文档库 最新最全的文档下载
当前位置:文档库 › 使用栈和队列的图搜索算法-编译成功

使用栈和队列的图搜索算法-编译成功

使用栈和队列的图搜索算法-编译成功
使用栈和队列的图搜索算法-编译成功

#include

#include

#include

#include

#define MAX 100

using namespace std;

typedef struct

{

int edges[MAX][MAX]; //邻接矩阵

int n; //顶点数

int e; //边数

}MGraph;

bool visited[MAX]; //标记顶点是否被访问过

void creatMGraph(MGraph &G) //用引用作参数

{

int i,j;

int s,t; //存储顶点编号

int v; //存储边的权值

for(i=0;i

{

for(j=0;j

{

G.edges[i][j]=0;

}

visited[i]=false;

}

for(i=0;i

{

printf("请输入边的顶点编号及其权值");

scanf("%d %d %d",&s,&t,&v); //输入边的顶点编号以及权值

G.edges[s][t]=v;

}

}

void DFS(MGraph G,int v) //深度优先搜索

{

int i;

printf("%d ",v); //访问结点v

visited[v]=true;

for(i=0;i

{

if(G.edges[v][i]!=0&&visited[i]==false)

{

DFS(G,i);

}

}

}

void DFS1(MGraph G,int v) //非递归实现

{

int i;

for(i=0;i

{

visited[i]=false;

}

stack s; //定义栈

printf("以%d为初始节点的DFS的搜索路径为:%d ",v,v); //访问初始结点 visited[v]=true;

s.push(v); //入栈

//printf("%d\n",s.top());

while(!s.empty())

{

int i,j;

i=s.top(); //取栈顶顶点

for(j=i+1;j

{

//printf("顶点%d %d ;权重%d\n",i,j,G.edges[i][j]);

if(G.edges[i][j]>0&&visited[j]==false)

{

printf("%d ",j); //访问

visited[j]=true;

s.push(j); //访问完后入栈

break; //找到一个相邻未访问的顶点,访问之后则跳出循环}

}

if(j==G.n) //如果与i相邻的顶点都被访问过,则将顶点i出栈 s.pop();

}

printf("\n");

}

void BFS(MGraph G,int v) //广度优先搜索

{

int i;

for(i=0;i

{

visited[i]=false;

}

queue Q; //STL模板中的queue

printf("以%d为初始节点的BFS搜索路径为:%d ",v,v);

visited[v]=true;

Q.push(v);

while(!Q.empty())

{

int i,j;

i=Q.front(); //取队首顶点

Q.pop();

for(j=0;j

{

if(G.edges[i][j]!=0&&visited[j]==false) {

printf("%d ",j);

visited[j]=true;

Q.push(j);

}

}

}

}

int main(void)

{

int n,e; //建立的图的顶点数和边数

//while(scanf("%d %d",&n,&e)==2&&n>0)

//{

printf("请输入顶点数、边数:");

scanf("%d,%d",&n,&e);

MGraph G;

G.n=n;

G.e=e;

creatMGraph(G);

printf("图G构建完成,开始进行遍历!\n");

printf("递归的DFS搜索路径为:");

DFS(G,0);

printf("\n");

DFS1(G,0);

BFS(G,0);

printf("\n");

//}

return 0;

}

实验三 栈和队列的应用

实验三栈和队列的应用 1、实验目的 (1)熟练掌握栈和队列的结构以及这两种数据结构的特点、栈与队列的基本操作。 (2)能够在两种存储结构上实现栈的基本运算,特别注意栈满和栈空的判断条件及描述方法; (3)熟练掌握链队列和循环队列的基本运算,并特别注意队列满和队列空的判断条件和描述方法; (4)掌握栈和队列的应用; 2、实验内容 1)栈和队列基本操作实现 (1)栈的基本操作:采用顺序存储或链式存储结构(数据类型自定义),实现初始化栈、判栈是否为空、入栈、出栈、读取栈顶元素等基本操作,栈的存储结构自定义。 (2)队列的基本操作:实现循环队列或链队列的初始化、入队列、出队列、求队列中元素个数、判队列空等操作,队列的存储结构自定义。 2)栈和队列的应用 (1)利用栈的基本操作将一个十进制的正整数转换成二进制数据,并将其转换结果输出。 提示:利用栈的基本操作实现将任意一个十进制整数转化为R进制整数算法为: 十进制整数X和R作为形参 初始化栈 只要X不为0重复做下列动作 将x%R入栈 X=X/R 只要栈不为空重复做下列动作 栈顶出栈 输出栈顶元素 (2) 利用栈的基本操作对给定的字符串判断其是否是回文,若是则输出“Right”,否则输出“Wrong”。

(3) 假设循环队列中只设rear(队尾)和quelen(元素个数据)来分别表示队尾元素的位置和队中元素的个数,写出相应的入队和出队程序。 (4)选作题:编写程序实现对一个输入表达式的括号配对。 3、实验步骤 (1)理解栈的基本工作原理; (2)仔细分析实验内容,给出其算法和流程图; (3)用C语言实现该算法; (4)给出测试数据,并分析其结果; (5)在实验报告册上写出实验过程。 4、实验帮助 算法为: 1) 定义栈的顺序存取结构 2) 分别定义栈的基本操作(初始化栈、判栈为空、出栈、入栈等) 3) 定义一个函数用来实现上面问题: 十进制整数X和R作为形参 初始化栈 只要X不为0重复做下列动作 将X % R入栈 X=X/R 只要栈不为空重复做下列动作 栈顶出栈 输出栈顶元素 5、算法描述 (1))初始化栈S (创建一个空栈S) void initstack(sqstack *S) { S->base=(ElemType *) malloc(INITSIZE*sizeof(ElemType)); if(!S->base) exit (-1); S->top=0; /*空栈标志*/ S->stacksize = INITSIZE; } (2) 获取栈顶元素 int gettop(sqstack S,ElemType *e) //顺序钱 { if ( S.top==0 ) /* 栈空 */

随机直接搜索优化算法NLJ辨识算法

随机直接搜索优化算法NLJ 辨识算法 NLJ 优化算法是随机直接搜索优化算法的一种,它是由随机数直接搜索算法算法发展而来,可以有效地解决各种复杂的问题。因其结构简单以及收敛迅速使其在随机搜索算法中始终占有一席之地。这种算法的核心思想是利用收缩变量来缩小搜索域,找到次优解,然后再基于次优解重复上述过程直到最终获得最优解。 假设待辨识的系统模型为: 1110 1 ()(0,1,...,)n n n H s i n a s a s a s a -= =++ ++ (3.1) 其中,01,,...,n a a a 表示待辨识模型的系数值。 该算法主要有以下步骤: Step 1、初始化参数。根据辨识数据,通过手工调整模型参数大致拟合出一个初始模型,确定模型初始参数(0)k i a ,其次,确定参数搜索范围c 。()k i a j 表示参数i a 在第k 次迭代的搜索结果,0,1,...,k p =,j 表示迭代组数,0,1,...,j m =。参数的搜索范围可由设定参数初始值的倍数决定,具体规则如下: 0l i i r ca = ,当 时,1k k k i i i r ca v -=?。 (3.2) 其中,根据经验知识,c 取值为2。 Step 2、计算性能指标。选择如式(3.3)所示的输出误差指标,作为辨识性能指标式,将待辨识的参数带入系统模型,求解估计值()y t 。 0[()()]N t J y t y t ==-∑ (3.3) 其中,()y t 为t 时刻的实际数据。 Step 3、计算参数估计值。在第k 代计算参数估计参数k l a ,其中rand 是在 [0.5,0.5]-之间分布的随机数,k i a 由下式给出: 1()()k k k l i i a j a j rand r -=+? (3.4) 在第k 次迭代计算后,计算m 组性能指标,选择使得性能指标最小的参数值作为下一次迭代的初始值: 11min[(())](0)|k i k k i i J a j a a --= (3.5) Step 4、修改搜索范围。在第k 次搜索前需要根据下式(3.6)对搜索范围进行修正防止局限的搜索范围导致搜索陷入局部极值。 (3.6) 在此处引入变化率η,首先,计算判断每组参数幅值的变化率,并选择变化 3k >1k k k i i i r cr v -=

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

栈和队列(必备)

栈和队列是操作受限的线性表,好像每本讲数据结构的数都是这么说的。有些书按照这个思路给出了定义和实现;但是很遗憾,这本书没有这样做,所以,原书中的做法是重复建设,这或许可以用不是一个人写的这样的理由来开脱。 顺序表示的栈和队列,必须预先分配空间,并且空间大小受限,使用起来限制比较多。而且,由于限定存取位置,顺序表示的随机存取的优点就没有了,所以,链式结构应该是首选。 栈的定义和实现 #ifndef Stack_H #define Stack_H #include "List.h" template class Stack : List//栈类定义 { public: void Push(Type value) { Insert(value); } Type Pop() { Type p = *GetNext(); RemoveAfter(); return p; }

Type GetTop() { return *GetNext(); } List ::MakeEmpty; List ::IsEmpty; }; #endif 队列的定义和实现 #ifndef Queue_H #define Queue_H #include "List.h" template class Queue : List//队列定义{ public: void EnQueue(const Type &value) { LastInsert(value); } Type DeQueue() {

Type p = *GetNext(); RemoveAfter(); IsEmpty(); return p; } Type GetFront() { return *GetNext(); } List ::MakeEmpty; List ::IsEmpty; }; #endif 测试程序 #ifndef StackTest_H #define StackTest_H #include "Stack.h" void StackTest_int() { cout << endl << "整型栈测试" << endl;

实验二_栈、队列地实现与应用

实验二栈、队列的实现及应用 实验课程名:数据结构与算法 专业班级:学号::

/*构造空顺序栈*/ int InitStack(SqStack *S) //InitStack() sub-function { S->base = (SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType)); if (!S->base) { printf("分配空间失败!\n"); return (ERROR); } S->top = S->base; S->stacksize = STACK_INIT_SIZE; printf("栈初始化成功!\n"); return (OK); } //InitStack() end /*取顺序栈顶元素*/ int GetTop(SqStack *S, SElemType *e) //GetTop() sub-function { if (S->top == S->base) { printf("栈为空!\n"); //if empty SqStack return (ERROR); } *e = *(S->top - 1); return (OK); } //GetTop() end /*将元素压入顺序栈*/ int Push(SqStack *S) //Push() sub-function { SElemType e; if (S->top - S->base>S->stacksize) { S->base = (SElemType *)realloc(S->base, (S->stacksize + STACKINCREMENT*sizeof(SElemType))); if (!S->base) { printf("存储空间分配失败!\n"); return (ERROR); } S->top = S->base + S->stacksize; S->stacksize += STACKINCREMENT; } fflush(stdin);//清除输入缓冲区,否则原来的输入会默认送给变量x

搜索方法

1.怎样成为搜索高手——选择适当的查询词 搜索技巧,最基本同时也是最有效的,就是选择合适的查询词。选择查询词是一种经验积累,在一定程度上也有章可循: A.表述准确百度会严格按照您提交的查询词去搜索,因此,查询词表 述准确是获得良好搜索结果的必要前提。 一类常见的表述不准确情况是,脑袋里想着一回事,搜索框里输入 的是另一回事。 例如,要查找2004年国内十大新闻,查询词可以是“2004年国内十 大新闻”;但如果把查询词换成“2004年国内十大事件”,搜索结果就 没有能满足需求的了。 另一类典型的表述不准确,是查询词中包含错别字。 例如,要查找林心如的写真图片,用“林心如写真”,当然是没什么 问题;但如果写错了字,变成“林心茹写真”,搜索结果质量就差得 远了。 不过好在,百度对于用户常见的错别字输入,有纠错提示。您若输 入“林心茹写真”,在搜索结果上方,会提示“您要找的是不是: 林心 如写真”。

B.查询词的主题关联与简练目前的搜索引擎并不能很好的处理自然 语言。因此,在提交搜索请求时,您最好把自己的想法,提炼成简单的,而且与希望找到的信息内容主题关联的查询词。 还是用实际例子说明。某三年级小学生,想查一些关于时间的名人名言,他的查询词是“小学三年级关于时间的名人名言”。 这个查询词很完整的体现了搜索者的搜索意图,但效果并不好。 绝大多数名人名言,并不规定是针对几年级的,因此,“小学三年级” 事实上和主题无关,会使得搜索引擎丢掉大量不含“小学三年级”,但非常有价值的信息;“关于”也是一个与名人名言本身没有关系的词,多一个这样的词,又会减少很多有价值信息;“时间的名人名言”,其中的“的”也不是一个必要的词,会对搜索结果产生干扰;“名人名言”,名言通常就是名人留下来的,在名言前加上名人,是一种不必要的重复。 因此,最好的查询词,应该是“时间名言”。 试着找出下述查询词的问题,并想出更好的能满足搜索需求的查询词: 所得税会计处理问题探讨 周星驰个人档案和所拍的电影

图像匹配搜索算法

本文基于相关性分析来实现图像匹配 第一步:读取图像。 分别读取以下两幅相似的图片,显示效果如下: 第二步:选择一副图像的子区域。用户可以通过鼠标选择需要截取的图像部分,用于匹配。随机选取图片的一块区域,如下图:

第三步:使用相关性分析两幅图像 采用协方差的方式计算相关系数,分析图片的相似性。 1.协方差与相关系数的概念 对于二维随机变量(,)X Y ,除了关心它的各个分量的数学期望和方差外,还需要知道这两个分量之间的相互关系,这种关系无法从各个分量的期望和方差来说明,这就需要引进描述这两个分量之间相互关系的数字特征——协方差及相关系数。 若X Y 与相互独立,则()( )0 Y E X EX Y EY σ--???? =≠;若()()0E X EX Y EY --≠????,则表 示X 与Y 不独立,X 与Y 之间存在着一定的关系 设 (,)X Y 是二维随机变量, 则称()()E X EX Y EY --????为X 与Y 的协方差(Covariance ),记为 ()cov ,X Y 或XY σ,即 ()()()cov ,XY X Y E X EX Y EY σ==--???? 若 0X σ≠ 且0Y σ=≠,则称 XY XY X Y σρσσ== 为X 与Y 的相关系数(Correlation Coefficient )。()c o v ,X Y 是 有量纲的量,而XY ρ则是无量纲的量.协方差常用下列公式计算

()() =-? cov,X Y E XY EX EY 2.用全搜索和协方差计算截取图片与另外一幅图片的各点的相似度。c=normxcorr2(sub_I1(:,:,1),I2(:,:,1)); 第四步:找到整幅图像的偏移。 [max_c,imax]=max(abs(c(:))); [ypeak,xpeak]=ind2sub(size(c),imax(1)); [m,n]=size(sub_I1); xbegin=xpeak-n+1; ybegin=ypeak-m+1; xend=xpeak; yend=ypeak; 从原图像提取匹配到的图像 extracted_I1=I2(ybegin:yend,xbegin:xend,:); 第五步:显示匹配结果。 相关性匹配图: 找出峰值即最相似区域的中心

栈和队列及其应用7

栈和队列及其应用 栈和队列通常用来存储程序执行期间产生的一些临时信息。这两种特殊表结构的共同特点是,只做插入和删除,不做查找,而且所有的插入和删除只在端点进行。 栈是一种特殊的表结构,满足先进后出策略(LIFO:last in first out),栈的插入和删除操作只在同一端点进行。 可以进行插入的端点叫栈顶(top),另一个端点叫栈底(bottom)。 栈的插入操作又叫进栈(push)或压栈,栈删除操作又叫退栈(pop)或出栈。 栈的结构示意图 注意:进栈和退栈可以不定期地、反复交替进行。 生活中类似栈的应用的例子:装药片的小圆桶,军用子弹卡等。 思考:假设有编号为1,2,3的3辆车,如果按照编号为1,2,3的顺序入栈,那么可能的出栈顺序有几种情况??? 栈的存储方式: 1.顺序存储 2.链式存储 栈的常见操作(顺序存储方式实现) 数组s[M]存储一个栈(M代表栈的容量),top变量指示栈顶指针(下标)。 M=6时:

进栈算法: //宏定义 #define M 6 #define EMPTY -1 void pushs(int s[],int &top) { int x,k; cout<<"请输入要进栈的元素值x="; cin>>x; if(top==M-1) { cout<< "栈已经满,进栈失败!"<

百度搜索技巧的四个方法

百度搜索技巧的四个方法 大家都知道搜索方法正确后可以大大提高搜索效率,会使大家的工作既省心又省力!网上针对百度搜索技巧的方法也很多,但是我在这里做一个总结,总结出十大百度搜索技巧!这十大百度搜索技巧可以帮助大家更迅速准确的找到相应信息,详情如下: 1、十大百度搜索技巧之(一)—-“-” 百度支持减除不相关的资料的“-”功能,可以用于删除某些无关页面,注意建号前面必须要有空格 例如:“A-B”意思就是说想在搜索A的同时屏蔽关于B的信息 2、十大百度搜索技巧之(二)—-“|“ 百度支持并行搜索功能来搜索例如:“A|B”意思是想要搜索包含A的信息或者包含B的信息比方说你要查询seo和侯瑞男时,可以用”seo|侯瑞男“来搜索,无需分两次查询,百度就会提供跟“|”前后任何相关关键词相关的网站和资料 3、十大百度搜索技巧(三)—-intitle intitle的作用是把搜索范围限定在网页标题中,网页标题往往就是本篇内容的简要概括,将查询内容界定在网页标题中会起到很好的效果。 使用方法:把查询内容中,特别关键的部分用”intitle:“做前缀 例如:想要查找标题中带有Yadid’s World的如何优化长尾关键词的内容,您就可以如下: 可以用[如何优化长尾关键词intitle:Yadid's World]输入搜索框就可以查

到想要得到的结果注意:“intitle:”后面不能有空格 4、十大百度搜索技巧(四)—-site site的作用就是将搜索范围界定在指定网站中,有时我们如果知道某一个站内就有自己想要的东西,那么我们就可以把这个界定界定到这个站内,来提高查询效率 本文由销售技巧培训整理编辑https://www.wendangku.net/doc/8217526126.html,/

数据结构实验二(栈和队列)

实验二栈和队列的基本操作及其应用 一、实验目的 1、掌握栈和队列的顺序存储结构和链式存储结构,以便在实际中灵活应用。 2、掌握栈和队列的特点,即后进先出和先进先出的原则。 3、掌握栈和队列的基本运算,如:入栈与出栈,入队与出队等运算在顺序 存储结构和链式存储结构上的实现。 二、实验内容 本次实验提供4个题目,每个题目都标有难度系数,*越多难度越大,学生 可以根据自己的情况任选一个! 题目一:回文判断(*) [问题描述] 对于一个从键盘输入的字符串,判断其是否为回文。回文即正反序相同。如 “abba”是回文,而“abab”不是回文。 [基本要求] (1)数据从键盘读入; (2)输出要判断的字符串; (3)利用栈的基本操作对给定的字符串判断其是否是回文,若是则输出 “Yes”,否则输出“No”。 [测试数据] 由学生任意指定。 题目二:顺序栈和循环队列基本操作(*) [基本要求] 1、实现栈的基本操作 六项基本操作的机制是:初始化栈:init_stack(S);判断栈空:stack_empty(S);取栈顶元素:stack_top(S,x);入栈:push_stack(S,x);出栈:pop_stack(S);判断栈满:stack_full(S) 2、实现队列的基本操作 六项基本操作的机制是:初始化队列:init_queue(Q);判断队列是否为空:queue_empty(Q);取队头元素:queue_front(Q,x);入队:enqueue(Q,x);出队:outqueue(Q,x);判断队列是否为满:queue_full(Q) [测试数据]

由学生任意指定。 题目三:商品货架管理(**) [问题描述] 商店货架以栈的方式摆放商品。生产日期越近的越靠近栈底,出货时从栈顶取货。一天营业结束,如果货架不满,则需上货。入货直接将商品摆放到货架上,则会使生产日期越近的商品越靠近栈顶。这样就需要倒货架,使生产日期越近的越靠近栈底。 [基本要求] 设计一个算法,保证每一次上货后始终保持生产日期越近的商品越靠近栈底。 [实现提示] 可以用一个队列和一个临时栈作为周转。 [测试数据] 由学生任意指定。 三、实验前的准备工作 1、掌握栈的逻辑结构和存储结构。 2、熟练掌握栈的出栈、入栈等操作。 3、掌握队列的逻辑结构和存储结构。 4、熟练掌握队列的出队、入队等操作 四、实验报告要求 1、实验报告要按照实验报告格式规范书写。 *2、写出算法设计思路。 3、实验上要写出多批测试数据的运行结果。 4、结合运行结果,对程序进行分析。 题目四:Rails(ACM训练题) Description There is a famous railway station in PopPush City. Country there is incredibly hilly. The station was built in last century. Unfortunately, funds were extremely limited that time. It was possible to establish only a surface track. Moreover, it turned out that the

双边界直线搜索法

栅格向矢量转换中最为困难的是边界线搜索、拓扑结构生成和多余点去除。一种栅格数据库数据双边界直接搜索算法(Double Boundary Direct Finding,缩写为DBDF),较好地解决了上述问题。 双边界直接搜索算法的基本思想是通过边界提取,将左右多边形信息保存在边界点上,每条边界弧段由两个并行的边界链组成,分别记录该边界弧段的左右多边形编号。边界线搜索采用2×2栅格窗口,在每个窗口内的四个栅格数据的模式可以唯一地确定下一个窗口的搜索方向和该弧段的拓扑关系,这一方法加快了搜索速度,拓扑关系也很容易建立。具体步骤如下: (1)边界点和节点提取:采用2×2栅格阵列作为窗口顺序沿行、列方向对栅格图像全图扫描,如果窗口内四个栅格有且仅有两个不同的编号,则该四个栅格标识为边界点并保留各栅格所有多边形原编号;如果窗口内四个栅格有三个以上不同编号,则标识为节点(即不同边界弧段的交汇点),保证各栅格原多边形编号信息。对于对角线上栅格两两相同的情况,由于造成了多边形的不连通,也作为节点处理P72。 (2)边界线搜索与左右多边形信息记录:边界线搜索是逐个弧段进行的,对每个弧段从一组已标识的四个节点开始,选定与之相邻的任意一组四个边界点和节点都必定属于某一窗口的四个标识点之一。首先记录开始边界点组的两个多边形编号作为该弧段的左右多边形,下一点组的搜索方向则由前点组进入的搜索方向和该点的可能走向决定,每个边界点组只能有两个走向,一个是前点组进入的方向,另一个则可确定为将要搜索后续点组的方向。边界点组只可能有两个走向,即下方和右方,如果该边界点组由其下方的一点组被搜索到,则其后续点组一定在其右方;反之,如果该点在其右方的点组之后被搜索到(即该弧段的左右多边形编号分别为b和a),对其后续点组的搜索应确定为下方,其它情况依次类推。可见双边界结构可以唯一地确定搜索方向,从而大大地减少搜索时间,同时形成的矢量结构带有左右多边形编号信息,容易建立拓扑结构和与属性数据的联系,提高转换的效率。 (3)多余点去除:多余点的去除基于如下思想:在一个边界弧段上连续的三个点,如果在一定程度上可以认为在一条直线上(满足直线方程),则三个点中间一点可以被认为是多余的,予以去除。即满足: 由于在算法上的实现,要尽可能避免出现除零情形,可以转化为以下形式: (x1-x2)(y1-y3)=(x1-x3)(y1-y2) 或 (x1-x3)(y2-y3)=(x2-x3)(y1-y3) 其中(x1,y1),(x2,y2),(x3,y3)为某精度下边界弧段上连续三点的坐标,则(x2,y2)为多余点,可予以去除。 多余点是由于栅格向矢量转换时逐点搜索边界造成的(当边界为或近似为一直线时),这一算法可大量去除多余点,减少数据冗余。

第3章_栈和队列_习题参考答案

第四第3章栈和队列 一、基础知识题 3.1 有五个数依次进栈:1,2,3,4,5。在各种出栈的序列中,以3,4先出的序列有哪几个。(3在4之前出栈)。 【解答】34215 ,34251,34521 3.2 铁路进行列车调度时,常把站台设计成栈式结构,若进站的六辆列车顺序为:1,2,3,4,5,6,那么是否能够得到435612,325641,154623和135426的出站序列,如果不能,说明为什么不能;如果能,说明如何得到(即写出"进栈"或"出栈"的序列)。 【解答】输入序列为123456,不能得出435612和154623。不能得到435612的理由是,输出序列最后两元素是12,前面4个元素(4356)得到后,栈中元素剩12,且2在栈顶,不可能让栈底元素1在栈顶元素2之前出栈。不能得到154623的理由类似,当栈中元素只剩23,且3在栈顶,2不可能先于3出栈。 得到325641的过程如下:1 2 3顺序入栈,32出栈,得到部分输出序列32;然后45入栈,5出栈,部分输出序列变为325;接着6入栈并退栈,部分输出序列变为3256;最后41退栈,得最终结果325641。 得到135426的过程如下:1入栈并出栈,得到部分输出序列1;然后2和3入栈,3出栈,部分输出序列变为13;接着4和5入栈,5,4和2依次出栈,部分输出序列变为13542;最后6入栈并退栈,得最终结果135426。 3.3 若用一个大小为6的数组来实现循环队列,且当前rear和front的值分别为0和3,当从队列中删除一个元素,再加入两个元素后,rear和front的值分别为多少? 【解答】2和 4 3.4 设栈S和队列Q的初始状态为空,元素e1,e2,e3,e4,e5和e6依次通过栈S,一个元素出栈后即进队列Q,若6个元素出队的序列是e3,e5,e4,e6,e2,e1,则栈S的容量至少应该是多少? 【解答】4 3.5 循环队列的优点是什么,如何判断“空”和“满”。 【解答】循环队列解决了常规用0--m-1的数组表示队列时出现的“假溢出”(即队列未满但不能入队)。在循环队列中我们仍用队头指针等于队尾指针表示队空,而用牺牲一个单元的办法表示队满,即当队尾指针加1(求模)等于队头指针时,表示队列满。也有通过设标记以及用一个队头或队尾指针加上队中元素个数来区分队列的“空”和“满”的。 3.6 设长度为n的链队列用单循环链表表示,若只设头指针,则入队和出队的时间如何?若只设尾指针呢? 【解答】若只设头指针,则入队的时间为O(n),出队的时间为O(1)。若只设尾指针,则入队和出队的时间均为O(1)。 3.7 指出下面程序段的功能是什么? (1) void demo1(SeqStack S) {int i,arr[64],n=0; while(!StackEmpty(S)) arr[n++]=Pop(S); for(i=0;i

实验二栈队列的实现及应用

百度文库-让每个人平等地提升自我 实验二栈、队列的实现及应用 实验课程名:数据结构与算法 专业班级:_ 学号:__________ 姓名: _ 实验时间: ____ 实验地点:指导教师:冯珊__________ 一、实验目的 1掌握栈和队列的顺序存储结构和链式存储结构,以便在实际背景下灵活运用。 2、掌握栈和队列的特点,即先进后出与先进先出的原则。 3、掌握栈和队列的基本操作实现方法。 /*顺序栈的存储类型*/ typedef struct

1 2 3 4 5远 兀 1 一 7U- 元 谴 段 囑 :> o 1 2 3 R * 元 元 栈 書 t 出 一 ^ 零 遐 次 :± 谨 虚 1 2 3 ^ 5 I B

D 认戯握结IVl 匚on&ol eAp pli cation!\[>ebu g\Con 5 o-leApp li cation 1 .exe :1 刖人操作谊睪代码(05):2 : h E s 选 的 操 一 兀 一 b 一 丁 一 丁 栈 ? 遐 次 嘆 區 1 2 3 4 5 5 ^ 元 元 栈 S 退 、 灵 岀 祓 S I ■ i 9 I I I i 主 至 ..T' 一 兀 元 栈 £ 1 2 3 4 5 \Z

百度文库 -让每个人平等地提升自我 P入操隹选择代码(0-5>:4 派元素的是 ; 栈 化 出 取 示 艮 i元一一 选 的 操 元 -> 入 中 >c 1- 苴翻(05): 5 栈 化 亍 1 2 元 元 Is 务一(2):完成下列程序,该程序实现栈的链式存储结构,构建链栈(栈中的元素依次为China , Japan, France,India ,Australia ),依次进行进栈和出栈操作,判断栈空和栈满操作,返回栈顶元素操作。 要求生成链栈时,从键盘上读取数据元素。 (1)源代码:#i nclude<> #in clude<> #in clude<> # define OK 1 # define ERROR 0 typedef char DataType; /*链式栈的存储类型*/ typedef struct SNode

直接搜索法历史和现状

Direct search methods:then and now 直接搜索法:历史和现状 Robert Michael Lewis1,a,Virginia Torezon2,*,,b a,Michael W. Trosset a c, a ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton,V A 23681-2199. USA b Department of Computer Science, College of William & Mary, P.O. Box 8795, Williamsburg, V A 23187-8795, USA c Department of Mathematics, College of William & Mary, P.O. Box 8795, Williamsburg, V A 23187-8795, USA Received 1 July 1999; received in revised form 23 February 2000 Abstract 摘要 我们讨论无约束优化的直接搜索法。我们从现在的观点来看这类与导数无关的算法, 主要集中在1960到1971年的直接搜索法发展的黄金时期。我们首先讨论在未构建目标模型的情况怎样使用直接搜索法。然后我们考虑一些经典直接搜索法并揭示那些年这类算法的进展。特别地,当原始直接搜索法开始直接利用启发式方法时,更多近来的分析表明,虽然不是全部但大部分启发式方法实际上已经足可以保证迭代序列中至少有一个子序列全局收敛到目标函数的一阶驻点。 关键词:求导无关优化;直接搜索法;模式搜索法 We discuss direct search methods for unconstrained optimization. We give a modern

数据结构_实验三_栈和队列及其应用

实验编号:3四川师大《数据结构》实验报告2016年10月29日 实验三栈与队列及其应用_ 一.实验目得及要求 (1)掌握栈与队列这两种特殊得线性表,熟悉它们得特性,在实际问题背景下灵活运用它们; (2)本实验训练得要点就是“栈”得观点及其典型用法; (3)掌握问题求解得状态表示及其递归算法,以及由递归程序到非递归程序得转化方法。 二.实验内容 (1)编程实现栈在两种存储结构中得基本操作(栈得初始化、判栈空、入栈、出栈等); (2)应用栈得基本操作,实现数制转换(任意进制); (3)编程实现队列在两种存储结构中得基本操作(队列得初始化、判队列空、入队列、出队列); (4)利用栈实现任一个表达式中得语法检查(括号得匹配)。 (5)利用栈实现表达式得求值。 注:(1)~(3)必做,(4)~(5)选做。 三.主要仪器设备及软件 (1)PC机 (2)Dev C++ ,Visual C++, VS2010等 四.实验主要流程、基本操作或核心代码、算法片段(该部分如不够填写,请另加附页)(1)编程实现栈在两种存储结构中得基本操作(栈得初始化、判栈空、入栈、出栈等); A、顺序储存: ?代码部分: //Main、cpp: #include"SStack、h" int main() { SqStack S; SElemType e;

int elect=1; InitStack(S); cout << "已经创建一个存放字符型得栈" << endl; while (elect) { Muse(); cin >> elect; cout << endl; switch (elect) { case 1: cout << "input data:"; cin >> e; Push(S, e); break; case 2: if(Pop(S, e)) {cout << e <<" is pop"<< endl; } else{cout<<"blank"<

数据结构详细教案——栈和队列

数据结构教案 第三章栈和队列

目录 3.1栈的基本概念 (2) 3.1.1 栈的抽象数据类型定义 (2) 3.1.2 顺序栈 (2) 3.1.3 链栈 (4) 3.2栈的应用 (4) 3.2.1 数制转换:将十进制数N转换成其他d进制数 (4) 3.2.2 括号匹配的检验 (4) 3.2.3 行输入处理程序 (4) 3.2.4 迷宫求解 (5) 3.2.5 表达式求值 (5) 3.3栈与递归的实现 (6) 3.4队列的基本概念 (6) 3.4.1 队列的抽象数据类型定义 (6) 3.4.2 链队列 (7) 3.4.3 循环队列 (8) 3.5队列与栈的应用 (8) 3.5.1 离散事件模拟 (8)

第3章栈和队列 3.1 栈的基本概念 3.1.1 栈的抽象数据类型定义 1、栈的逻辑特征 1)限定在表尾进行插入或删除操作的线性表; 2)栈顶——表尾端;栈底——表头端 3)后进先出的线性表 2、抽象数据类型的定义 ADT Stack{ 数据对象:D={a i |a i∈ElemSet, i=1,2,…,n, n≥0} 数据关系:R={R1},R1={|a i-1,a i∈D, i=2,3,…,n } 基本操作: InitStack( &S ) 操作结果:构造一个空的栈S DestroyStack( &S ) 初始条件:栈S已存在 操作结果:销毁栈S ClearStack( &S ) 初始条件:栈S已存在 操作结果:将栈S重置为空栈 StackEmpty( S ) 初始条件:栈S已存在 操作结果:若S为空栈,则返回TRUE,否则返回FALSE StackLength( S ) 初始条件:栈S已存在 操作结果:返回栈S中数据元素的个数 GetTop( S, &e ) 初始条件:栈S已存在且非空 操作结果:用e返回S中栈顶元素 Push( &S, e ) 初始条件:栈S已存在 操作结果:插入元素e为新的栈顶元素 Pop( &S, &e ) 初始条件:栈S已存在且非空 操作结果:删除S的栈顶元素,并用e返回其值 StackTraverse( S, visit( ) ) 初始条件:栈S已存在且非空 操作结果:从栈底到栈顶依次对S的每个数据元素调用函数visit( )。一 旦visit( )失败,则操作失败 }ADT Stack 思考:栈的取元素、插入、删除操作与线性表的相应操作有何区别,为什么? 3.1.2 顺序栈

五种最优化方法

精心整理 五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3 4 1.2 2. 2.1 1 2 3 2.2 3. 3.1 1 2 3 3.2 4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降

方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤 5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下: min(f_1(x),f_2(x),...,f_k(x)) s.t.g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。 6.1遗传算法基本概念 1.个体与种群 个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。 种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。 2.适应度与适应度函数 适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。 适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。该函数就是遗传算法中指导搜索的评价函数。 6.2遗传算法基本流程 遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。 遗传算法步骤 步1在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;

栈和队列的基本操作实现及其应用

实验二栈和队列的基本操作实现及其应用 一_一、实验目的 1、熟练掌握栈和队列的基本操作在两种存储结构上的实现。 一_二、实验内容 题目一、试写一个算法,判断依次读入的一个以@为结束符的字符序列,是否为回文。所谓“回文“是指正向读和反向读都一样的一字符串,如“321123”或“ableelba”。 相关常量及结构定义: #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10 typedef int SElemType; typedef struct SqStack { SElemType *base; SElemType *top; int stacksize; }SqStack; 设计相关函数声明: 判断函数:int IsReverse() 栈:int InitStack(SqStack &S )

int Push(SqStack &S, SElemType e ) int Pop(SqStack &S,SElemType &e) int StackEmpty(s) 一_三、数据结构与核心算法的设计描述 1、初始化栈 /* 函数功能:对栈进行初始化。参数:栈(SqStack S)。 成功初始化返回0,否则返回-1 */ int InitStack(SqStack &S) { S.base=(SElemType *)malloc(10*sizeof(SElemType)); if(!S.base) //判断有无申请到空间 return -1; //没有申请到内存,参数失败返回-1 S.top=S.base; S.stacksize=STACK_INIT_SIZE; S.base=new SElemType; return 0; } 2、判断栈是否是空 /*函数功能:判断栈是否为空。参数; 栈(SqStack S)。栈为空时返回-1,不为空返回0*/ int StackEmpty(SqStack S) { if(S.top==S.base) return -1; else return 0; } 3、入栈 /*函数功能:向栈中插入元素。参数; 栈(SqStack S),元素(SElemtype e)。成功插入返回0,否则返回-1 */ int Push(SqStack &S,SElemType e) { if(S.top-S.base>=S.stacksize) { S.base=(SElemType *)realloc(S.base,(S.stacksize+1) * sizeof(SElemType));

五种最优化方法

五种最优化方法 1. 最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2 原理和步骤

3. 最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2 最速下降法算法原理和步骤

4. 模式搜索法(步长加速法) 4.1 简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1 简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有

相关文档