文档库 最新最全的文档下载
当前位置:文档库 › 第二章 极限与连续习题解答

第二章 极限与连续习题解答

第二章  极限与连续习题解答
第二章  极限与连续习题解答

第十六章多元函数的极限与连续习题课

第十六章 多元函数的极限与连续习题课 一 概念叙述题 1.叙述0 lim ()P P f P A →=,其中0,P P 的坐标为00(,),(,)x y x y . lim ()0,0,P P f P A εδ→=??>?>当00(;)P U P D ∈I δ时,有()f P A ε-< (方形邻域)0,0,εδ??>?>当0x x δ-<,0y y δ-<, 00(,)(,)x y x y ≠,有(,)f x y A ε-< (圆形邻域)0,0,εδ??>?>当0δ<,有(,)f x y A ε-<. 2. 叙述 00(,)(,) lim (,)x y x y f x y →=+∞,00(,)(,) lim (,)x y x y f x y →=-∞,00(,)(,) lim (,)x y x y f x y →=∞的定义. 000000(,)(,) lim (,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=+∞??>?>-<-<≠>当时,有 0,0,0(,)G f x y G δδ??>?>< <>当时,有000000(,)(,) lim (,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=-∞??>?>-<-<≠<-当时,有 000000(,)(,) lim (,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=∞??>?>-<-<≠>当时,有. 3.叙述 0(,)(,) lim (,)x y y f x y A →+∞=的定义. 00(,)(,) lim (,)0,0,0,,(,)x y y f x y A M x M y y f x y A εδδε→+∞=??>?>?>>-<-<当时,有 4.叙述 0(,)(,) lim (,)x y x f x y →-∞=+∞的定义. 00(,)(,) lim (,)0,0,0,,(,)x y x f x y G M x x y M f x y G δδ→-∞=+∞??>?>?>-<<->当时,有 5. 叙述 (,)(,) lim (,)x y f x y →-∞+∞=-∞的定义. (,)(,) lim (,)0,0,,(,)x y f x y G M x M y M f x y G →-∞+∞=-∞??>?><-><-当时,有. 注:类似写出(,)(,) lim (,)x y f x y →=VW d 的定义,其中d 取,,,A ∞+∞-∞,?取0,,,x ∞+∞-∞, W 取0,,,y ∞+∞-∞. 6.叙述f 在点0P 连续的定义. f 在点0P 连续?ε?, 0δ?>,只要0(;)P U P D δ∈I ,就有0()()f P f P ε-< ?ε?, 0δ?>,当0x x δ-<,0y y δ-<,就有00(,)(,)f x y f x y ε-< ?ε?, 0δ?>,δ,就有00(,)(,)f x y f x y ε-<.

第二章-极限与连续--基础练习题(含解答)

第二章 极限与连续 基础练习题(作业) §2.1 数列的极限 一、观察并写出下列数列的极限: 1.4682, ,,357 极限为1 2.11111,,,,,2345--极限为0 3.212212?-??=?+???n n n n n n a n 为奇数为偶数极限为1 §2.2 函数的极限 一、画出函数图形,并根据函数图形写出下列函数极限: 1.lim →-∞x x e 极限为零 2.2 lim tan x x π → 无极限 3.lim arctan →-∞ x x 极限为2 π- 4.0 lim ln x x +→ 无极限,趋于-∞ 二、设2221,1()3,121,2x x f x x x x x x +??=-+? ,问当1x →,2x →时,()f x 的极限是否存在? 211lim ()lim(3)3x x f x x x ++→→=-+=;11 lim ()lim(21)3x x f x x --→→=+= 1 lim () 3.x f x →∴=

222lim ()lim(1)3x x f x x ++→→=-=;222 lim ()lim(3)53x x f x x x --→→=-+=≠ 2 lim ()x f x →∴不存在。 三、设()1 1 1x f x e =+,求 0x →时的左、右极限,并说明0x →时极限是否存在. ()1001lim lim 01x x x f x e ++→→==+ ()1 001 lim lim 11x x x f x e --→→==+ 0 lim ()x f x →∴不存在。 四、试讨论下列函数在0x →时极限是否存在. 1.绝对值函数()||=f x x ,存在极限为零 2.取整函数()[]=f x x 不存在 3.符号函数()sgn =f x x 不存在 §2.3 无穷小量与无穷大量 一、判断对错并说明理由: 1.1sin x x 是无穷小量. 错,无穷小量需相对极限过程而言,在某个极限过程中的无穷小量在其它极限过程中可能不再是无穷小量。当0x →时,1sin 0x x →;当1x →时,1sin sin1x x →不是无穷小量。 2.同一极限过程中两个无穷小量的商,未必是该极限过程中的无穷小量. 对,两个无穷小量的商是“0/0”型未定式,即可能是无穷小量,也可能是无穷大量或其它有极限但极限不为零的变量。 3.无穷大量一定是无界变量,而无界变量未必是无穷大量. 对,无穷大量绝对值无限增大因此一定是无界变量,但无界变量可能是个别点无限增大,变量并不能一致地大于任意给定的正数。 二、下列变量在哪些极限过程中是无穷大量,在哪些极限过程中是无穷小量: 1. 221 x x +-, 2x →-时,或x →∞时,为无穷小量; 1x →时,或1x →-时,为无穷大量。 2.1ln tan x ,k Z ∈

1-7 两个重要极限练习题

1-7 两个重要极限练习题 教学过程: 引入:考察极限x x x sin lim → 问题1:观察当x →0时函数的变化趋势: 当x 取正值趋近于0时, x x sin →1,即+ →0 lim x x x sin =1; 当x 取负值趋近于0时,-x →0, -x >0, sin(-x )>0.于是 ) () s i n (lim sin lim 0 x x x x x x --=+ - →-→. 综上所述,得 一.1si n l i m =→x x x . 1sin lim =→x x x 的特点: (1)它是“0 0”型,即若形式地应用商求极限的法则,得到的结果是0 0; (2)在分式中同时出现三角函数和x 的幂. 推广 如果a x →lim ?(x )=0,(a 可以是有限数x 0, ±∞或∞), 则 a x →l i m ()[] () x x ??s i n =()()[]() x x x ???sin lim 0 →=1. 例1 求x x x tan lim →. 解 x x x tan lim →=111cos 1lim sin lim cos 1sin lim cos sin lim 0 =?=?=? =→→→→x x x x x x x x x x x x x . 例2 求x x x 3sin lim 0 →. 解 x x x 3sin lim →=3sin lim 3)3(33sin 3lim 0==→→t t t x x x t x 令. 例3 求2 cos 1lim x x x -→. 解 2 cos 1lim x x x -→=212 2sin 2 2sin 21lim )2 (22sin lim 2sin 2lim 02 2 2 2 =? ? ==→→→x x x x x x x x x x x . 例4 求x x x arcsin lim →.

大一高数第一章--函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

【精品】高等数学习题详解第2章 极限与连续

习题2-1 1.观察下列数列的变化趋势,写出其极限: (1)1n n x n =+; (2)2(1)n n x =--; (3)13(1)n n x n =+-; (4)2 11n x n =-。 解:(1)此数列为12341234,,,,,,23451n n x x x x x n =====+所以lim 1n n x →∞ =。 (2)12343,1,3,1,,2(1),n n x x x x x =====--所以原数列极限不存在。 (3)1234111131,3,3,3,,3(1),234n n x x x x x n =-=+=-=+=+- 所以lim 3n n x →∞ =。 (4)12342111111,1,1,1,,1,4916n x x x x x n =-=-=-=-=-所以lim 1n n x →∞ =- 2.下列说法是否正确: (1)收敛数列一定有界; (2)有界数列一定收敛; (3)无界数列一定发散;

(4)极限大于0的数列的通项也一定大于0. 解:(1)正确. (2)错误例如数列{}(-1)n 有界,但它不收敛。 (3)正确。 (4)错误例如数列21(1)n n x n ??=+-???? 极限为1,极限大于零,但是11x =-小于零。 *3。用数列极限的精确定义证明下列极限: (1)1 (1)lim 1n n n n -→∞+-=; (2)222lim 11 n n n n →∞-=++; (3)3 23125lim -=-+∞→n n n 证:(1)对于任给的正数ε,要使1(1)111n n n x n n ε-+--=-=<,只要1n ε >即可,所以可取正整数1 N ε≥. 因此,0ε?>,1N ε???=???? ,当n N >时,总有1(1)1n n n ε-+--<,所以

第二章极限习题及答案:函数的连续性

函数的连续性 分段函数的极限和连续性 例 设???????<<=<<=) 21( 1)1( 21 )10( )(x x x x x f (1)求)x f (在点1=x 处的左、右极限,函数)x f (在点1=x 处是否有极限? (2)函数)x f (在点1=x 处是否连续? (3)确定函数)x f (的连续区间. 分析:对于函数)x f (在给定点0x 处的连续性,关键是判断函数当0x x →时的极限是否等于)(0x f ;函数在某一区间上任一点处都连续,则在该区间上连续. 解:(1)1lim )(lim 1 1 ==- - →→x x f x x 11lim )(lim 1 1 ==++→→x x x f ∴1)(lim 1 =→x f x 函数)x f (在点1=x 处有极限. (2))(lim 2 1)1(1 x f f x →≠= 函数)x f (在点1=x 处不连续. (3)函数)x f (的连续区间是(0,1),(1,2). 说明:不能错误地认为)1(f 存在,则)x f (在1=x 处就连续.求分段函数在分界点0x 的左右极限,一定要注意在分界点左、右的解析式的不同.只有)(lim ),(lim )(lim 0 x f x f x f x x x x x x →→→+ - =才存在. 函数的图象及连续性 例 已知函数2 4)(2 +-= x x x f , (1)求)x f (的定义域,并作出函数的图象;

(2)求)x f (的不连续点0x ; (3)对)x f (补充定义,使其是R 上的连续函数. 分析:函数)x f (是一个分式函数,它的定义域是使分母不为零的自变量x 的取值范围,给函数)x f (补充定义,使其在R 上是连续函数,一般是先求)(lim 0 x f x x →,再让)(lim )(0 0x f x f x x →=即可. 解:(1)当02≠+x 时,有2-≠x . 因此,函数的定义域是()()+∞--∞-,22, 当2≠x 时,.22 4)(2 -=+-=x x x x f 其图象如下图. (2)由定义域知,函数)x f (的不连续点是20-=x . (3)因为当2≠x 时,2)(-=x x f 所以4)2(lim )(lim 2 2 -=-=-→-→x x f x x 因此,将)x f (的表达式改写为 ?? ? ??-=--≠+-=)2(4)2(2 4 )(2x x x x x f 则函数)x f (在R 上是连续函数. 说明:要作分式函数的图象,首先应对函数式进行化简,再作函数的图象,特别要注意化简后的函数与原来的函数定义域是否一致. 利用函数图象判定方程是否存在实数根 例 利用连续函数的图象特征,判定方程01523 =+-x x 是否存在实数根.

第1章 函、极限与连续

第1章 函数、极限与连续 §1.1 函数 习题1-1 1.求下列函数的自然定义域: (1)1y x = (2)y =; (3)1 arcsin 2x y -=; (4)1arctan y x =; (5)y = ; (6)2 1log (16)x y x -=- (7)11ln 1x y x x -=+; (8)arcsin lg 10x y ??= ??? . 2.下列各题中,函数是否相同?为什么? (1)2()lg f x x =与()2lg g x x =; (2)()f x x = 与2()g x =; (3)21y x =+与21x y =+; (4)y = y x =; (5)y = y = (6)1y =与22sec tan y x x =-. 3.设sin ,3 ()0,3x x x x π?π?

是奇函数. 7.下列函数中哪些是偶函数,哪些是奇函数,哪些既非奇函数又非偶函数? (1)2 2 (1)y x x =-; (2)2 3 3y x x =-; (3)2 x x e e y -+= ; (4)cos sin x y x x e =; (5)tan sec 1y x x =-+; (6)(3)(3)y x x x =-+. 8.下列各函数中哪些是周期函数?对于周期函数,指出其周期: (1)cos(1)y x =-; (2)tan y x x =; (3)2sin y x =; (4)cos 4y x =; (5)cos y x x =; (6)1sin y x π=+. 9.设函数()f x 在数集X 上有定义,试证:函数()f x 在X 上有界的充分必要条件是它在X 上既有上界又有下界. 10.证明:()sin f x x x =在(0,)+∞上是无界函数. 11.某公司全年需购某商品1000台,每台购进价为4000元,分若干批进货,每批进货台数相同,一批商品售完后马上进下一批货,每进货一次需消耗费用2000元,如果商品均匀投放市场(即平均年存量为批量的一半),该商品每年每台库存费为进货价格的4﹪.试将该公司全年在该商品上的投资总额表示为批量的函数. 12.某运输公司规定某种商品的运输收费标准为:不超过200千米,每吨千米收费6元;200千米以上,但不超过500千米,每吨千米收费4元;500千米以上,每吨千米收费3元.试将每吨的运费表示为路程的函数. §1.2 初等函数 习题1-2 1.求下列函数的反函数: (1 )y = (2) (0)ax b y ad bc cx d += -≠+; (3)11x y x -=+; (4)1ln(2)y x =++ ; (5)2sin 3 66y x x π π??=-≤≤ ??? ; (6)221x x y =+. 2.设1,0 ()0,00x f x x x ? ,求2 (1),(1)f x f x --.

《高等数学一》第二章极限与连续历年试题模拟试题课后习题(汇总)(含答案解析)

第二章极限与连续 [单选题] 1、 若x0时,函数f(x)为x2的高阶无穷小量,则=() A、0 B、 C、1 D、∞ 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 本题考察高阶无穷小. 根据高阶无穷小的定义,有. [单选题] 2、 与都存在是函数在点处有极限的(). A、必要条件 B、充分条件 C、充要条件 D、无关条件 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等,所以不一定有极限. [单选题]

3、 (). A、 B、1 C、 D、0 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 [单选题] 4、 如果则(). A、0 B、1 C、2 D、5 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】

根据重要极限, [单选题] 5、 (). A、0 B、∞ C、2 D、-2 【从题库收藏夹删除】 【正确答案】 C 【您的答案】您未答题 【答案解析】 分子分母同除以,即 [单选题] 6、 (). A、0 B、∞ C、2 D、-2 【从题库收藏夹删除】

【您的答案】您未答题 【答案解析】 [单选题] 7、 设,则(). A、 B、2 C、 D、0 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题 【答案解析】 [单选题] 8、 当时,与等价的无穷小量是(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题

第一章 函数、极限与连续

第一章 函数、极限与连续 (一) 1.区间[)+∞,a 表示不等式( ) A .+∞<

微积分习题课一(多元函数极限、连续、可微及偏导)题目_777705511

习题课(多元函数极限、连续、可微及偏导) 一.累次极限与重极限 例.1 ()y x f ,= ? ?=?≠?+0,00,1sin 1sin y x y x x y y x 例.2 ??? ??=+≠++=0 03),(22222 2y x y x y x xy y x f 例.3 22 222(,)() x y f x y x y x y =+-,证明:()()0,lim lim ,lim lim 0000==→→→→y x f y x f y x x y ,而二重极限()y x f y x ,lim 0 →→不存在。 一般结论: 二.多元函数的极限与连续,连续函数性质 例.4 求下列极限: (1) 1 1 ) 0,1(),() (lim -+++→+y x y x y x y x ; (2) )ln()(lim 22) 0,0(),(y x y x y x ++→; (3) (,)(0,0)sin() lim x y xy x →; (4)22lim x y x y x xy y →∞→∞ +-+; (5)2 2 () lim ()x y x y x y e -+→+∞→+∞ +。 例.5 证明:极限0) ( lim 2 2 2) ,(),(=+∞∞→x y x y x xy .

例.6 若()y x f z ,=在2 R 上连续, 且 ()22 lim ,x y f x y +→+∞ =+∞, 证明 函数f 在2R 上一 定有最小值点。 例.7 )(x f 在n R 上连续,且 (1) 0x ≠时, 0)(>x f (2) ,0>?c )()(x x cf c f = 例.8 若),(y x f 在)0,0(点的某个邻域内有定义,0)0,0(=f ,且 a y x y x y x f y x =++-→2 2 2 2) 0,0(),(),(lim a 为常数。证明: (1)),(y x f 在)0,0(点连续; (2)若1-≠a ,则),(y x f 在)0,0(点连续,但不可微; (3)若1-=a ,则),(y x f 在)0,0(点可微。 例.9 函数?? ???=+≠+++=0,00),sin(),(2 22 2222 2y x y x y x y x xy y x f 在)0,0(点是否连续? (填是或否);在)0,0(点是否可微? (填是或否). 三.多元函数的全微分与偏导数 例.10 有如下做法: 设),()(),(y x y x y x f ?+=其中),(y x ?在)0,0(点连续, 则 [][] dy y x y x y x dx y x y x y x y x df y x ),()(),(),()(),(),(????+++++= 令0,0==y x , ))(0,0()0,0(dy dx df +=?. (1)指出上述方法的错误; (2)写出正确的解法. 例.11 设二元函数),(y x f 于全平面2 ?上可微,),(b a 为平面2 ?上给定的一点,则极限 =--+→x b x a f b x a f x ) ,(),(lim 。 例.12 设函数),(y x f 在)1,1(点可微,1)1,1(=f ,2)1,1(='x f ,3)1,1(='y f ,

高等数学习题详解-第2章-极限与连续

习题2-1 1. 观察下列数列的变化趋势,写出其极限: (1) 1 n n x n = + ; (2) 2(1)n n x =--; (3) 13(1)n n x n =+-; (4) 211n x n =-. 解:(1) 此数列为12341234,,,,,,23451 n n x x x x x n =====+L L 所以lim 1n n x →∞=。 (2) 12343,1,3,1,,2(1),n n x x x x x =====--L L 所以原数列极限不存在。 (3) 1234111131,3,3,3,,3(1),234n n x x x x x n =-=+=-=+=+-L L 所以lim 3n n x →∞ =。 (4) 123421111 11,1,1,1,,1,4916n x x x x x n =-= -=-=-=-L L 所以lim 1n n x →∞=- 2.下列说法是否正确: (1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散; (4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。 (2) 错误 例如数列{} (-1)n 有界,但它不收敛。 (3) 正确。 (4) 错误 例如数列21(1) n n x n ?? =+-??? ? 极限为1,极限大于零,但是11x =-小于零。 *3.用数列极限的精确定义证明下列极限: (1) 1 (1)lim 1n n n n -→∞+-=; (2) 22 2 lim 11 n n n n →∞-=++; (3) 3 2 3125lim -=-+∞→n n n 证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--= -=<,只要1 n ε >即可,所以可取正整数1 N ε ≥ . 因此,0ε?>,1N ε?? ?=???? ,当n N >时,总有 1(1)1n n n ε-+--<,所以

高等数学 第二章 极限与连续

第二章 极限与连续 教学要求 1.理解数列极限和函数极限(包括左、右极限)的概念,理解数列极限与函数极限的区别与联系。 2.熟练掌握极限的四则运算法则,熟练掌握两个重要极限及其应用。 3.理解无穷小与无穷大的概念,掌握无穷小比较方法以及利用无穷小等价求极限的方法。 4.理解函数连续性(包括左、右连续)与函数间断的概念,了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值与最小值定理和介值定理),并能灵活运用连续函数的性质。 教学重点 极限概念,极限四则运算法则;函数的连续性。 教学难点 极限定义,两个重要极限;连续与间断的判断。 教学内容 第一节 数列的极限 一、数列 1.数列的概念; 2.有界数列; 3.单调数列; 4.子列。 二、数列的极限 三、数列极限的性质与运算 1.数列极限的性质; 2.数列极限的运算法则。 第二节 函数的极限 一、函数极限的概念 1.自变量趋于有限值时函数的极限; 2.自变量趋于无穷大时函数的极限。 二、函数极限的性质 第三节 函数极限的运算法则 一、函数极限的运算法则 二、复合函数的极限运算法则 三、两个重要极限 1.重要极限1 1sin lim 0=→x x x ; 2.重要极限2 e x x x =+∞→)11(lim 或e x x x =+→1 0)1(lim 。

第四节无穷大与无穷小 一、无穷小 二、无穷大 第五节函数的连续性与间断点 一、函数的连续性概念 1.函数的增量; 2.函数的连续性 二、函数的间断点 第六节连续函数的性质 一、连续函数的和、差、积、商的连续性 二、反函数与复合函数的连续性 三、初等函数的连续性 四、闭区间商连续函数的性质

1-7两个重要极限练习题

1-7两个重要极限练习题 教学过程: 弓I 入:考察极 限 si nx lim ---- x 0 x 当x 取负值趋近于 0时,-X 0, -x>0, sin(-x)>0 .于是 sinx sin( x) lim -- lim —-__-. x 0 X x 0 ( x) 综上所述,得 sin X 一.lim 1 . x 0 X lim 沁1的特点: x 0 X (1) 它是“0 ”型,即若形式地应用商求极限的法则,得到的结果是 (2) 在分式中同时出现三角函数和 X 的幕. 如果lim (x)=0,(a 可以是有限数X 0,或), x a sin x 出arcsinx 求 lim ------ . x 0 x 令 arcsinx=t ,贝U x=sint 且 x 问题1:观察当x 0时函数的变化趋势: 当x 取正值趋近于0时,sin 2L 1,即lim 耳巴仝=1 ; x x 0 x 推广 lim x a sin X x =lim x 0 sin X =1 x lim = lim x 0 x x 0 cosx x lim s ^nx x 0 x COSX lim sinx x 0 lim --- x 0 cosx 1 1 1. 求lim 沁. x 0 x sin3x 3sin3x lim ------- = lim x 0 x x 0 击,-1 cosx 求 lim -- 2 — x 0 x 2 3x (令3x t) 3ltim Sin t 1 cosx _ X 1叫二叫 2si n 2x _____ 2 x 2 .2 x sin — lim - 2 x 0 x c 2(-)2 x im .x sin — 2 .x sin — 2 x 2

(完整版)《高等数学一》极限与连续历年试题模拟试题课后习题(汇总)(含答案解析).doc

. 第二章极限与连续 [单选题 ] 1、 若 x0 时,函数 f (x )为 x 2的高阶无穷小量,则=() A、0 B、 C、1 D、∞ 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 本题考察高阶无穷小. 根据高阶无穷小的定义,有. [单选题 ] 2、 与都存在是函数在点处有极限的(). A、必要条件 B、充分条件 C、充要条件 D、无关条件 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 时,极限存在的充分必要条件为左、右极限都存在并且相等,所以若函数在点处有极限,则必有与都存在.但二者都存在,不一定相等, 所以不一定有极限. [单选题 ] 3、 () .

A、 B、 1 C、 D、 0 【从题库收藏夹删除】 【正确答案】 A 【您的答案】您未答题 【答案解析】 [单选题 ] 4、 如果则(). A 、 0 B 、 1 C、 2 D、 5 【从题库收藏夹删除】 【正确答案】 D 【您的答案】您未答题 【答案解析】 根据重要极限 , [单选题 ] 5、

() . A 、 0 B 、∞ C、 2 D、 -2 【从题库收藏夹删除】 【正确答案】 C 【您的答案】您未答题 【答案解析】 分子分母同除以,即 [单选题 ] 6、 () . A 、 0 B 、∞ C、 2 D、 -2 【从题库收藏夹删除】 【正确答案】 C 【您的答案】您未答题 【答案解析】 [单选题 ] 7、 设,则().

A、 B、 2 C、 D、 0 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题 【答案解析】 [单选题 ] 8、 当时,与等价的无穷小量是(). A、 B、 C、 D、 【从题库收藏夹删除】 【正确答案】 B 【您的答案】您未答题 【答案解析】 由于故与等价, 推广,当时, [单选题 ] 9、 时,与等价的无穷小量是(). A、 B、

两个重要极限学习资料

2.5.1两个重要极限(第一课时) ——新浪微博:月牙LHZ 一、教学目标 1.复习该章的重点内容。 2.理解重要极限公式。 3.运用重要极限公式求解函数的极限。 二、教学重点和难点 重点:公式的熟记与理解。 难点:多种变形的应用。 三、教学过程 1、复习导入 (1)极限存在性定理:A x f x f A x f x x x x x x ==?=- +→→→)(lim )(lim )(lim 000 (2)无穷大量与无穷小量互为倒数,若)(0)(x x x f →∞→,则)(00)(1 x x x f →→ (3)极限的四则运算: [])(lim )(lim )()(lim x g x f x g x f ±=± [])(lim )(lim )()(lim x g x f x g x f ?=? )(lim ) (lim )()(lim x g x f x g x f = ()()0lim ≠x g (4)[])(lim )(lim x f c x cf =(加法推论) (5)[][]k k x f x f )(lim )(lim =(乘法推论) (6)[]0lim =?有界变量无穷小量(无穷小量的性质) eg: 0sin 1 lim sin lim =??? ???=∞→∞→x x x x x x

那么,?=→x x x sin lim 0呢,这是我们本节课要学的重要极限 2、掌握重要极限公式 1sin lim 0=→x x x 公式的特征:(1)0 0型极限; (2)分子是正弦函数; (3)sin 后面的变量与分母的变量相同。 3、典型例题 【例1】 求 kx x x sin lim 0→()0≠k 解:kx x x sin lim 0→=k k x x k x 111sin lim 10=?=→ 【例2】 求 x x x tan lim 0→ 解:x x x tan lim 0→=111cos 1lim sin lim cos 1sin lim 000=?=?=?? ? ??→→→x x x x x x x x x (推导公式:1tan lim 0=→x x x ) 【例3】 求 x x x 5sin lim 0→ 解:51555sin lim 555sin 5lim 5sin lim 000=?=?=?=→→→x x x x x x x x x 4、强化练习 (1)x x x 3sin lim 0→(2)x kx x sin lim 0→()0≠k (3)x x x 35sin lim 0→ (4) x x x 2tan lim 0→ 解:(1)x x x 3sin lim 0→=3 1131sin lim 310=?=→x x x (2) k k kx kx k kx kx k x kx x x x =?=?=?=→→→1sin lim sin lim sin lim 000 (3)3513555sin lim 353555sin lim 35sin lim 000 =?=?=??? ???=→→→x x x x x x x x x (4)x x x 2tan lim 0→=11122cos 1lim 22sin lim 22cos 12sin lim 000=??=??=?? ? ??→→→x x x x x x x x x 四、小结:

两个重要极限练习题

1-7两个重要极限练习题 教学过程: 引入:考察极限lim 匹 x 0 x 当x 取负值趋近于 0时,-x 0, -x>0, sin(-x)>0 .于是 综上所述,得 sin x lim 1 . x 0 lim 泌1的特点: x 0 x 解血沁= lim5s 吐(令3x t)3lim 血3. x 0 x x 0 3x t 0 t 1 COSX 求 lim 2— x 0 x 2 例4 求 im arcSinX . X 0 X 解 令 arcsinx=t ,贝U X =S int 且 X 0 时 t 0. 当x 取正值趋近于 0时,叱1,即lim 竺S=1 ; x x 0 x 问题1:观察当x 0时函数的变化趋势: si nx lim x 0 x li m sin( x) (x) x a 则 lim sin x .. sin x -=lim =1. x a X x 0 X 例1 求 tanx lim x 0 X sin x 解 lim tanx cosx sin x 1 si 1 li lim lim lim — lim x 0 x x 0 X x 0 x cosx x 0 X x 0 cosx 例2 求 ..sin3x lim 1. COSX 2 X =P 叫 2 X 2sin — 2 mo H X X- 2 2( X X sin sin lim 2 2 x 0 2 X X 2 2 (1) 它是“0 理,即若形式地应用商求极限的法则,得到的结果 是 推广 如果lim (x)=0,(a 可以是有限数X 0,或), x 0 x 1 1 2 X 一 2 2

第二章 极限与连续习题答案

第二章 极限与连续习题答案 练习题2.1 1. (1)1 (2)0 (3)不存在 (4)不存在 2. (1)0 (2)不存在 3. (1)不存在 (2)0 4. 5123 lim ()14,lim ()2,lim ()2,lim ()4x x x x f x f x f x f x →-→→→==== 练习题2.2 1. (1)0sin 7lim 7x x x →= (2)0tan 2lim 2x x x →= (3)0sin 55lim sin 33 x x x →= (4)3lim sin 3x x x →∞= 2. (1)55511lim(1)lim (1)x x x x e x x →∞→∞??+=+=??? ? (2)22211lim(1)lim (1)x x x x e x x ---→∞→∞??-=+=??-? ? (3)21 12200lim(12)lim (12)x x x x x x e ---→→??-=-=???? (4)2232 33 003lim()lim (1)33x x x x x x e ---→→??--=+=???? 练习题2.3 1. (1)无穷小 (2)无穷大 (3)无穷小 (4)无穷大 2. x →∞时函数为无穷小;2x →时函数为无穷大 3. (1)202lim sin 0x x x →=

(2)11lim(1)cos 01 x x x →-=- 练习题2.4 未定式及极限运算 1. (1)4233lim 01 x x x x →-=++ (2)223lim 2 x x x →-=∞- (3)322042lim 032x x x x x x →-+=+ (4)252lim 727 x x x →∞-=+ (5)2423lim 01 x x x x →∞-=++ (6)211113132lim()lim lim 11(1)(1)(1)(1)x x x x x x x x x x x →→→+---===∞---+-+ 2. 22222 2lim ()lim(2)6,lim ()lim()2,lim (),4x x x x x f x x f x x m m f x m ++--→→→→→=+==+=+∴= 存在 练习题2.5函数的连续 1. 1y ?=- 2. (1)(1,)-+∞ (2)(,0)(0,)-∞+∞ 3. 12 x =连续 1x =不连续 2x =连续 4. (1)1x =-第二类间断点 (2)4x =第一类间断点 5. 证明:设5()31,f x x x =--则()f x 在(,)-∞+∞内连续,所以()f x 在[]1,2内也连续,而 (1)30,(2)250f f =-<=>,所以,根据零点定理可知,至少有一个12ξ∈(,) ,使得()0f ξ=,即方程531x x -=至少有一个实根介于1和2之间。 复习题二 1. 判断题 (1) X (2) √ (3) X (4) X (5) √ (6) √ (7) X (8) X (9) X (10)X (11)X (12)√ (13)X (14)X (15)√ (16)X (17)√ (18)√ (19)√(20)X (21)√ (22)X 2. 填空题

【精品】第一章极限与连续

第一章 极限与连续 第一节 函数 函数是微积分研究的对象,中学数学应用“集合”与“对应”已经给出了函数概念,并在此基础上讨论了函数的一些简单性质.在这里除对中学数学的函数及其性质重点复习外,根据需要将对函数作进一步讨论。 一、函数的概念 在日常生活、生产活动、经济活动中,经常遇到各种不同的量。这些量可分为两类。一类是常量,一类是变量.而在某个变化过程中往往会出现多个变量,这些变量之间不是彼此孤立的,而是相互联系和制约的,一个量的变化会引起另一个量的变化,如:球的半径r 与该球的体积V 的关系可用式子3 4π3 V r = 给出,当半径r 在[0,)+∞内任取一个值时,体积V 有确定的值与之对应,我们称体积V 是半径r 的函数。 1.函数的概念 定义1 设有两个变量x 、y ,如果变量x 在一个非空数集D 内每取一个数值时,变量y 按照某个对应法则f 都有唯一一个确定的数值与之对应,则称变量y 是变量x 的函数,记作()y f x =.其中x 称为自变量,y 称为因变量或函数,f 是函数符号,表示y 与x 的对应规则,有时函数符号也可用其他字母表示,如

()y g x =,()y x ?=等.数集D 称为函数的定义域。 当自变量x 在其定义域内取定某确定值0x 时,因变量y 按照所给函数关系 ()y f x =求出的对应值0y 称为当0x x =时的函数值,记作0|x x y =或0()f x .函数值 的集合称为函数的值域. 例1 已知2()321f x x x =-+,求(0)f ,1 ()2 f ,()f x -,(1)f a +. 解:2(0)302011f =?-?+= 21113()3()2()12224 f =?-?+= 22()3()2()1321f x x x x x -=?--?-+=++ 22(1)3(1)2(1)1342f a a a a a +=?+-?++=++ 例2 求下列函数的定义域 (1)2 ()531f x x x =++ (2)2()23 x f x x x =-- (3)()f x = (4)()ln(21) f x x =-

相关文档
相关文档 最新文档