文档库 最新最全的文档下载
当前位置:文档库 › 光学多通道分析器实验报告

光学多通道分析器实验报告

光学多通道分析器实验报告
光学多通道分析器实验报告

1 几种人造光源光谱的观测

田群王静菊

(中国海洋大学海洋环境学院海洋气象系,山东青岛,266100)

摘要:采用光学多通道分析器(Optical Multi-channel Analyzer简称OMA)分析了人造蓝光光源、黄光光源和红光光源的发射光谱特性。

关键词:光学多通道分析仪CCD 光谱

光学多通道分析器利用CCD作为光检测器

用计算机进行数据采集和输出。其核心部件线阵CCD是阵列型的光电传感器。将CCD 用于光学多通道分析器中时,必须对仪器进行波长的标定[1],进行标定的方法是将波长和CCD像元序数建立近似的函数关系。本文介绍了运用汞灯谱线进行定标,测量3种未知谱线的方法。

1 实验装置

WGD-6型光学多通道分析器由光栅单色仪、CCD接收单元、扫描系统、电子放大器、A/D采集单元和计算机组成,如图1所示,入射狭缝、出射狭缝均为直狭缝,宽度范围为0~2mm连续可调。光源发出的光束射入狭缝S1,通过M1反射的光经M2反射成为平行光投到平面光栅G上,经G衍射后的平行光束经物镜M3,G采用反射式平面闪烁光栅做色散元件成像在S2上。M2、M3镜焦距均为302.5mm,光栅G每毫米刻线600条,闪耀波长550nm。[2]

图1WCG-6型光学多通道分析器原理示意图2 波长标定和未知光谱的测量

实验中用汞灯谱线对仪器进行波长标定,汞灯的谱线分布如图2。汞灯谱线对应

图2 汞灯谱线

的波长如表1。[3]根据文献[4],蓝光的波长范表1 汞灯谱线波长对照表

峰值编号 1 2 3 4

波长/nm 365.15 404.66 407.78 433.92

5 6 7 8 9

434.75 435.84 491.60 546.07 567.59

10 11 12

576.96 579.07 607.26

围为446~464nm,黄光578~592nm,红光620~760nm。三种光谱波长距离较远,为了减小误差,要对它们分别进行波长标定后测量。

2.1 人造蓝光光谱的测量

根据蓝光波长范围446~464nm,利用汞灯波长404 nm、407 nm、434 nm、491nm 进行三次定标,如图3,得到定标公

图3 蓝光区的定标

式:

y=c*x^2+d*x+e

c=0.00007

d=0.01786

e=384.64065

r=1.00000

使用此定标结果测量人造蓝光光谱,测量结果如图4,寻得人造蓝光光谱的中心波长为471.43nm。

图4 蓝光光谱的测量

人造蓝光光谱的波长范围约为432~510nm。

2.2 人造黄光光谱的测量

黄光波长范围578~592nm,利用汞灯波长546nm、576nm进行线性定标,如图5,得到定标公式:

图5 黄光区的定标

y=d*x+e

d=0.07317

e=524.92683

r=1.00000

使用此定标结果测量人造黄光光谱,测量结果如图6,寻得人造黄光光谱的中心波长为587.12nm。光谱的波长范围约为554~614nm。

2.3 人造红光光谱的测量

红光波长范围620~760nm 利用汞灯波长546nm 、576nm 进行线性定标,如图7,得定标公式为: y=d*x+e

d=0.07500

图6 黄光光谱的测量

图7 红光区的定标

e=533.55000

r=1.00000

使用此定标结果测量人造红光光谱,测量结果如图8,得到人造红光光谱的中心波长为633.90nm ,波长范围约为608~654nm 。

3 结论

(1)通过实验测得人造蓝光光谱的中心波长为471.43nm ,波长范围432~510nm ;人造黄光光谱的中心波长为587.12nm ,波长范围554~614nm ;人造红光光源的中心波长为633.90nm ,波长范围608~654nm 。以上结果均与理论值基本符合。 (2)存在的误差的原因分析:定标操作本身就是确立波长与CCD 像元序数函数关系的一种近似,结果难免存在误差;人造光源的光谱可能本身就与理论值存在一定差异;实验环境中存在其他光谱的干扰。

参考文献:

[1] 韦晓茹,居戬之等. CCD 型光学多通道分析仪波长的标

定 [J]. 光学仪器 2008,30(2):26-30 [2] 刘畅,王世才等. 利用光学多通道分析仪与分光光度计

测定叶绿素的紫外-可见光区吸收光谱 [J]. 物理实验 2005,25(12):38-41

[3] 杨述武,赵立竹等. 普通物理实验3-光学部分 [M]. 第

四版.北京:高等教育出版社. 2007:3-4

[4] 毛骏健,顾牡等. 大学物理学(下册) [M]. 北京:高等

教育出版社. 2006:91

网络通信实验报告

网络通信程序设计 实验报告 姓名: 学号: 专业:计算机科学与技术 授课教师:贺刚 完成日期: 2020.5.27

实验一:TCP套接字编程 内容: 1、利用阻塞模型的开发TCP通信客户端程序。 2、在程序中必须处理粘连包和残缺包问题。 3、自定义应用层协议。 4、采用多线程开发技术。 实验代码: 服务器端: #include "iostream.h" #include "initsock.h" #include "vector" using namespace std; CInitSock initSock; // 初始化Winsock库 DWORD WINAPI ThreadProc(LPVOID lpParam); vector sClientVector; int main() { //1 创建套节字 SOCKET sListen = ::socket(AF_INET, SOCK_STREAM, 0); if(sListen == INVALID_SOCKET) { cout<<"Failed socket() "<

(浙江专用版)高考物理二轮复习专题七实验题题型强化第16讲力学和光学实验讲义

(浙江专用版)高考物理二轮复习专题七实验题题型强化第16讲力学和光学实验讲义 力学和光学实验 专题定位 1.熟知各种器材的特性.2.熟悉课本实验,抓住实验的灵魂——实验原理,掌握数据处理的方法,熟知两类误差分析.3.利用所学过的知识,对实验器材或实验方法加以重组,完成新的实验设计. 第16讲 力学和光学实验 1.纸带的三大应用 (1)利用逐差法求解平均加速度(如图) a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2?a =a 1+a 2+a 33 (2)利用平均速度求瞬时速度:v n +1= x n +x n +12T (3)利用速度—时间图象求加速度. 2.光电门的应用 (1)求瞬时速度:把遮光条(宽度为d )通过光电门的时间Δt 内的平均速度看做遮光条经过光电门的瞬时速度,即v =d Δt . (2)求加速度:若两个光电门之间的距离为L ,则利用速度与位移的关系可求加速度,即a =v 22-v 122L . 3.实验的技巧 (1)要根据实验原理来判断是否需要平衡摩擦力,知道正确平衡摩擦力的方法. (2)要清楚钩码(或沙桶)与小车之间的质量关系,并且要清楚在仪器创新或实验原理创新的情形下,该条件是否需要调整. (3)要知道实验数据、图象的处理方法和运用数学知识解题的技巧. 例1 (2019·新高考研究联盟二次联考)如图甲所示,某同学用力传感器探究在小车及传感

器总质量不变时加速度跟它们所受拉力的关系. (1)实验中使用的电火花计时器,应接________电源. A .交流4~6V B .交流220V (2)该同学将实验器材如图甲所示连接后,沙桶的质量________(填“需要”或“不需要”)远小于小车及传感器总质量,实验时如将细线拉力当成小车及传感器的合外力,则________(填“需要”或“不需要”)先平衡摩擦力. (3)先接通电源,小车由静止释放,获得的一条纸带如图乙,每打5个点取一个计数点,x 1= 3.62cm ,x 4=5.12cm ,由图中数据可求得:2、3两点的距离(即x 3)约为________cm.(结果保留三位有效数字) (4)在实验中,甲、乙两位同学根据实验数据画出如图丙所示的小车的加速度a 和小车所受拉力F 的图象分别为图中的直线Ⅰ和直线Ⅱ,下面给出了关于形成这种情况原因的四种解释,其中可能正确的是________.(多选) A .实验前甲同学没有平衡摩擦力 B .甲同学在平衡摩擦力时把长木板的右端抬得过高了 C .实验前乙同学没有平衡摩擦力 D .乙同学在平衡摩擦力时,把长木板的右端抬得过高了 答案 (1)B (2)不需要 需要 (3)4.62 (4)BC 解析 (1)电火花计时器,需接220V 交流电源. (2)实验时如将细线拉力当成小车及传感器的合外力,不需要沙桶的质量远小于小车及传感器的总质量,但必须平衡摩擦力,否则细线的拉力不是合力. (3)相邻0.1s 内位移差Δx =x 4-x 1 3=0.50cm ,又x 4-x 3=Δx 故x 3=x 4-Δx =5.12cm -0.50cm =4.62cm.

用光学多道分析器进行光谱定性分析实验讲义

用光学多通道分析器进行光谱定性分析 每种物质都有其独特的分子和原子结构、运动状态和相应的能级分布,物质运动状态变化时会形成该物质所特有的分子光谱或原子光谱,称特征光谱线。通过光谱观测获取物质内、外信息,就是光谱分析。 根据光谱形成的机理,光谱分析可分为发射光谱分析、吸收光谱分析、散射光谱分析、荧光光谱分析等几大类;从分析目的来看,可分为光谱定性分析、光谱半定量分析和光谱定量分析。本实验仅进行光谱定性分析。 实验目的 1.学习使用光学多道分析器; 2.学习光谱定性分析的实验方法; 3.利用氢光谱测量里德堡常数。 实验仪器 WGD—6型光学多道分析器,由光栅单色仪,CCD接收单元,扫描系统,电子放大器,A/D采集单元,计算机组成。该设备集光学、精密机械、电子学、计算机技术于一体。光学系统采用C-T型,如图1所示。 入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm连续可调,光源发出的光束进入入射狭缝S1,S1位于反射式准光镜M2的焦面上,通过S1射入的光束经M2反射成平行光束投向平面光栅G上,衍射后的平行光束经物镜M3成像在S2上。 M2、M3 焦距302.5mm 光栅G 每毫米刻线600条闪耀波长550nm S2 CCD接收单元S3观察窗 M4 转镜转动M4可实现S2和S3之间的转换 实验原理 1.单色仪简介 单色仪是用来从具有复杂光谱组成的光源中,或从连续光谱中分离出“单色光”的仪器。所谓“单色光”是指相对于光源的光谱形成而言,其波长范围极狭窄、以致可以认为只是单一波长的光。 世界各国生产了种种不同类型的单色仪,为了结构设计和使用方便,极大多数单色仪

都采用恒偏向系统,因而仪器的入射狭缝和出射狭缝都可安装在固定不变的位置,只要旋转色散棱镜、光栅或自准直反射镜即可实现波长调节,从出射狭缝射出不同波长的单色装束。 单色仪的基本性能指标 (1)工作波长范围 工作波长范围表明单色仪输出的、能满足工作要求的单色光束所能覆盖的波长范围。 (2)线色散率和光谱分辨率 与仪器配用的色散组件的角色散率与光谱聚焦物镜的焦距决定单色仪的线色散率,通常以线色散率倒数形式给出仪器的色散能力。在棱镜单色仪中,线色散率是随工作波长变化而有明显变化的,所以必须在给出线色散率数值时标明波长数值。 单色仪的光谱分辨率表明该仪器在较严格的工作条件、较窄的狭缝宽度时所能达到的最高分辨率。对于一般性能单色仪,常常不给出具体分辨率数值,而指明仪器可以清晰分辨开的某些元素光谱线(例如钠元素的D光双线);对于高分辨单色仪,则常需给出具体的可分辨波长间隔值。 (3)波长精度和重复性 这两个指针表明单色仪出射光束的真实波长值与仪器指示值之间的偏差,以及多次重复时的重现程度。 单色仪的波长精度和重复性由仪器的波长调节机构或波长扫描机构及波长示数机构的工作精度决定。波长重复性还受到机械传动空间、摩擦力、电子系统噪声等随机因素的影响。 在大多数单色仪中,仪器的波长精度值大致与其分辨率数值相近(但带±号,即容许双向偏差),而波长读数的重复性数值(取若干次重复测定中的最大偏差值)则等于波长精度的绝对值。 (4)杂散光 单色仪的杂散光是指出射光束中所需光谱宽度范围以外其它波长的光辐射量,这种不需要的“杂光”辐射混在所需波带的辐射中输出,不但使出射光束的单色性降低,而且形成光度测定工作中的背景光,降低检测信噪比,甚至“淹没”微弱的有用光辐射信号。 通常,以达到辐射探测器的“杂光”通量与选定的所需波长通量之比作为杂散光强度的度量,实用上以百分数表示。由于散射光强度与波长四次方成反比,所以单色仪的杂散光强度随工作波长范围不同而不同,因此给出杂散光强度时应同时标明波长值。 WGD—6型光学多道分析器规格与主要技术指标: 波长范围300—900nm 焦距 302.5mm 相对孔径 D/F=1/7 分辨率优于0.2nm 波长精度≤±0.4nm 波长重复性 ≤±0.2nm 杂散光 ≤10-3 CCD(电荷耦合器件)接收单元 2048 光谱响应区间 300—900nm 积分时间9档(每档53毫秒) 重量20kg 2.光谱定性分析 光谱定性分析是根据物质的光谱中是否存在某种元素的特征光谱线,以判断该物质中是否含有该元素。

基础光学实验实验报告

基 础 光 学 实 验 姓名:许达学号:2120903018 应物21班

一.实验仪器 基础光学轨道系统,基础光学组合狭缝及偏振片,红光激光器及光圈支架,光传感器与转动传感器,科学工作室500或750接口,DataStudio软件系统 二.实验目的 1.通过该实验让学生了解并会运用实验器材,同时学会用计算机分析和处理实验数据。 2.通过该实验让学生了解基本的光学现象,并掌握其物理机制。三.实验原理 单缝衍射:当光通过单缝发生衍射,光强极小(暗点)的衍射图案由下式给出asinθ=mλ(m=1,2,3……),其中a是狭缝宽度,θ为衍射角度,λ是光波波长。 双缝干涉:当光通过两个狭缝发生干涉,从中央最大值(亮点)到单侧某极大值的角度由下式给出dsinθ=mλ(m=1,2,3……),其中d是狭缝间距,θ为从中心到第m级最大的夹角,λ是光波波长,m为级数。 光的偏振:通过第一偏振器后偏振电场为E0,以一定的角度β穿过第二偏振器,则场强变化为E0cosβ,由于光强正比于场强的平方,则,第二偏振器透过的光强为I=I0cos2β. 四.实验内容及过程

单缝衍射 单缝衍射光强分布图 如果设单缝与接收屏的距离为s,中央极强到光强极小点的距离为c,且sinθ≈tanθ=c/s,那么可以推得a=smλ/c.又在此次实验中,s=750mm,λ=6.5E(-4)mm,那么推得a=0.4875m/c,又由图可知:当m=1时,c=(88-82)/2=3mm,推得a=0.1625mm; 当m=2时,c=(91-79)/2=6mm,推得a=0.1625mm; 当m=3时,c=(94-76)/2=9mm,推得a=0.1625mm; 当m=4时,c=(96-74)/2=11mm,推得a=0.1773mm; 得到a的平均值0.1662mm,误差E=3.9%。 双缝干涉

计算机网络与通讯实验报告记录

计算机网络与通讯实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验名称:RJ-45接口与网卡设置 一.题目 二.实验设备仪器(软件环境) ⒈RJ-45压线钳 ⒉双绞线剥线器 ⒊ RJ-45接头 ⒋双绞线 ⒌网线测试仪 ⒍网卡 三.试验目的 1.掌握使用双绞线作为传输介质的网络连接方法,学会制作RJ45接头。 2.学会测线器的使用方法。 3.学会网卡的安装与设置。 四.试验内容及步骤 1.网线制作 (1)按以下步骤制作网线(直通线): ●抽出一小段线,然后先把外皮剥除一段; ●将双绞线反向缠绕开; ●根据标准排线(注意这里非常重要); ●铰齐线头(注意线头长度); ●插入插头; ●用打线钳夹紧; ●用同样方法制作另一端。 (2)网线的检查、测试 可以使用网线测试仪或万用表测试网线连接逻辑是否正确。网线制作好后,将其两端分别插入网卡和交换机的插口内,开机后对应的指示灯应闪亮。 2.网卡的安装与设置 (1)安装网卡驱动程序 一.将网卡插入计算机主板的插槽内,启动计算机; 二.单击【开始】|【设置】|【控制面板】命令,打开【控制面板】窗口,双击【添加硬件】 图标; 三.弹出【添加硬件向导】,在设备列表中选择所用的网卡设备,插入带有网卡驱动程序的 光盘(或磁盘),按向导提示逐步安装驱动程序; 四.若安装成功,向导会给出正确的提示。

(2)网络协议的添加(此步可略) 一般情况下,安装好网卡的驱动程序以后,最基本的TCP/IP网络协议会自动被添加到系统中。但在某些特殊情况下,需要我们手动添加/删除网络协议: ●单击【开始】|【设置】|【控制面板】命令,打开【控制面板】窗口,双击【网 络连接】图标; ●打开【网络连接】窗口,选中【本地连接】图标,点击右键,在弹出菜单中选 【属性】; ●进入【属性】对话框,选【常规】项,单击【安装】按钮; ●弹出【选择网络组件类型】对话框,在【单击要安装的网络组件类型】列表中 选【协议】,单击【安装】; ●弹出【选择网络协议】对话框,在【网络协议】列表中选择所要的协议,单击 【确定】按钮。 (3)网卡的设置 网卡安装成功后,必须对其进行配置,配置前,必须到网络中心申请到合法的IP地址,并得到网络中心提供的域名及其IP地址、网关的IP地址。 (1)打开【网络连接】中“本地连接”的【属性】窗口; (2)选中【Internet协议(TCP/IP)】,单击【属性】按钮; (3)打开【Internet协议(TCP/IP)属性】窗口,分别设置“IP地址”、“子网掩码”、“默认 网关”、“DNS服务器”等项。 3.网络连通的测试 常用ping命令来测试网络连接,格式: ping [-t] [-a] [-n count] [-l length] [-f] [-i ttl] [-v tos] [-r count] [-s count] [[-j computer-list] | [-k computer-list]] [-w timeout] destination-list 参数含义 -t 校验与指定计算机的连接,直到用户中断。 -a 将地址解析为计算机名。 -n count 发送由count指定数量的ECHO 报文,默认值为 4。 -l length 发送包含由length 指定数据长度的ECHO报文。 默认值为64字节,最大值为8192 字节。 -f 在包中发送“不分段”标志,该包将不被路由上的 网关分段。 -I ttl 将“生存时间”字段设置为ttl指定的数值。 -v tos 将“服务类型”字段设置为tos指定的数值。 -r count 在“记录路由”字段中记录发出报文和返回报文的 路由。指定的Count值最小可以是1,最大可以是 9 。 -s count 指定由count指定的转发次数的时间邮票。 -j computer-list 经过由computer-list指定的计算机列表的路由报 文。中间网关可能分隔连续的计算机(松散的源路 由)。允许的最大IP地址数目是9。 -k computer-list 经过由computer-list指定的计算机列表的路由报

几何光学实验讲义(最新版)资料

几何光学实验讲义 1.薄透镜焦距测量 实验目的 1.掌握薄透镜焦距的常用测定方法,研究透镜成像的规律。 2.理解明视距离与目镜放大倍数定义; 3.掌握测微目镜的使用。 实验仪器 1.LED白光点光源(需加毛玻璃扩展光源) 2.毛玻璃 3.品字形物屏 4.待测凸透镜(Φ = 50.8mm,f = 150,200mm) 5.平面反射镜 6.JX8测微目镜(15X,带分划板) 7.像屏2个(有标尺和无标尺) 8.干板架2个 9.卷尺 10.光学支撑件(支杆、调节支座、磁力表座、光学平台) 基础知识 1.光学系统的共轴调节 在开展光学实验时,要先熟悉各光学元件的调节,然后按照同轴等高的光学系统调节原则进行粗调和细调,直到各光学元件的光轴共轴,并与光学平台平行为止。 1、粗调:将目标物、凸透镜、凹透镜、平面镜、像屏等光学元件放在光具座(或光学平台)上,使它们尽量靠拢,用眼睛观察,进行粗调(升降调节、水平位移调节),使各

元件的中心大致在与导轨(平台)平行的同一直线上,并垂直于光具座导轨(平台)。 2、细调:利用透镜二次成像法来判断是否共轴,并进一步调至共轴。当物屏与像屏距离大于4f时,沿光轴移动凸透镜,将会成两次大小不同的实像。若两个像的中心重合,表示已经共轴;若不重合,以小像的中心位置为参考(可作一记号),调节透镜(或物,一般调透镜)的高低或水平位移,使大像中心与小像的中心完全重合,调节技巧为大像追小像,如下图所示。 图1-1 二次成像法中物与透镜位置变化对成像的影响 图1-1(a)表明透镜位置偏低(或物偏高),这时应将透镜升高(或把物降低)。而在图(b)情况,应将透镜降低(或将物升高)。水平调节类似于上述情形。当有两个透镜需要调整(如测凹透镜焦距)时,必须逐个进行上述调整,即先将一个透镜(凸)调好,记住像中心在屏上的位置,然后加上另一透镜(凹),再次观察成像的情况,对后一个透镜的位置上下、左右的调整,直至像中心仍旧保持在第一次成像时的中心位置上。注意,已调至同轴等高状态的透镜在后续的调整、测量中绝对不允许再变动 2.薄透镜成像公式 透镜分为会聚透镜和发散透镜两类,当透镜厚度与焦距相比甚小时,这种透镜称为薄透镜.值得注意的是,若透镜太厚,光在透镜中的传播路径便无法忽略,光在透镜里的传播路径就必须做进一步的考虑。 在实验中,必须注意各物理量所适用的符号法则。运算时已知量须添加符号,未知量则根据求得结果中的符号判断其物理意义。在讨论成像前,我们约定正负号定义(1)光由左往右前进定义为正方向传播。 (2)物体若放在透镜的左方,其物距为负,反之为正。 (3)像若形成在透镜的右方,其像距为正,反之为负。 (4)若是光线与光轴线相交,且相交的锐角是由光线顺时针方向朝光轴线方向旋转扫出来的,这个锐角定义为正,反之为负。

光学多道和氢氘同位素光谱

光学多道和氢氘同位素光谱 【摘要】: 本实验主要利用光学多道分析仪研究氢氘光谱并得到氢氘光谱的能级图。使用已知波长的氦光谱进行定标测量了氢光谱,并在此基础上测量氢氘同位素光谱,修正获得了氢氘光谱的波长值;利用这些测得值计算出了氢氘的里德伯常量分别为H R =109811.87cm -1,= 109840.39cm -1。利用氢氘光谱的波长差计算得出 了电子与质子质量之比为 =1906.84。 关键词: 光学多道分析仪、氢氘光谱,CCD ,光电倍增管 一、实验引言: 光谱是不同强度的电磁辐射按照波长的有序排列。光谱学是研究各种物质的光谱特征,并根据这些特征研究物质结构、物质成分和物质与电磁辐射的相互作用,以及光谱产生和测量方法的科学。 光谱学在物理学各分支学科中都占有重要地位,而且在很多方面有着广泛的应用。在光谱学史上,氢光谱的实验和理论研究都占有特别重要的地位。1885年,巴耳末(J.J.Balmer )发现了可见光区氢光谱线波长的规律。1892年,尤雷(H.C.Urey )等发现氢(H)的同位素氘(D)的光谱,氢氘原子对应的谱线波长存在“同位素位移”。 本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点, 并学习光学多道仪的使用方法及基本的光谱学技术。 二、实验原理: (一、)在原子体系中,原子的能量状态是量子化的。用1E 和2E 表示不同能级的能量, ε表示跃迁发出光子的能量,h 表示波尔兹曼常量,ν表示光子的频率,对于原子从 低能级到高能级的跃迁我们有:

21h E E εν==-,其中21 E E h ν-= (1) 由于原子能级的分立,频率ν也为分立值,在分光仪上表现为一条条分立的“线性光谱”,这些频率由巴耳末公式确定: H 原子: 22121 11H H R n n λ?? =- ??? (2) 其中1n 和2n 为轨道量子数,H R 为氢原子的里德伯常数。当1n =2,2n =3,4,5……时,公式(2)对应氢原子巴耳末系。 同理,D 原子:22121 11D D R n n λ?? =- ??? (3) 其中1n =2,2n =3,4,5……时对应氘原子巴耳末系,D R 为氘原子的里德伯常数。 氢原子和氘原子巴耳末系对应的波长差为: 1 2211112H D H D R R n λλλ-???? ?=-=-- ? ?? ???,n =3,4,5……, (4) 其中p H p e m R R m m ∞ =+,22p D p e m R R m m ∞ =+,R ∞=109737.31cm -1 (5) 由公式(5)可得:1 122p e H p e D m m R m m R ??+= ? ?+? ? (6) 因此: 111 2e H D p e D m R R m m R -=+ (7) 有: 1 2211222e e D D p e p e m m R m m n m m λλ-?? ???= -= ???++? ??? (8) 由于p m >>e m ,所以: 2e D p m m λ λ?≈ (9) 测出对应谱线波长及波长差便可通过公式(9)计算出出电子和质子的质量比。 (二、)仪器

基础光学实验实验报告

基础光学实验 一、实验仪器 从基础光学轨道系统,红光激光器及光圈支架,光传感器与转动传感器,科学工作室500或750接口,DataStudio软件系统 二、实验简介 利用传感器扫描激光衍射斑点,可标度各个衍射单缝之间光强与距离变化的具体规律。同样可采集干涉双缝或多缝的光强分布规律。与理论值相对比,并比较干涉和衍射模式的异同。 理论基础 衍射:当光通过单缝后发生衍射,光强极小(暗点)的衍射图案由下式给出 asinθ=m’λ(m’=1,2,3,….)(1) 其中a是狭缝宽度,θ为衍射角度,λ是光的波长。 下图所以为激光实际衍射图案,光强与位置关系可由计算机采集得到。衍射θ角是指从单缝中心到第一级小,则m’为衍射分布级 数。

双缝干涉:当光通过两个狭缝发生干涉,从中央最大值(亮点)到单侧某极大的角度由下式给出: dsinθ=mλ(m=1,2,3,….)(2) 其中d是狭缝间距,θ为从中心到第m级最大的夹角,λ是光的波长,m为级数(0为中心最高,1为第一级的最大,2为第二级的最大…从中心向外计数)。 如下图所示,为双缝干涉的各级光强包络与狭缝的具体关系。 三、实验预备 1.将单缝盘安装到光圈支架上,单缝盘可在光圈支架上旋转,将光圈支架的螺丝拧紧,使单缝盘在使用过程中不能转动。要选择所需的狭缝,秩序旋转光栅片中所需的狭缝到单缝盘中心即可。 2、将采集数据的光传感器与转动传感器安装在光学轨道的另一侧,并调整方向。 3、将激光器只对准狭缝,主义光栅盘侧靠近激光器大约几厘米的距离,打开激光器(切勿

直视激光)。调整光栅盘与激光器。 4、自左向右和向上向下的调节激光束的位置,直至光束的中心通过狭缝,一旦这个位置确定,请勿在实验过程中调整激光束。 5、初始光传感器增益开关为×10,根据光强适时调整。并根据右图正确讲转动传感器及光传感器接入科学工作室500. 6、打开DataStudio软件,并设置文件名。 四、实验内容 A、单缝衍射 1、旋转单缝光栅,使激光光束通过设置为0.16毫米的单缝。 2、采集数据前,将光传感器移动衍射光斑的一侧,使传感器采集狭缝到需要扫描的起点。 3、在计算机上启动传感器,然后慢慢允许推动旋转运动传感器扫描衍射斑点,完成扫描后点击停止传感器。若果光强过低或者过高,改变光传感器(1×,10×,100×)。 4、使用式(1)确定狭缝宽度: (a)测量中央主级大到每一侧上的第一个极小值之间的距离S。 (b)激光波长使用激光器上的参数。 (c)测量单缝光栅到光传感器的前部之间的距离L。 (d)利用以上数据计算至少两个不同的最小值和平均的答案。分析计算结果与标准缝宽之间的误差以及主要来源。 B、双峰衍射 1、将单缝光栅转为多缝光栅。选择狭缝间距为0.25mm(d)和狭缝官渡0.04mm(a)的多缝。 2、采集数据前,将光传感器移动衍射光板的一侧,是传感器采集狭缝到需要扫描的起点。 3、在计算机上启动传感器,然后慢慢允许推动旋转运动传感器扫描衍射斑点。完成扫描后点击停止传感器。如光强过低或者过高,改变光传感器(1×,10×,100×)。 4、利用DataStudio软件来测量主极大到一侧第一、二、三次极大的距离,并测量整个包络宽度。 5、测量最大的中心之间的距离和第二次和第三次的最大侧。测量距离从中央最高最低衍射(干扰)模式。 6、使用式(2)确定缝间距: (a) 测量中央主级大到每一侧上的第n个极大值之间的距离H n(n=1,2,3)。 (b)测量单缝光栅到光传感器的前部之间的距离L。

计算机网络技术实验报告

重庆交通大学 学生实验报告 实验课程名称《计算机网络技术》课程实验 开课实验室软件与通信实验中心 学院国际学院年级2012 专业班(1)班 学生姓名吴双彪学号6312260030115 开课时间2014 至2015 学年第二学期 实验2简单的局域网配置与资源共享 实验目的: 1、掌握将两台PC联网的技能与方法 2、掌握将几台PC连接成LAN的技能与方法 3、掌握局域网内资源共享的技能与方法 实验内容和要求: 1、选用百兆交换机连接PC若干台; 2、在上述两种情况下分别为PC配置TCP/IP协议,使他们实现互联和资源共享实验环境:(画出实验网络拓图) 实验步骤: 1、选择两台计算机; 选PC0与PC1. 2、设置两台计算机IP地址为C类内部地址; 两台PC机的IP分别设置为:、202.202.242.47、202.202.243.48; 两台PC机的掩码分别设置为:、255.255.255.0、255.255.255.0; 3、用一台计算机Ping另一台计算机,是否能Ping通?

4、我的电脑→工具→文件夹选项→查看→去掉“使用简单文件共享(推荐)”前 的勾;设置共享文件夹。 5、控制面板→管理工具→本地安全策略→本地策略→安全选项里,把“网络访 问:本地帐户的共享和安全模式”设为“仅来宾-本地用户以来宾的身份验证” (可选,此项设置可去除访问时要求输入密码的对话框,也可视情况设为“经典-本地用户以自己的身份验证”); 6、通过网络邻居或在运行窗口输入“\\对方IP地址”实现资源共享。 1)指定IP地址,连通网络 A.设置IP地址 在保留专用IP地址范围中(192.168.X.X),任选IP地址指定给主机。 注意:同一实验分组的主机IP地址的网络ID应相同 ..。 ..,主机ID应不同 ..,子网掩码需相同B.测试网络连通性 (1)用PING 命令PING 127.0.0.0 –t,检测本机网卡连通性。 解决方法:检查网线是否连接好,或者网卡是否完好 (2)分别“ping”同一实验组的计算机名;“ping”同一实验组的计算机IP地址,并记录结 果。答:能。结果同步骤3 (3)接在同一交换机上的不同实验分组的计算机,从“网上邻居”中能看到吗?能ping通 吗?记录结果。 2) 自动获取IP地址,连通网络 Windows主机能从微软专用B类保留地址(网络ID为169.254)中自动获取IP地址。 A.设置IP地址 把指定IP地址改为“自动获取IP地址”。 B.在DOS命令提示符下键入“ipconfig”,查看本机自动获取的IP地址,并记录结果。 C.测试网络的连通性 1.在“网上邻居”中察看能找到哪些主机,并记录结果。 2.在命令提示符下试试能“ping”通哪些主机,并记录结果。 答:能ping通的主机有KOREYOSHI ,WSB ,ST ,LBO ,CL 。思考并回答 测试两台PC机连通性时有哪些方法? 实验小结:(要求写出实验中的体会)

工程光学(1)_实验讲义

实验一光学实验主要仪器、光路调整与技巧 1.引言 不论光学系统如何复杂,精密,它们都是由一些通用性很强的光学元器件组成的,因此,掌握一些常用的光学元器件的结构,光学性能、特点和使用方法,对于安排实验光路系统时,正确的选择和使用光学元器件具有重要的作用。 2.实验目的 1)掌握光学专业基本元件的功能; 2)掌握基本光路调试技术,主要包括共轴调节和调平行光。 3.实验原理 3.1光学实验仪器概述: 光学实验仪器主要包括:光源,光学元件,接收器等。 3.1.1常用光源 光源是光学实验中不可缺少的组成部分,对于不同的观测目的,常需选用合适的光源,如在干涉测量技术中一般应使用单色光源,而在白光干涉时又需用能谱连续的光源(白炽灯);在一些实验中,对光源尺寸大小还有点、线、面等方面的要求。光学实验中常用的光源可分为以下几类: 1)热辐射光源 热辐射光源是利用电能将钨丝加热,使它在真空或惰性气体中达到发光的光源。白炽灯属于热辐射光源,它的发光光谱是连续的,分布在红外光、可见光到紫外光范围内,其中红外成分居多,紫外成分很少,光谱成分和光强与钨丝温度有关。热辐射光源包括以下几种:普通灯泡,汽车灯泡,卤钨灯。 2)热电极弧光放电型光源 这类光源的电路基本上与普通荧光灯相同,必须通过镇流器接入220V点源,它是使电流通过气体而发光的光源。实验中最常用的单色光源主要包括以下两种:纳光灯(主要谱线:589.3nm、589.6nm),汞灯(主要谱线:623.4nm、579.0nm、577.0nm、546.1nm、491.6nm、435.8nm、407.9nm、404.7nm) 3)激光光源 激光(Light Amplification by Stimulated Emission of Radiation,缩写:LASER),是指通过辐射的受激辐射而实现光放大,即受激辐射的光放大。激光器作为一种新型光源,与普通光源有显著的差别。它是利用受激辐射的原理和激光腔的滤波效应,使所发光束具有一系列新的特点。①激光器发出的光束有极强的方向性,即光束的发散角很小;②激光的单色性好,或者说相干性好,其相干长度可以达十米甚至数百米;③激光器的输出功率密度大,即能量高度集中。所以激光光源是一种单色性和方向性都好的强光源,已应用于许多科技及生产领域

多道光谱仪测光谱并光谱分析实验报告

近代物理实验实验报告 实验课题:使用光学多道测量光谱与光谱分析 班级:物理学061 姓名:任军培 学号:06180130 指导老师:方允樟 2008年11月21日

一、摘要: 本实验通过使用光学多道测量光谱了解和学会使用光学多道分析仪,并学会了通过光学多道分析仪分析氢、氮、氦、氖等光谱。测量了氢光谱的巴尔末系中Hα、Hβ,Hγ,Hδ四种谱线的波长和里德伯常数。 二、关键词:光学多道分析器里德伯常数光谱 三、引言:常用的光谱涉及的波段从X射线,紫外线,可见光,红外线,微波到射频波段。所以光谱技术是研究物质微观结构的重要手段,它被广泛地应用于医学,生物,化学,地质考古,冶金等许多场所。光谱实验的数据为了解原子、分子和晶体等精细结构提供了重要依据。而光学多通道分析器是用平面光栅衍射的方法获得多级衍射光的仪器,用它可对给定波长范围的单色光进行光谱分析,与单缝,双缝衍射相比,平面光栅衍射具有衍射本领大,衍射光线亮,分辨率高等特点。因而在特征谱线分析中有着广泛的应用。本实验通过测量各种气体灯光的原子在可见光波段的发射光谱使大家了解光谱与微观结构(能级)间的联系和学习光谱测量的基本方法。 四、正文: 1、实验原理 衍射包括单缝衍射,双缝衍射和光栅衍射。它们都可用来测量光波的波长,但由于单缝衍射,双缝衍射在各级衍射的分辨率与亮度存在矛盾,而光栅正好解决了两者间的矛盾,所以实验中大多采用平面光栅来做实验。光栅一般分两类,一类是透射式(见图1),另一类是反射式(见图2)。透射式光栅是在一块平面透明的玻璃板上刻上平行,等间距又等宽的直痕,刻痕部分不透光,两刻痕间能透光,相当于狭缝。相邻刻痕间的距离d称为光栅常数。反射式光栅是在镀有金属层的表面上刻划斜的平行等间距刻痕,斜面能反射光。本实验用反射式平面光栅。 图1平面透射光栅图2平面反射光栅 利用现代电子技术和计算机技术接收和处理某一波长范围内光谱信息的光学多通道分析与检测系统的基本框图如图3所示。 图3光学多通道分析与检测系统的基本框图

光学基础学习报告

光学基础学习报告 一、教学内容: 光电镜头是用来作为光电接收器(CCD,CMOS )的光学传感器元件。 光学特性参数: 1、 焦距EFL (学名f ’) 是指主面到相应焦点的距离(如图1.1) 图1.1 每个镜片都有前后两个主面-前主面和后主面(放大率为1的共轭面)。相应的也有两个焦点-前焦和后焦。 凸透镜:双凸;平凸;正弯月(如图1.1) 图1.2 凹透镜:双凹;平凹;负弯月 图 1.3

折射率实际反映的是光在物质中传播速度与真空中速度的比值关系。 薄透镜:)]1()1[()1('12 1R R n f -?-== Φ Φ—透镜光焦距; f ’—焦距; n —折射率; R 1,R 2-两球面曲率半径 厚透镜:2 1221)1()]1()1[()1('1R nR d n R R n f -+ -?-==Φ d -中心厚度 干涉仪与光距座可以量测f ’,R1,R2,d →利用上述的公式可以计算出n 值,从而来确定所用材料。 A 、 EFL 增加,TOTR (光学总长)增加;要降低TOTR 就必须降低EFL ,但EFL 降低, 像高就要降低 B 、 EFL 与某些象差相关 C 、 EFL 上升将使F/NO 增大 D 、 EFL ,FOV (视场角)和IMA (像高)三者间有关系 tanFOV ?=EFL IMA -铁三角关系 EFL 的增大(减小)会使像高变大(小),为了保持像高,就必须要增大(减小)FOV ,然而FOV 的增大会使得REL (相对照度)的数值增大。 2、 BFL 后焦距(学名后截距) 图2.1 3、 F 数(F/NO ) D f NO F '/= f ’-FEL D 入-入瞳直径 入瞳为光阑经其前方光学镜片所成的像,反映进入光学系统的光线 A 、 与MTF 相关,F/NO ↑,则MTF ↑;反之下降 B 、 与景深相关,F/NO ↑,则景深↑,反之下降 C 、 与象差相关,F/NO ↑,则象差↓,反之增加 D 、 与光通量相关,F/NO ↑,则光通量↓,反之增加 对于光电镜头,F/NO 最大在2.8~3.5之间(经验值)允许有±5%的误差,在物方有照

计算机与通信网络实验报告

计算机与通信网络实验报告 041220111 戴妍 实验一隐终端与暴露终端问题分析 一、实验设定: 基本参数配置:仿真时长100s;随机数种子1;仿真区域2000x2000;节点数4。 节点位置配置:本实验用[1]、[2]、[3] 、[4]共两对节点验证隐终端问题。节点[1]、[2]距离为200m,节点[3]、[4]距离为200m,节点[2]、[3]距离为370m。 业务流配置:业务类型为恒定比特流CBR。[1]给[2]发,发包间隔为0、01s,发包大小为512bytes;[3]给[4]发,发包间隔为0、01s,发包大小为512bytes。 二、实验结果: Node: 1, Layer:AppCbrClient,(0)Server address:2 Node:1,Layer: AppCbrClient,(0)Firstpacket sent a t[s]:0、000000000 Node: 1,Layer:AppCbrClient,(0)Lastpacket sent at [s]:99、990000000 Node:1,Layer:AppCbrClient,(0) Session status:Not closed Node:1, Layer: AppCbrClient,(0)Totalnumber of bytess ent: 5120000 Node: 1,Layer:AppCbrClient,(0) Total number of packets se nt: 10000 Node:1, Layer: AppCbrClient,(0) Throughput (bits per second):409600 Node:2, Layer:AppCbrServer, (0)Clientaddress: 1 Node: 2, Layer:AppCbrServer,(0) Firstpacket received at [s]:0、007438001 Node:2, Layer:AppCbrServer,(0)Last packetreceiveda t[s]:99、999922073

光学系统设计讲义

实验一:单镜头设计(Singlet) 实验目的: 1、学习如何启用Zemax 2、学习如何输入波长(wavelength)、镜头数据(lens data) 3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams), MTF等。 4、学习如何定义thickness solve以及变量(variables) 5、学习如何进行优化设计(optimization) 实验仪器:微机、zemax光学设计软件 实验步骤: 1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光, 用BK7玻璃为材料。 2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。什么是LDE呢?它是你要 的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。 3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data,键入你 要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。在第二、三行键入 0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength主要是用来计算光学 系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。 4、确定透镜的孔径大小。既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的 effective focal length F跟paraxial entrance pupil的直径的比值。所以现在我们需要的aperture就是100/4=25(mm)。于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue 上键入25,然后点击ok。 5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。OBJ就是发光物,即光源,STO 即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。而IMA就是imagine plane,即成像平面。回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。 6、输入镜片的材质为BK7。在STO行中的glass栏上,直接键入BK7即可。 7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO行中的thickness栏上直接键入4。Zemax 的默认单位是mm 8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负 值。再令第2面镜的thickness为100。 9、现在数据已大致输入完毕。如何检验你的设计是否达到要求呢?选analysis中的fans,然后选择其中的 Ray Aberration,将会出现如图1-1所示的TRANSVERSE RAY FAN PLOT。

凃逍羽 用光学多道分析器研究氢原子光谱

用光学多道分析器研究氢原子光谱 凃逍羽 武汉大学 物理科学与技术学院 物理学基地1班 学号:2011301020019 摘要:使用光学多道分析器测定氢原子巴尔末系中H αH βH γH δ波长,并利用所测的波长拟合计算出氢 原子的里德伯常量。 关键词:光学多道分析器 氢原子光谱 巴尔末系 里德伯常量 the Study of Hydrogen Atomic Spectrum with Optical Multichannel Analyzer Tu Xiaoyu Wuhan University Physical science and technology academy Basic physicsclass 2011301020019 Abstract: By using the OMA, this article will measure out the wavelength of H αH βH γH δ in the Balmer spectrum, and work out the Rydberg constant of hydrogen atom by using the wavelength above. Keywords: Optical Multichannel Analyzer, Hydrogen atom spectrum, Balmer spectrum, Rydberg constant 0.引言: 下图为氢原子的能级图.根据玻尔理论,氢原子的能级公式为: (34-1) 式中称为约化质量,m e 为电子质量,M 为原子核质量.氢原子的等于1836.15。 电子从高能级跃迁到低能级时,发射的光子能量h ν为两能级间的能量差 如以波数 表示,则上式为 ()() ()()E m E n T n T m hc σ-= =- 221 1H R n m ??=- ??? 式中R H 称为氢原子的里德伯常数,单位是m -1 ,T(n)称为光谱项,它与能级E(n)是对应的.从R H 可得氢原子各能级的能量 式 中 - 4 .-1 h=eV s m s c ? ?= ?? 从能级图可知,从3≥m 至2n =的跃迁.光子波长位于可见光区.其光谱符合规律

立式光学仪实验报告doc

立式光学仪实验报告 篇一:光学实验报告 建筑物理 ——光学实验报告实验一:材料的光反射比、透射比测量实验二:采光系数测量 实验三:室内照明实测实验小组成员:指导老师:日期:XX年12月3日星期二实验一、材料的光反射比和光透射比测量 一、实验目的与要求室内表面的反射性能和采光口中窗玻璃的透光性能都会直接或间接的影响室内光环境的好坏,因此,在试验现场采光实测时,有必要对室内各表面材料的光反射比,采光口中透光 材料的过透射比进行实测。通过实验,了解材料的光学性质,对光反射比、透射比有一巨象的数值概念,掌握测量方法和注意事项。 二、实验原理和试验方法 (一)、光反射比的实验原理、测量内容和测量方法光反射比测量方法分为直接测量方法和间接测量法,直接测量法是指用样板比较和光反 射比仪直接得出光反射比;间接法是通过被测表面的照度和亮度得出漫反射面的光反射比。 下面是间接测量法。

1. 实验原理 (1)用照度计测量:根据光反射比的定义:光反射比p是投射到某一材料表面反射出来的光通量与被该光源的光通量的比值,即: p=φp/φ 因为测量时将使用同一照度计,其受光面积相等,且,所以对于定向反射的表面,我们 可以用上述代入式,整理后得:p=ep/e 对于均匀扩散材料也可以近似的用上述式。可知只要测出材料表面入射光照度e和材料反射光照度ep,即可计算出其反射比。(2) 用照度计和亮度计测量 用照度计和亮度计分别测量被测表面的照度e和亮度l 后按下式计算 p=πl/e 式中:l---被测表面的亮度,cd/m2; e—被测表面的照度,lx 。 2.测量内容要求测量室内桌面、墙面、墙裙、黑板、地面的光反射比。每种材料面随机取3个点测量3次,然后取其平均值。 3.测量方法 ①将照度计电源(power)开关拨至“on”,检查电池,如果仪器显示窗出现“batt”字 样,则需要换电池;

相关文档