量减少、二氧化碳转化率降低;温度、压力对氢碳比n (H 2)/n (CO)有影响,但n (CO 2)/n (CH 4)对n (H 2)/n (CO)影响更为显著;少量或适量水蒸气可以保护甲烷二氧化碳自热重整转化炉内关键设备、调节产物n (H 2)/n (CO)等。根据工业生产要求和特点,定 义出口合成气中甲烷的物质的量分数1%为临界条件,获得临界条件时n (CO 2)/n (CH 4)、重整平衡温度与压力、二氧化碳转化率以及n (H 2)/n (CO)等特性参数的关系图,指导工业生产的工艺过程和催化剂研究。 关键词:二氧化碳;甲烷含量;自热重整;干重整;合成气;临界条件 中图分类号:TE64;TQ01 文献标志码:A 文章编号:1001?9219(2019)03 ? 56

甲烷、CO2、氮气及乙烷等对煤的吸附作用的关系

甲烷、CO2、氮气及乙烷等对煤的吸附作用的关系 Richard Sakurovs , Stuart Day, Steve Weir (澳大利亚纽卡斯尔2300号330号邮箱CSIRO能源技术) 摘要:将CO2封存在煤层中能够减少其大气中的排放量。如果封存CO2能提高煤层气产量,那么部分封存成本就可通过生产的煤层气得到补偿。这需要了解CO2和甲烷在高压条件下的吸附作用。为了阐明CO2、甲烷、乙烷及氮气之间的关系,对其在55°C、20MPa下的吸附作用对多组煤样进行了研究。运用修正后的Dubinin–Radushkevich模型对等温吸附曲线进行了拟合。煤体对不同气体的最大吸附量高度相关。气体对煤体的最大吸附量与其临界温度成正比关系。乙烷和氮气的最大吸附量尤为接近:从体积来看,所以煤样对乙烷的最大吸附量是氮气的两倍。随着碳含量增加,CO2和乙烷的最大吸附率呈线性减少的关系。尽管碳含量增加较少,甲烷/乙烷的吸附率也呈现减小的趋势,这表明低阶煤的较大吸附率并不是CO2特有的。吸收的热量随着镜质体反色率的增加而增加;这可能反映了高阶煤更高的极化度(这也决定了它们的反射率)。 关键词:煤;CO2吸附;甲烷吸附;煤层气产量增加 1.引言 因为煤层能够存储其重量为6-12%的CO2,所以可选择不可开采煤层封存CO2 [1]。通常,煤层中含有甲烷。如果将CO2封存在这样的煤层中,同时能提高煤层气产量,部分封存成本能通过生产的煤层气得到补偿[2]。 众所周知,尽管已知的摩尔吸附比例从2:1到10:1,但相比乙烷,煤能吸附更多的CO2。这种变化在一定程度上是因为这些比例值并不是在饱和压力状态下测定的,CO2的吸附能力比甲烷更强,这一比例特别是在低压状态下会提高。然而,更为根本的是这两种气体的最大吸附量,并没有进行大量的研究。 从基本的单层模型来看,因为煤的表面积和孔隙容积是不变的,所以气体的最大吸附体积大致相同。简单的储层也能到出相应的结论。最大吸附体积保持不变被称之为Gurvich准则。尽管有些孔隙只有体积较小的分子能够进入,而体积较大的分子无法进入,当煤接触到极易被吸附的气体,煤体会膨胀,这样会导致表面积和微孔体积改变,甲烷和CO2最大吸附量之间的差异太大,没有哪种假设能够对其进行解释。其他研究者表示,CO2和煤之间存在着特定的关系,但是甲烷和煤却不存在这种关系[2]。 Sakurovs等[8]发现,如果气体都能进入煤体结构,那么煤对气体的最大吸附量与气体的临界温度近似成正比关系。这就可以解释为何CO2的最大吸附量约为甲烷的2倍:CO2的临

相关文档
相关文档 最新文档